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Preface
Every theory section in these notes has been taken from two sources:

• Computer Architecture: A Quantitative Approach. [1]

• Course slides. [2]

About:

§ GitHub repository
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1 Basic Concepts

1 Basic Concepts
This section is designed to review old concepts that are fundamental to this
course.

1.1 Pipelining
1.1.1 MIPS Architecture

MIPS (Microprocessor without Interlocked Pipelined Stages) is a fam-
ily of Reduced Instruction Set Computer (RISC). It is based on the concept of
executing only simple instruction in a reduced basic cycle to optimize
the performance of CISC1 CPUs.

MIPS is a load-store architecture (or a register–register architecture), which
means it is an Instruction Set Architecture (ISA2) that divides instructions
into two categories:

• Memory access (load and store between memory and registers; load
data from memory to registers; store data from registers to memory):

Memory load−−−→ Registers

Memory store←−−− Registers

• ALU operations (which only occur between registers).

Finally, MIPS is also a Pipeline Architecture. It means that it can exe-
cute a performance optimization technique based on overlapping the
execution of multiple instructions derived from a sequential execution
flow.

1CISC processors use simple and complex instructions to complete any given task. Instead,
the RISC processor uses the approach of increasing internal parallelism by executing a simple
set of instructions in a single clock cycle (see more here).

2Instruction Set Architecture (ISA) is a part of the abstract model of a computer, which
generally defines how software controls the CPU.
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1 Basic Concepts 1.1 Pipelining

Reduced Instruction Set of MIPS Processor

The instruction set of the MIPS processor is the following:

• ALU instructions:

– Sum between two registers:
1 add $s1 , $s2 , $s3 # $s1 <- $s2 + $s3

Take the values from s2 and s3, make the sum and save the result
on s1.

– Sum between register and constant:
1 addi $s1 , $s1 , 4 # $s1 <- $s1 + 4

Take the value from s1, make the sum between s1 and 4, and save
the result on s1.

• Load/Store instructions:

– Load
1 lw $s1 , offset ($s2) # $s1 <- Memory[$s2 + offset]

From the s2 register, calculate the index on the memory with the
offset, take the value and store it in the s1 register.

– Store
1 sw $s1 , offset ($s2) # Memory[$s2 + offset] <- $s1

Take the value from the s1 register, take the value from the s2 reg-
ister, calculate the index on the memory with the offset, and store
the value taken from s1 in the memory.

• Branch instructions to control the instruction flow:

– Conditional branches
Only if the condition is true (branch on equal):

1 beq $s1 , $s2 , L1 # if $s1 == $s1 then goto L1

Only if the condition is false (branch on not equal):
1 bne $s1 , $s2 , L1 # if $s1 != $s2 then goto L1

– Unconditional jumps. The branch is always taken.
Jump:

1 j L1 # jump to L1

Jump register:
1 jr $s1 # jump to address contained in $s1
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1 Basic Concepts 1.1 Pipelining

Formats of MIPS 32-bit Instructions

The previous instructions are divided into three types:

• Type R (Register): ALU instructions.

• Type I (Immediate): Load/Store instructions and Conditional branches.

• Type J (Jump): Unconditional jumps instructions.

Every instruction starts with a 6-bit opcode. In addition to the opcode:

• R-type instructions specify:

– Three registers: rs, rt, rd

– A shift amount field: shamt

– A function field: funct

• I-type instructions specify:

– Two registers: rs, rt

– 16-bit immediate value: offset/immediate

• J-type instructions specify:

– 26-bit jump target: address

Figure 1: MIPS 32-bit architecture.

Scan (or click) the QR code below to view the table in high quality:
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1 Basic Concepts 1.1 Pipelining

Phases of execution of MIPS Instructions

Every instruction in the MIPS subset can be implemented in at most 5 clock
cycles (phases) as follows:

1. Instruction Fetch (IF)

(a) Send the content of Program Counter (PC) register to the Instruc-
tion Memory (IM);

(b) Fetch the current instruction from Instruction Memory;

(c) Update the Program Counter to the next sequential address by
adding the value 4 to the Program Counter (4 because each instruc-
tion is 4 bytes!).

2. Instruction Decode and Register Read (ID)

(a) Make the fixed-filed recording (decode the current instruc-
tion);

(b) Read from the Register File (RF) of one or two registers correspond-
ing to the registers specified in the instruction fields;

(c) Sign-extension of the offset field of the instruction in case it is needed.

3. Execution (EX). The ALU operates on the operands prepared in the
previous cycle depending on the instruction type (see more details after
this list):

• Register-Register ALU instructions: ALU executes the speci-
fied operation on the operands read from the Register File.

• Register-Immediate (Register-Constant) ALU instructions: ALU
executes the specified operation on the first operand read from Reg-
ister File and the sign-extended immediate operand.

• Memory Reference: ALU adds the base register and the offset to
calculate the effective address.

• Conditional Branches: ALU compares the two registers read from
Register File and computes the possible branch target address by
adding the sign-extended offset to the incremented Program Counter.

4. Memory Access (ME). It depends on the operation performed:

• Load. Instructions require a read access to the Data Memory
using the effective address.

• Store. Instruction require a write access to the Data Memory
using the effective address to write the data from the source
register read from the Register File.

• Conditional branches can update the content of the Pro-
gram Counter with the branch target address, if the conditional
test yielded true.
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1 Basic Concepts 1.1 Pipelining

5. Write-Back (WB). It depends on the operation performed:

(a) Load instructions write the data read from memory in the
destination register of the Register File.

(b) ALU instructions write the ALU results into the destination
register of the Register File.

Execution (EX) details

• Register-Register ALU instructions. Given the following pattern
(where op can be the operators add/addi (+) or sub/subi (-), but not
mult (×) or div (÷) because they required some special registers and
therefore more phases):

1 op $x , $y , $z # e.g. op=add => $x <- $y + $z

Cost: 4 clock cycles

1. Instruction Fetch (IF) and update the Program Counter (next se-
quential address);

2. Fixed-Field Decoding and read from Register File the registers: y
and z;

3. Execution (EX), ALU performs the operation op ($ y op $ z);

4. Write-Back (WB), ALU writes the result into the destination register
x.

• Memory Reference

– Load. Given the following pattern:
1 lw $x , offset ($y) # $x <- M[$y + offset]

Cost: 5 clock cycles

1. Instruction Fetch (IF) and update the Program Counter (next
sequential address);

2. Fixed-Field Decoding and read of Base and register y from Reg-
ister File (RF);

3. Execution (EX), ALU adds the base register and the offset to
calculate the effective address: y + offset;

4. Memory Access (ME), read access to the Data Memory (DM)
using the effective (y + offset) address;

5. Write-Back (WB), write the data read from memory in the des-
tination register of the Register File (RF) x.
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– Store. Given the following pattern:
1 sw $x , offset ($y) # M[$y + offset] <- $x

Cost: 4 clock cycles

1. Instruction Fetch (IF) and update the Program Counter (next
sequential address);

2. Fixed-Field Decoding and read of Base register y and source
register x from Register File (RF);

3. Execution (EX), ALU adds the base register and the offset to
calculate the effective address: y + offset;

4. Memory Access (WB), write the data read from memory in the
destination register of the Register File (RF) M(y + offset).

• Conditional Branch. Given the following pattern:
1 beq $x, $y, offset

Cost: 4 clock cycles

1. Instruction Fetch (IF) and update the Program Counter (next se-
quential address);

2. Fixed-Field Decoding and read of source registers x and y from Reg-
ister File (RF);

3. Execution (EX), ALU compares two registers x and y and compute
the possible branch target address by adding the sign-extended offset
to the incremented Program Counter: PC + 4 + offset;

4. Memory Access (ME), update the content of the Program Counter
with the branch target address (we assume that the conditional test
is true).
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1.1.2 Implementation of MIPS processor - Data Path

Implementing a MIPS processor isn’t difficult. On the following page we show
three different diagrams: the first is a very high level data path to allow the
reader to understand how it works; the second is more detailed, but without the
CU (Control Unit); the third is the complete data path and it also includes the
CU (in red).
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Figure 2: A basic implementation of MIPS data path. [2]

Scan (or click) the QR code below to view the figure 2 in high quality:

Two notes:

• The Instruction Memory (read-only memory) is separated from Data
Memory.

• The 32 general-purpose register are organized in a Register File (RF)
with 2 read ports and 1 write port.
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Figure 3: An implementation of MIPS data path (no Control Unit). [2]
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Scan (or click) the QR code below to view the figure 3 in high quality:
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Figure 4: A complete implementation of MIPS data path. [2]

Scan (or click) the QR code below to view the figure 4 in high quality:
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1.1.3 MIPS Pipelining

In simple words, the Instruction Pipelining (or Pipelining) is a technique for
implementing instruction-level parallelism within a single processor. Pipelin-
ing attempts to keep every part of the processor busy with some instruction
by dividing incoming instructions into a series of sequential steps (the epony-
mous “pipeline”) performed by different processor units with different parts of
instructions processed in parallel.

Definition 1: Pipelining

Pipelining is a performance optimization technique based on the over-
lap of the execution of multiple instructions deriving from a sequential
execution flow.

Pipelining exploits the parallelism among instructions in a sequential
instruction stream.

⋆ Basic idea

The execution of an instruction is divided into different phases (called
pipelines stages), requiring a fraction of the time necessary to complete the
instruction. These stages are connected one to the next to form the pipeline:

1. Instructions enter the pipeline at one end;

2. Progress through the stages;

3. And exit from the other end.

As in the assembly line.

✓ Advantage

The Pipelining is transparent for the programmer. To understand what
it means, let’s make an example.

Example 1

Image a car assembly line (e.g. Ferrari). A new car exits from the Ferrari
assembly line in the time necessary to complete one of the phases. The
pipelining technique doesn’t reduce the time required to complete a car
(the latency), BUT increases the number of vehicles produced per time
unit (the throughput) and the frequency to complete cars.
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Example 2

Image a sequential laundry jobs over time: [2]

The pipelined laundry. Overlapping execution of stages to improve
throughput (number of jobs executed per hour): [2]

As introduced in the previous example, sequential execution is slower than
pipelining. The following figure shows the difference (in terms of clock cycles)
between sequential and pipelining.

 

 

 

2 ns 

Time 

I2 

I3 

I1 WB MEM EX ID IF 

2 ns 

2 ns 

WB MEM EX ID IF 

WB MEM EX ID IF 

WB MEM EX ID IF 

WB MEM EX ID IF 2 ns 

I4 

I5 

 
I2 

… 

I1 

WB MEM EX ID IF WB MEM EX ID IF 

10 ns 10 ns 

Figure 5: Sequential vs Pipelining. [2]
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The time to advance the instruction of one stage in the pipeline corresponds to
a clock cycle. So the total cost is: 9 clock cycles.

It’s obvious that the pipeline stages must be synchronized: the duration of
a clock cycle is defined by the time required by the slower stage in the pipeline
(i.e. 2 ns). The main goal is to balance the length of each pipeline stage.
If the stages are perfectly balanced, the ideal speedup due to pipelining is
equal to the number of pipeline stages.

Definition 2: ideal speedup

The ideal speedup must be the same value of the pipeline stages.

Look again at Figure 5. The sequential and pipelining cases consist of 5 instruc-
tions, each of which is divided into 5 low-level instructions of 2 ns each.

• The latency (total execution time) of each instruction is not varied, it’s
always 10 ns.

Definition 3: latency

The latency is the execution time of a single instruction.

• The throughput (number of low-level instructions completed in the time
unit) is improved:

– Sequential: 5 instructions in 50 ns (1 instruction per 10 ns, 50÷ 5 =
10)

– Pipelining: 5 instruction in 18 ns (1 instruction per 3.6 ns, 18÷ 5 =
3.6)

Definition 4: throughput

The throughput is the number of instructions completed per unit
of time.
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Pipeline Execution of MIPS Instructions

On page 8 we discussed some MIPS instructions to understand how the MIPS
architecture works. The aim of the following pages is to understand how MIPS
works in a pipelined execution.

We want to perform the following assembly lines:
1 op $x , $y , $z # assume $x <- $y + $z
2 lw $x , offset ($y) # $x <- M[$y + offset]
3 sw $x , offset ($y) # M[$y + offset] <- $x
4 beq $x, $y, offset
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Figure 6: Pipeline Execution of MIPS Instructions. [2]

15



1 Basic Concepts 1.1 Pipelining

Resources used during the pipeline execution
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Figure 7: Resources used during the pipeline execution (IM is Instruction Mem-
ory, REG is Register File and DM is Data Memory). [2]
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Implementation of MIPS pipeline

The division of the execution of each instruction in n stages implies that in
each clock cycle, there are n instructions for execution. That means the CPU
must have n modules corresponding to n execution stages. Therefore, to do
pipelining, we need pipeline registers to separate the different stages.

In the following figure, we can see how the pipeline registers are implemented.
Between each phase of execution of MIPS instructions (details on page 7), there
is a pipeline register holding the result of the instruction.
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Figure 8: MIPS pipeline implementation. [2]

Note: the data stored in the interstage registers correspond (obvi-
ously) to different instructions.
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Finally, in the following figure we can see the timeline implementation of the
pipeline registers. But there are two basic assumptions to make:

1. There are no data dependencies between instructions. If there were, an
instruction could read a register with an unknown value (Pipeline Hazard,
page 19).

2. There are no branch/jump instructions.

 

ld x10 40(x1)

ld x13 48(x1)

sub x11,x2,x3

add x12,x3,x4

add x14,x5,x6

Figure 9: Timeline of MIPS pipeline implementation. [2]
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1.1.4 The problem of Pipeline Hazards

Definition 5: Hazard

A hazard (conflict) is created whenever there a dependence between
two instructions, and instructions are close enough that the overlap
caused by pipelining would change the order of access to the operands
involved in the dependence.

. Problem Consequences

The Hazards:

• Force the next instruction in the pipeline to be executed later than
its intended clock cycle.

• Reduced the performance from the ideal speedup achieved by pipelin-
ing (direct previous consequence).

There are three classes of Hazards:

• Structural Hazards. Attempt to use the same resource from differ-
ent instructions simultaneously.
Example: single memory for instruction and data.

• Data Hazards. Attempt to use a result before it is ready.
Example: instruction depending on a result of a previous instruction still
in the pipeline.
There are also two specific forms of data hazard, called Load-Use
Data Hazard and Load-Store Data Hazard. Both occur when the
data loaded by a load instruction is not yet available when it is
needed by another instruction. In the case of Load-Use, the “another
instruction” is an operator such as add; in the case of Load-Store, the
“another instruction” is the store (sw) instruction.
The following example shows the conflict (Load-Use Data Hazard) be-
tween two instructions. In particular, the value lw writes to s2 is not
available until lw has completed the MEM phase, but and needs this value
when it enters the EX phase, i.e. when lw enters the MEM phase.

1 lw $s2 , 20($s1)
2 and $s4 , $s2 , $s5

• Control Hazards. Attempt to make a decision on the next instruc-
tion to execute before the condition is evaluated (more detailed
analysis on page 21).
Example: conditional branch execution.

Structural Hazards? No problem for MIPS Architecture!

There aren’t any structural hazards in MIPS architecture because the
Instruction Memory (IM) is separated from the Data Memory (DM). Also, the
Register File (RF) is used in the same clock cycle (read access by an instruction
and write access by another instruction).
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® How to detect Data Hazards? Dependency Analysis

To detect Data Hazards, it is suggested to analyze the dependencies. If the
instructions executed in the pipeline depend on each other, data hazards can
arise when instructions are too close. For example:

1 sub $2, $1, $3 # reg. $2 written by sub
2 and $12 , $2 , $5 # 1 operand ($2) depends on sub
3 or $13 , $6 , $2 # 2 operand ($2) depends on sub
4 add $14 , $2 , $2 # 1 ($2) and 2 ($2) op.s depend on sub
5 sw $15 , 100($2) # base reg. ($2) depends on sub

Data Hazards can occur in a variety of situations, but a true dependency
situation is created by a RAW (Read After Write) Hazard.

Definition 6: Read After Write Hazard

A RAW (Read After Write) Hazard occurs when an instruction
n + 1 tries to read a source operand before the previous instruction n
has written its value in the Register File (RF).

For example:
1 sub $2, $1, $3 # reg. $2 is written by sub
2 and $12 , $2, $5 # 1 op. ($2) depends on sub
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® How to detect Control Hazards? Check conditional branches

First of all, some examples of conditional branches for MIPS processor are:
beq (branch on equal) and bne (branch on not equal):

1 beq $s1 , $s2 , L1 # if $s1 == $s1 then goto L1
2 bne $s1 , $s2 , L1 # if $s1 != $s2 then goto L1

The address to which you want to branch is called the Branch Target
Address. If the branch condition:

• Is satisfied ⇒ the branch is taken and the Branch Target Address is
stored in the Program Counter (PC).

• Is not satisfied⇒ the branch is not taken (untaken) and the instruction
stream is executed sequentially with the next instruction address (PC +4).

In detail, the stages are the following:

1. [IF] Instruction fetch and PC increment.

2. [ID] Instruction Decode and Registers Read (e.g. x and y)

3. [EX] Compare registers (e.g. x and y) in the ALU to derive the Branch
Outcome: taken or not taken. Also, computation of the Branch Target
Address, so PC+ 4 + offset

4. [ME] The Branch Outcome is used to decide the next PC:

• Is satisfied ⇒ PC take PC+ 4 + offset

• Is not satisfied ⇒ PC take PC+ 4

Let us now move on to a more interesting analysis. To understand when the
Control Hazards occur, think about the Branch Outcome and the Branch Target
Address. Both are ready at the end of the EX (execution) phase (so between
pass number 3 and 4). Finally, branches are resolved when the Program Counter
is updated at the end of the Memory Access stage (after pass number 4).

To feed the condition branch into the pipeline, we need to create a way where
the condition branch is decided before the EX stage of the next in-
struction. It’s obvious, because if the Branch Outcome is positive, we need to
skip the next instruction and do the conditional jump instead.

This is a more detailed explanation of a control hazard. Control Hazards
arise from the pipelining of conditional branches and other jump instructions
that change the PC. They also reduce the performance from the ideal
speedup gained by pipelining, because it is necessary to hold the pipeline
until the branch is resolved.
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MIPS Optimized Pipeline

Consider the following situation:

 

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

sub  $2, $1, $3

and $12, $2, $5

or  $13, $6, $2

add $14, $2, $2

sw  $15,100($2)

Figure 10: Why MIPS Optimized Pipeline was born. [2]

The Register File is used in 2 stages: read access during ID (and operation) and
write access during Write Back (WB) (sub operation). What happens if read
and write refer to the same register in the same clock cycle? Or we insert a
stall, or we use an optimized pipeline (smart choice).

Definition 7: Optimized Pipeline

By selecting Optimized Pipeline, we assume the Register File (RF)
read occurs in the second half of clock cycle and the Register File write
in the first half of clock cycle.

This way we don’t need the stall. The following Figure 11 shows an optimized
pipeline.
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Figure 11: Optimized Pipeline (IM is Instruction Memory, REG is Register File,
and DM is Data Memory). [2]

And the problem mentioned at the beginning of this paragraph is partially
solved, as we can see in the following figure.
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sub  $2, $1, $3

and $12, $2, $5

or  $13, $6, $2

add $14, $2, $2

sw  $15,100($2)

Figure 12: Optimized Pipeline to solve the example stall. [2]
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1.1.5 The solution of Data Hazards

The following techniques don’t solve the problem completely, but they do solve
it partially. So they find a perfect balance between the ideal speedup and a
situation where the hazard is total.

The solution can be applied on runtime (hardware techniques) or on compilation
(static-time techniques):

• Compilation Techniques (static-time techniques):

– The insertion of nop is a simple (logical) solution where we insert a
nop operator between dependent statements to ensure correct
operation.
See the example on page 27.

– The instructions scheduling is a technique used by the compiler
to prevent correlating instructions from being too close together. It
tries to reorder instructions by inserting independent instructions
between correlating instructions. If the compiler can’t do this,
it inserts nop operations.
See the example on page 28.

• Hardware Techniques (runtime techniques):

– The insertion of stalls (called also bubbling the pipeline, pipeline
break, or pipeline stall) is a sort of a delay before the processor can
resume execution of the instruction. As we can see in the example
on page 28, the stalls delay the stages of the correlating instructions.

– The data forwarding uses temporary results stored in the
pipeline registers instead of waiting for the results to be written
back to the Register File (RF). To do this, it’s necessary to add
new paths and multiplexers at the inputs of the ALU to fetch
inputs from the pipeline to avoid inserting stalls in the pipeline.
See the example on page 28.

We have the mandatory to give more words to the data forwarding technique.
First of all, its implementation needs new paths and new multiplexers. So, to
adapt the MIPS architecture, the new implementation will be show in the figure
13 on page 25.
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Figure 13: Implementation of MIPS with Forwarding Unit. [2]

Scan (or click) the QR code below to view the figure 13 in high quality:

The forwarding paths created inside the MIPS architecture are three: EX to EX
path, MEM to EX path, and MEM to MEM path.
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Figure 14: Forwarding paths on MIPS architecture. [2]

Furthermore, the forwarding technique can solve the Load-Use and Load-
Store Data Hazard. It’s a very interesting feature because the MEM to EX and
MEM to MEM paths can solve two different situations:

• Load-Use Hazard. It’s solved by MEM to EX path because the value
loaded in the MEM stage, is forwarded directly to the EX stage of the next
conflict instruction (but unfortunately we need one stall to delay the run).
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Example 3

Given the following code:
1 lw $s0 , 4($t1) # $s0 <- M[4 + $t1]
2 add $s5 , $s0 , $s1 # 1 operand $s0 depends from lw

The s0 operand depends on the load (lw) operator. Here, the
problem of load-use hazard occurs.

 

  
   

CK2CK1

lw  $s0, 4($t1) IDIF WBMEMEX

IDIF WBMEMEX

CK4CK3 CK6CK5 CK7

add  $s5,$s0,$s1

The load-use hazard problem. [2]

In the figure, we can see the existing dependence. An ideal solution
to the load-use hazard should be taking the value after the Memory
Access operation (because the load instruction reads the effective
address on the memory) and using it in the sum (operation).
The forwarding technique solves it using the MEM-EX
path but using one stall.

 

 

CK2CK1

lw  $s0, 4($t1) IDIF WBMEMEX

IDIF WBMEMEX

CK4CK3 CK6CK5 CK7

add  $s5,$s0,$s1

Forwarding technique with MEM-EX path. [2]

• Load-Store Hazard. It’s solved by MEM to MEM path because the
value loaded in the MEM stage, is forwarded directly to the MEM stage
of the next conflict instruction.

Example 4

Given the following code:
1 lw $s0 , VECTA($t1) # $s0 <- M[VECTA + $t1]
2 sw $s0 , VECTB($t1) # M[VECTA + $t1] <- $s0

The s0 operand depends on the load (lw) operator. Here, the
problem of load-store hazard occurs.
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CK2CK1

lw $s0, VECTA($t1) IDIF WBMEMEX

IDIF WBMEMEX

CK4CK3 CK6CK5 CK7

sw $s0, VECTB ($t1)

The load-store hazard problem. [2]

In the figure, we can see the existing dependence. An ideal solution
to the load-store hazard should be taking the value after the Write
Back operation (because the load instruction writes the data read
from memory in the destination register of the Register File) and
using it in the Instruction Decode (because the ID includes also
Register Read, then it reads from the Register File (RF)).
The forwarding technique solves it using the MEM-MEM
path without any stall.

 

 

CK2CK1

lw $s0, VECTA($t1) IDIF WBMEMEX

IDIF WBMEMEX

CK4CK3 CK6CK5 CK7

sw $s0, VECTB ($t1)

Forwarding technique with MEM-MEM path. [2]

Example 5

In the following figure, we can see how a compilation technique, the
insertion of nop, can be solve the data hazard problem.

 

IF ID EX ME WB
IF ID EX ME WB

IF ID EX ME WB
IF ID EX ME WB

sub  $2, $1, $3

and $12, $2, $5

or  $13, $6, $2

add $14, $2, $2

sw  $15,100($2)

IF ID EX ME WB
IF ID EX ME WB

IF ID EX ME WB

nop

nop

Insertion of nop. [2]
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Example 6

In the following figure, we can see how a compilation technique, the
instructions scheduling, can be solve the data hazard problem.

 

sub $2, $1, $3 sub $2, $1, $3 

and $12, $2, $5 add $4, $10, $11 

or $13, $6, $2 and $7, $8, $9 
add $14, $2, $2 and $12, $2, $5

sw $15,100($2) or $13, $6, $2

add $4, $10, $11 add $14, $2, $2

and $7, $8, $9 sw $15,100($2)

Instructions scheduling. [2]

Example 7

In the following figure, we can see how a hardware technique, the
insertion of stalls, can be solve the data hazard problem.

 

IF ID EX ME WB
IF ID EX ME WB

IF ID EX ME WB
IF ID EX ME WB

IF ID EX ME WB

sub  $2, $1, $3

and $12, $2, $5

or  $13, $6, $2

add $14, $2, $2

sw  $15,100($2)

IDstall IDstall

IFstall IFstall

previous instructions should continue…

Insertion of stalls. [2]

Example 8

In the following figure, we can see how a hardware technique, the
data forwarding, can be solve the data hazard problem.

 

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

sub  $2, $1, $3

and $12, $2, $5

or  $13, $6, $2

add $14, $2, $2

sw  $15,100($2)

MEM/EX 
path

EX/EX 
path

Data forwarding. [2]
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1.1.6 The solution of Control Hazards

There are multiple techniques to resolve a Control Hazard.

✓ Conservative Solution - The Branch Stalls

The following solution is the most conservative. Solve the problem? Yes, but it’s
called conservative because adopt a banal technique: stalling until resolution
at the end of the Memory Access (ME) stage of the branch.

The main problem is the loss of performance. Each branch costs a penalty
of 3 stalls to decide and fetch the correct instruction flow in the pipeline:

 

IF ID EX ME WBbeq $1, $3, L1

IF ID EX ME WBand $12, $2, $5

IF ID EX ME WBor $13, $6, $2

IF ID EX ME WBadd $14, $2, $2

 

IF stallIF stall IF stall

Figure 15: Example of a conservative solution to solve a Control Hazard.

✓ Start to think to the branch prediction - Flush solution

The branch stalls are not good because there is a reduction in throughput. So
we can make a kind of prediction on the branch and assume that the branch
will not be taken. So we start fetching and executing the next 3 instructions
in the pipeline. Ok, but wait, what if the branch is taken? No problem, we
flush the next 3 instructions before they write their result and then fetch
the instruction at the branch target address.

 

  

 

IF ID EX ME WBbeq $1, $3, L1

IF ID EX ME WBand $12, $2, $5

IF ID EX ME WBor $13, $6, $2

IF ID EX ME WBadd $14, $2, $2

IF ID EX ME WBL1: lw $4, 50($7)

Branch
Taken

NOP NOP

NOP NOP NOP

NOP NOP NOP NOP

Figure 16: Example of a flush solution to solve a Control Hazard.
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✓ Early Evaluation of the Program Counter (PC) in ID stage

It’s clear that to improve performance in the event of branch hazards, we need
to add more hardware features, such as:

• Compare registers to derive the Branch Outcome (BO).

• Compute the Branch Target Address (BTA).

• Update the PC register.

Fortunately, the MIPS-optimized pipeline already has these features and does so
during the ID stage. As a result, the Branch Outcome (BO) and the Branch
Target Address (BTA) are known at the end of the ID stage.
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Figure 17: Early Evaluation of the Program Counter (PC) in ID stage.

Now, using the conservative solution or the flush solution, we get two different
results:

• Combo with Conservative Solution: stalling until resolution at the
end of the ID stage (when the Branch Outcome and the Branch Target
Address are known) to decide which instruction to fetch.

Performance consideration : each branch costs one stall of penalty
to decide and fetch the correct instruction flow along the pipeline.

One-cycle-delay for every branch still yields a performance loss of 10% to
30% depending on the branch frequency (Stall Cycles per Instruction due
to Branches equal to Branch Frequency times to Branch Penalty):

Stall Cycles = Branch Frequency× Branch Penalty
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IF ID EX ME WBbeq $1, $3, L1

IF ID EX ME WBand $12, $2, $5

IF ID EX ME WBor $13, $6, $2

IF ID EX ME WBadd $14, $2, $2

  

IF stall

Figure 18: Example of conservative solution in MIPS architecture.

• Combo with Fetch Solution: we assume the branch is not taken.

Performance consideration : if the Branch Outcome (BO) will be
taken, it will be necessary to flush only one instructions before writing
its results and fetch the right instruction at the Branch Target Address.

 

  
 

IF ID EX ME WBbeq $1, $3, L1

IF ID EX ME WBand $12, $2, $5

IF ID EX ME WB
IF ID EX ME WB…..

IF ID EX ME WB

L1: lw $4, 50($7)

Branch
Taken

NOP NOPNOP NOP

Figure 19: Example of fetch solution in MIPS architecture.

The unique solution is to use branch prediction techniques to deal with this
loss of performance.
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1.1.7 Performance evaluation in pipelining

As we have seen in the previous sections, the pipelining increases the CPU
instruction throughput (number of instructions completed per unit of time)
but doesn’t reduce the latency (the execution time of a single instruction).

The increase in latency is a direct consequence of two problems:

• The imbalance among the pipeline stages

• The overhead in the pipeline control

This imbalance between the pipeline stages and the overhead are bad aspects:

• The imbalance reduces performance because the clock can run no
faster than the time needed for the slowest pipeline stage;

• The overhead arises from the delay introduced by interstage regis-
ters and clock skew.

Finally, all instructions should be the same number of pipeline stages.
Each assumption and optimization shown previously works well in this case.

Definition 8: number of Clock Cycles, Clocks Per Instructions
and MIPS formula

Given:

• The Instruction Count per iteration as ICper_iter

• The number of Stall Cycles per iteration as # Stall Cycles

• The length of the pipeline is x

We can calculate the number of Clock Cycles as the sum between
the Instruction Count (how many stages there are in one instruction),
the number of Stall Cycles inserted by the hardware technique (called
insertion of stalls), plus the length of the pipeline x:

# Clock Cyclesper_iter = ICper_iter + # Stall Cyclesper_iter + x (1)

The Clocks Per Instruction per iteration, CPIper_iter, is calculated
with the rapport between the number of Clock Cycles per iteration (pre-
vious equation) divided by the Instruction Count per iteration:

CPIper_iter =
# Clock Cyclesper_iter

ICper_iter

=

(
ICper_iter + # Stall Cyclesper_iter + x

)
ICper_iter

(2)

Finally, the MIPS formula per iteration is calculated with the rapport
between the frequency of the clock (fclock) divided by the multiply be-
tween the Instructions Per Clock (as the ratio 1÷CPI) and 106 (1 million
instructions):

MIPSper_iter =
fclock(

CPIper_iter × 106
) (3)

32



1 Basic Concepts 1.1 Pipelining

We can asymptotically (AS) rewrite equations 1, 2 and 3 as follows:

# Clock CyclesAS = ICAS + # Stall CyclesAS + x (4)

CPIAS = limn→∞
# Clock CyclesAS

ICAS

= limn→∞
(ICAS + # Stall CyclesAS + x)

ICAS

(5)

MIPSAS =
fclock

(CPIAS × 106)
(6)

Note: the ideal speedup, then Clock Per Instruction, should be equal
to 1. But stalls cause the pipeline performance to degrade from the ideal
performance, so we have the Average Clock Per Instruction (CPI):

AVG (CPI) = Ideal CPI+ # Stall Cyclesper_instruction

= 1 + # Stall Cyclesper_instruction
(7)

And obviously, the Pipeline Stall Cycles per Instruction is:

PSCI = Structural Haz.+Data Haz.+Control Haz.+Memory Stalls (8)
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1.2 Cache
1.2.1 Introduction

The cache is introduced to increase the performance of a computer through the
memory system in order to:

• Provide the user the illusion to use a memory that is simultaneously large
and fast.

• Provide the data to the processor at high frequency.

It takes advantage from the Locality of Reference.

Definition 9: Locality of Reference

Locality of reference refers to a phenomenon in which a computer pro-
gram tends to access same set of memory locations for a par-
ticular time period.
In other words, Locality of Reference refers to the tendency of the
computer program to access instructions whose addresses are near one
another. The property of locality of reference is mainly shown by loops
and subroutine calls in a program.

There are two types of Locality of Reference:

• Temporal Locality

Definition 10: Temporal Locality

Temporal Locality means that a instruction which is re-
cently executed have high chances of execution again. So
the instruction is kept in cache memory such that it can be fetched
easily and takes no time in searching for the same instruction.

• Spatial Locality

Definition 11: Spatial Locality

Spatial Locality means that all those instructions which are
stored nearby to the recently executed instruction have
high chances of execution. It refers to the use of data ele-
ments(instructions) which are relatively close in storage locations.
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Spatial Locality Temporal Locality

In Spatial Locality, nearby instruc-
tions to recently executed instruction
are likely to be executed soon.

In Temporal Locality, a recently ex-
ecuted instruction is likely to be ex-
ecuted again very soon.

It refers to the tendency of execution
which involve a number of memory
locations.

It refers to the tendency of execution
where memory location that have
been used recently have a access.

It is also known as locality in space. It is also known as locality in time.

It only refers to data item which are
closed together in memory.

It repeatedly refers to same data in
short time span.

Each time new data comes into exe-
cution.

Each time same useful data comes
into execution.

Example: Data elements accessed
in array (where each time different,
or just next, element is being access-
ing).

Example: Data elements accessed
in loops (where same data elements
are accessed multiple times).

Table 1: Difference between Spatial Locality and Temporal Locality.

® Where can we find the cache?

In general, the memory hierarchy is composed of several level. Let us consider
2 levels: cache and main memory. The cache (upper level) is smaller, faster
and more expensive than the main memory (lower level).

The minimum chunk of data that can be copied in the cache is the
block or cache line . To exploit the spatial locality, the block size must be a
multiple of the word size in memory. So, for example a 128-bit block size is
equal to 4 words of 32-bit.

The number of blocks in cache is given by:

Number of cache blocks =
Cache Size
Block Size

For example, if the cache size is 64K-Byte and the block size is 128-bit (16-Byte),
then the number of cache blocks is 4K blocks.
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1.2.2 Cache Hit and Cache Miss

Unfortunately, the Cache can’t be maintain every data inside the computer. In
order to be faster, it contains only some data with.

When the processor makes a request of a certain type:

• Ideal case . If the requested data is found in one of the cache
blocks (upper level), then there is a hit in the cache address and it’s
called Cache Hit.

• Problematic case . If the requested data is not found in one of the
cache blocks (upper level), then there is a miss in the cache address and
it’s called Cache Miss.

But beware, in this case we need to access the lower level of the memory
hierarchy to find the requested block. This causes:

– To stall the CPU;
– To require to block from the main memory;
– To copy (write) the block in cache;
– To repeat the cache access (hit).

Definition 12: Cache Hit

A Cache Hit is when a requested data is found in one of the cache block
of the upper level of the memory.

Furthermore we define the Hit Rate as the number of memory accesses
that find the data in the upper level with respect to the total number
of memory accesses:

Hit Rate =
# hits

# memory accesses

Finally we define the Hit Time as the time to access the data in the
upper level of the hierarchy, including the time needed to decide if
the attempt of access will result in a hit or miss.

Definition 13: Cache Miss

A Cache Miss is when a requested data is not found in one of the cache
blocks and must be taken from the lower level of the memory.

Furthermore we define the Miss Rate as the number of memory accesses
not finding the data in the upper level with respect to the total num-
ber of memory accesses:

Miss Rate =
# misses

# memory accesses
(9)

Finally we define the Miss Time as

Miss Time = Hit Time+ Miss Penalty (10)
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Where the Miss Penalty is the time needed to access the lower level
and to replace the block in the upper level.

Two observations:

1. Should be obviously the definition:

Hit Rate+ Miss Rate = 1

2. Typically, we have the following relation:

Hit Time≪ Miss Penalty

Finally, the Average Memory Access Time (AMAT) can be calculated as:

AMAT = Hit Time+ Miss Rate ∗ Miss Penalty (11)
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1.2.3 Cache Structure

Each entry (cache line) in the cache includes:

• (V) Valid bit to indicate if this position contains valid data or not. At
the bootstrap, all the entries in the cache are marked as INVALID.

• (TAG) Cache Tag(s) contains the value that univocally identifies the
memory address corresponding to the stored data.

• (DATA) Cache Data contains a copy of data (block or cache line).

Each entry (cache line) in the cache includes: 
1. Valid bit to indicate if this position contains valid data or not. 

At the bootstrap, all the entries in the cache are marked as 
INVALID

2. Cache Tag(s) contains the value that univocally identifies the 
memory address corresponding to the stored data.

3. Cache Data contains a copy of data (block or cache line)

V TAG DATA

V TAG DATA

V TAG DATA

V TAG DATA

……

After a general presentation of the cache structure, we answer four questions
about the memory hierarchy to understand different topics:

• Block placement (page 39). Where can a block be placed in the upper
level?

– Direct Mapped Cache (page 39)

– Fully Associative Cache (page 41)

– n-way Set Associative Cache (page 43)

• Block identification (page 45). How is a block found if it is in the upper
level?

• Block replacement (page 45). Which block should be replaced on a miss?

• Write strategy (page 46). What happens on a write?
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Block placement

The main question is: where can a block be placed in the upper level? In other
words, the problem is: given the address of the block in the main memory,
where can the block be placed in the cache?

So, we need to find the correspondence between the memory address
and the cache address of the block. This correspondence depends on the
cache structure and can be of three types:

• Direct Mapped Cache

• Fully Associative Cache

• n-way Set-Associative Cache

Direct Mapped Cache

With the Direct Mapped Cache structure, each memory location corre-
sponds to one cache location and only one cache location. The following
formula gives the cache address of the block:

(Block Address)cache = (Block Address)mem mod (# Cache Blocks) (12)

The block address of the cache corresponds to the modulo operation between the
block address of the memory and the number (#) of cache blocks. The modulo
operation returns a division’s remainder or signed remainder after dividing one
number by another.

Figure 20: This figure shows the memory address composed of the block address
(tag and index used to identify the block) and the block offset.

From Figure 21, we can see the complete structure of the cache if we choose the
direct mapped cache technique.

The rectangle on the top is the memory address (Figure 20). First, we check
the Tag value; if it’s equal to the value in the cache, we check the Valid bit
(V) to see if the position contains valid data: if the value is 1, we have a cache
hit; otherwise, the data is invalid. The Tag contains the value that univocally
identifies the memory address corresponding to the stored data. To take the
data word, we use the block offset as the selector in the multiplexer to choose
which data block to take. The index field indicates the cache row to check.
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Tag Data BlockV

=

Block
Offset

Tag Index

t k b

t

HIT Data Word

2k
lines

Figure 21: The cache structure of the Direct Mapped Cache technique.

For example, we assume a block-frame address composed of 32 bits. Our
cache structure is direct mapped, and the number of cache blocks is 8. A
possible exercise could be determining where block 12 can be placed in
the 8-block cache.

To solve this problem, we can use the formula no 12 on page 39:

(Block Address)cache = 12 mod 8 = 5

The result is 5, so the answer is: with the direct mapped technique, the block
number is 4 (because the first index of the cache blocks is zero and not 1).

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
Block no.
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Fully Associative Cache

In a Fully Associative Cache, the memory block can be placed in any
position of the cache. So, all the cache blocks must be checked during
the search of the block.

Note the index does not exist in the memory address; there are the Tag bits
only:

Number of blocks =
Cache Size
Block Size

(13)

The Memory Address comprises the Block Address (Tag) and the Block Offset.

Figure 22: The Memory Address comprises the Block Address (Tag) and the
Block Offset.

The structure of the cache using this technique is as follows:

Tag Data BlockV

=

b

HIT

Data
Word

=

=

t

Block
Offset

Tag

t

….

Figure 23: The cache structure of the Fully Associative Cache technique.

As shown in Figure 23, the cache structure is more accessible because there are
no Index fields. We check only the Tag field from the memory address. Finally,
the Block Offset chooses the Data Block from the cache. We have a cache hit
if the Tag is equal to the Tag of the cache and the value in and with the valid
bit is true.
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For example, we assume a block-frame address composed of 32 bits. Our cache
structure is fully associative, and the number of cache blocks is 8. A possible
exercise could be determining where block 12 can be placed in the 8-
block cache.

Unlike before, the position can be anywhere.

0 1 2 3 4 5 6 7Block
no.0 1 2 3 4 5 6 7Block

no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
Block no.

Direct Mapped on the left and Fully Associative on the right.
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n-way Set Associative Cache

In a n-way Set Associative Cache, the cache is composed of sets. Each
set is composed of n blocks:

Number of blocks =
Cache Size
Block Size

Number of sets =
Cache Size

(Block Size× n)

(14)

The memory block can be placed in any block of the set, so the search must be
done on all the blocks.

Each memory block corresponds to a single set of the cache, and the
block can be placed in whatever block of the n blocks of the set:

(Set)cache = (Block address)mem mod (# sets in cache) (15)

Figure 24: The memory address comprises the block address (Tag and index
used to identify the set) and the block offset.
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Figure 25: This structure is a 2-way Set Associative Cache.
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Taking the examples of previous pages, with the 2-way Set Associative, the
answer is anywhere in set 0. The reason for this is that using the formula 15:

(Set)cache = 12 mod 4 = 0

0 1 2 3 4 5 6 7Block
no.0 1 2 3 4 5 6 7Block

no. 0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
Block no.

Fully	
Associative:
anywhere

Direct Mapped on the left, 2-way Set Associative on the center and Fully Asso-
ciative on the right.
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Block identification

The main question is: how is a block found if it is in the upper level? The prob-
lem with identifying a block is that we must compare Tag bits. The comparison
depends on the structure of the cache:

• With Direct Mapping (page 39), we need to:

– Identify block positions by index (with the formula 12);

– Compare block tags;

– Verify the valid bit.

• With the Set Associative Mapping (page 43), we need to:

– Identify the set by index (with the formula 15);

– Compare tags of the set;

– Verify the Valid bit.

• With the Fully Associative Mapping (page 41), we must:

– Compare tags in every block;

– Verify the Valid bit.

Comparing the Tag bits, we do not need to check index or block offset bits.

Block replacement

The main question is: which block should be replaced on a miss? In case of a
miss (definition on page 36), the replacement strategy depends on the structure
of the cache:

• In a Fully Associative Cache (page 41), we need to decide which block
to replace: any block is a potential candidate for the replacement.

• In a Set Associative Cache (page 43), we must select among the blocks
in the given set.

• In a Direct Mapped Cache (page 39), only one candidate must be
replaced (no need for any block replacement strategy).

So in the Fully Associative Cache and Set Associative Cache, the main
strategies used to choose the block to be replaced are:

• Random (or pseudo-random)

• LRU (Least Recently Used)

• FIFO (First In First Out, or oldest block replaced)
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Write strategy

The main question is: what happens on a write? It depends on the written
policy adopted in the cache. We remember that there are two possible options:

• Write-Through: data is simultaneously updated (written) to cache
and memory. This process is more straightforward and more reliable.
This is used when there are no frequent writes to the cache.

✓ The main advantages

1. It is simpler to implement but to be effective, it requires a write
buffer to not wait for the memory hierarchy (to avoid write stalls).

2. The read misses are cheaper because they do not require any
write to the memory hierarchy.

3. Memory is always up to date.

• Write-Back: the data is updated only in the cache and then added
to the memory later. The modified cache block is written to the mem-
ory only when it is replaced due to a cache miss. So, how can we under-
stand if a block is clean or dirty? We need to add a Dirty Bit. Each
Block in the cache requires a bit to indicate if the data present
in the cache was modified (Dirty) or not modified (Clean). If it is
clean, writing it into the memory is unnecessary. It is designed to reduce
write operation to a memory.

✓ The main advantages

1. The processor can write the Block at the frequency the
cache, not the main memory, can accept.

2. Multiple writes to the same Block require only a single write
to the main memory.

® What is a Write Buffer?

A Write Buffer is a FIFO buffer that does not wait for main memory
access (the typical number of entries is 4 to 8). So, the processor writes data
to the cache and the write buffer; the memory controller writes the contents of
the buffer to memory.

Processor
Cache

Write Buffer

Memory

Figure 26: The cache structure with a Write Buffer.

The main problem with this idea is saturation. However, as we have cited
before, the write buffer is usually combined with the Write-Through policy.
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® Ok, the cache can adopt one of the two write policies, but what
happens on a Write Miss?

If write occurs to a location that is not present in the Cache (Write Miss), we
use two options: Write Allocate (or fetch on write) and No Write Allocate
(Write-Around).

In the first one, the data is loaded from the memory into the cache
and then updated. Write Allocate works with both Write Back and Write-
Through. However, it is generally used with Write Back because bringing
data from the memory to the cache is unnecessary and then updating it in both
the cache and main memory.

In the No Write Allocate option, the data is directly written/updated to
the main memory without disturbing the cache. It is better to use this
when the data is not immediately used again. Generally, the Write-Through
cache uses the No Write Allocate option (hoping the next writes to the
Block will be done again in memory).
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Á Summary

Event Summary

Read Hit Read data in cache.

Read Miss Events that manifest themselves:

1. CPU stalls;

2. Data request to memory;

3. Copy in cache (write in cache);

4. Repeat of cache read operation.

Write Hit It depends on the policy chosen:

• Write-Through: write data both in cache
and in memory.

• Write-Back : write data to cache only,
and copy memory only when replaced
due to a cache miss.

Write Miss There will certainly be CPU stalls. It also de-
pends on the option we choose:

• Write Allocate:

1. Data request to memory;

2. Copy in cache (write in cache);

3. Repeat of cache write operation.

• No Write Allocate:

1. Simply send write data to main
memory.

Table 2: Summary: Hit and Miss & Read and Write.
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1.3 Exceptions handling
1.3.1 Introduction

We use the term exception to cover not only exceptions but also interrupts
and faults. More in general, we consider the following type of events:

• I/O device request

• Invoking OS system call from a user program

• Tracing instruction execution

• Integer arithmetic overflow/underflow

• Floating point arithmetic anomaly

• Page fault

• Misaligned memory access

• Memory protection violation

• Hardware/Power failure

. Causes of Interrupts/Exceptions

An interrupt is an event that requires the processor’s attention. The
causes of an interrupt or exception can be of two types:

• Asynchronous Exceptions, when a request comes from an external
event, such as:

– I/O device service-request

– Timer expiration

– Power disruptions, hardware failure

These events are caused by devices external to the CPU and memory
and can be handled after the completion of the current instruction (easier
to handle)

• Synchronous Exceptions, when a request comes from an internal
event (a.k.a. exceptions), such as:

– Undefined opcode, privileged instruction

– Integer arithmetic overflow, FPU exception

– Misaligned memory access

– Virtual memory exceptions: page faults, TLB misses, protection
violations

– Traps: system calls, e.g., jumps into kernel
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� Classes of Exceptions

Some exceptions are predictable and easier to handle, such as user-requested ex-
ceptions. But, some exceptions are unpredictable, such as “coerced” exceptions.
Other classes of exceptions are:

• User Requested “Exceptions” , such as I/O events, are predictable.
They are treated as exceptions because they use the same mechanisms
that are used to save and restore the state; handled after the instruction
has completed (easier to handle).

• Coerced “exceptions” are caused by some hardware event not under
control of the user program; hard to implement because they are unpre-
dictable.

• Masking. To mask an interrupt is to disable it, so it is deferred or
ignored by the processor, while to unmask an interrupt is to enable it.

User maskable interrupts are signals affected by the mask. So, when
the interrupt is disabled, the associated interrupt signal may be ignored
by the processor, or it may remain pending.

User nonmaskable interrupts are signals that cannot be disabled and
they are not affected by the interrupt mask.

• Within instructions. These classes of exceptions are synchronous,
since the instruction triggers the exception.

In this case, the instruction must be stopped and restarted.

• Between instructions. These classes of exceptions are asynchronous
and they arise from catastrophic situations such as HW malfunctions
and always cause program termination.

Finally, there are two explanations of the terms we will use:

• The term terminating event means that the program execution al-
ways stops after the interrupt/exception.

• The term resume event means that the program execution continues
after the interrupt/exception.
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1.3.2 Interrupts and Interrupt Handler

The interrupts change the normal flow of control. As you can see in
Figure 27, on the left we see the instructions of the program; on the right we
see the interrupt handler.

Ii-1 HI1

HI2

HIn

Ii

Ii+1

Program
(user-mode)

Interrupt
Handler

(kernel-mode)

PC
 sa

ve
d

Di
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e 

Al
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s
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M
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e

Restore PC

User M
ode

Figure 27: Program and Interrupt Handler.

An Interrupt Handler, also known as an interrupt service routine or ISR,
is a special block of code associated with a specific interrupt condition.
Interrupts can be of two types:

• Synchronous Interrupts (exception) are caused by a particular instruc-
tion stage. In general, the instruction Ii (see the Figure 27) cannot be
completed and needs to be restarted after the exception has been
handled.

If we think about the pipeline, this condition requires undoing the effect
of one or more partially executed instructions.

• Asynchronous Interrupts are caused by an I/O device requesting at-
tention by asserting one of the prioritized interrupt request lines.

When the processor decides to process the interrupt:

1. It stops the current program at instruction Ii, completing all the
instructions up to Ii−1 (called precise interrupt, see below to un-
derstand what it is).

2. It saves the Program Counter (PC) of the instruction Ii in a special
register called Exception Program Counter (EPC): PC→ EPC.

3. It disables interrupts and transfer control to a designated interrupt
handler running in the kernel mode. So it loads the Interrupt
Vector Address (IVA) into the Program Counter (PC): IVA→ PC.
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4. When the Interrupt Handler has finished, it must restore the stable
situation. It uses a special indirect jump instruction called
Return-From-Exception (RFE), which restores the PC and:

– Re-enables the interrupts (again, because they were disabled in
the previous step);

– Returns the processor to user mode;
– Restores the hardware and control state.

® Ok, but what exactly is a Precise Interrupts in Asynchronous
Interrupts?

An interrupt or exception is precise if there is a single instruction (or inter-
rupt point) for which all previous instructions have committed their state
and no subsequent instructions (including the interrupting instruction Ii)
have changed any state.

In other words, we can restart execution at the interrupt point and “get the
right answer”.

• An interrupt or exception is precise if there is a single instruction (or 
interrupt point) for which all instructions before have committed 
their state and no following instructions (including the interrupting 
instruction Ii) have modified any state.
– This means, effectively, that we can restart execution at the interrupt 

point and “get the right answer”
– Implicit in our previous example of a device interrupt:

• Interrupt point is at red lw instruction Ii)

…
add r1,r2,r3

subi r4,r1,#4

slli r4,r4,#2

lw r2,0(r4)

lw r3,4(r4)

add r2,r2,r3

sw 8(r4),r2
…

Ex
te

rn
al

 I
nt

er
ru

pt PC sav
ed

Disab
le All Ints

Supervis
or Mode

Restore PC
User Mode

Int handler

Figure 28: Example of precise interrupt/exception (interrupt point is at red
lw instruction).
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1.3.3 Exceptions in the 5-stage pipeline

Asynchronous interrupts can occur at any stage of the pipeline. In the
following figure we can see some examples of exceptions that can occur at any
stage.

PC
Instr. 
Fetch D

Instr. 
Decode E M

Data 
Mem W+

Illegal 
Opcode Overflow Data address 

Exceptions
Instr.address
Exception

Figure 29: Example of exceptions in the 5-stage pipeline.

The aim of this section is to understand how to handle multiple simultaneous
exceptions at different stages of the pipeline, and how and where to handle
external asynchronous interrupts such as an I/O service request.

Example 9: Data Page Fault and Arithmetic Exception

In this first example of an exception in a 5-stage pipeline, we can see that
pipelining can cause exceptions to be thrown out of order. In fact, we
remember that exceptions can occur at different stages in the pipeline
for different instructions.

For example, a Data Page Fault occurs at the memory stage of the
first instruction. The Arithmetic Exception occurs in the execution
phase of the second instruction.
Because of the pipelined execution, the page fault occurs at the
same time as the overflow. Note, however, that the data page
fault MUST be handled first.

PC
Inst. 
Fetch D

Instr.
Decode E M

Data 
Mem W+

Overflow

PC
Inst. 
Fetch D

Instr.
Dec. E M

Data 
Mem W+

Page fault
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Example 10: Instruction Page Fault and Data Page Fault

The exceptions may not always be as waterfall. As we said in the first
example, the exceptions can be thrown out of order.

In this case we have an Instruction Page Fault that occurs in the
Instruction Memory stage of the second instruction. There is also a
Data Page Fault in the memory phase of the first instruction.
Despite the first example, the instruction page fault is handled
first!

PC
Inst. 
Fetch D

Instr.
Dec. E M

Data 
Mem W+

Data
page fault

PC
Inst. 
Fetch D

Instr. 
Dec. E M

Data 
Mem W+

Instr. 
page fault

From the previous examples, we know that out-of-order is a serious pipelining
problem.

✓ How can the pipeline be modified to solve these problems?

By using the exception flag and the PC.

1. First, hold the exception flag and pass it through the pipeline.

2. Hold the Program Counter (PC) and pass it through the pipeline
(to be saved and restored after the Exception Handler Routine).

3. Finally, do not react to the exception until it reaches the commit
point. In other words, wait until the end of MEM stage to raise the
exception.

Please note that when the instruction reaches the Commit Point, before
entering the Write Back (WB) phase, the following steps are performed:

• Store the Program Counter in the Exception Program Counter (PC →
EPC) and store the Interrupt Handler Address in the Program Counter
(IHA → PC).

• Make all next instructions in previous stages NOP operations (see
Figure 30 on page 55).

• Handle interrupts by “faulting nop” in the Instruction Fetch (IF)
stage.

At the end of the Exception Handler Routine, the instruction is re-executed.

By adopting this solution, all exceptions are deferred to be handled in
order at the MEM stage, as in any non-pipelined processor.
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time
t0 t1 t2 t3 t4 t5 t6 t7 . . . .

(I1) 096: ADD IF1 ID1 EX1 ME1 nop overflow!
(I2) 100: XOR IF2 ID2 EX2 nop nop
(I3) 104: SUB IF3 ID3 nop nop nop
(I4) 108: ADD IF4 nop nop nop nop
(I5) Exc. Handler Add          IF5 ID5 EX5 ME5 WB5

• When instruction ADD at Commit Point before entering in WB stage:

– Save PC and Exc. Handler Address Þ PC
– Turn all next instructions in earlier stages into NOPs!

Figure 30: Make all next instructions in previous stage NOP operations.

In the following figure, we can see how the execution flow changes when an
exception occurs in a pipeline.
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Figure 31: This is how we solve the out-of-order problem in a pipeline architec-
ture.
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