
Applied Statistics - Notes

260236

April 2024

1

Preface
Every theory section in these notes has been taken from two sources:

• An Introduction to Statistical Learning [1]

• Applied Multivariate Statistical Analysis (sixth edition). [2]

About:

§ GitHub repository

2

https://www.statlearning.com/
https://github.com/PoliMI-HPC-E-notes-projects-AndreVale69/HPC-E-PoliMI-university-notes

Contents
1 Sample Geometry 4

1.1 The Geometry of the Sample . 4
1.1.1 Scatter plot . 4
1.1.2 Geometrical representation 5
1.1.3 Geometrical interpretation of the process of finding a sam-

ple mean . 5
1.2 Generalized Variance . 9
1.3 Random Vectors and Matrices . 12
1.4 Mean Vectors and Covariance Matrices 13

1.4.1 The Mean Vector and Covariance Matrix for Linear Com-
binations of Random Variables 17

1.5 (Unbiased) Sample Variance-Covariance Matrix 18
1.6 Mahalanobis distance . 20

2 Statistical Learning 21
2.1 Introduction . 21
2.2 Why Estimate f (systematic information provided by a predictor

about a quantitative response)? 22
2.2.1 Prediction . 22
2.2.2 Inference . 24
2.2.3 Difference between prediction and inference 26

2.3 How do we estimate f ? . 27
2.3.1 Parametric Methods . 28
2.3.2 Non-Parametric Methods 29

2.4 Supervised and Unsupervised Learning 30
2.5 Assessing Model Accuracy . 31

2.5.1 Measuring the Quality of Fit (MSE) 31
2.5.2 The Bias-Variance Trade-Off 37

2.6 Algorithm: K-Nearest Neighbors (KNN) 41

3 R language programming 44
3.1 Introduction to R . 44

3.1.1 Scalars, vectors and matrices 45
3.1.2 Access elements . 47
3.1.3 Algebraic operations . 48
3.1.4 Categorical data . 51
3.1.5 Lists . 52
3.1.6 Data Frames . 53
3.1.7 Reading and writing data 55
3.1.8 Example: analysis of quantitative data 58
3.1.9 Visualization of multivariate data 74
3.1.10 Visualization of Categorical Data 88
3.1.11 3D plots, functions, for loop and install new libraries . . . 91

Index 96

3

1 Sample Geometry

1.1 The Geometry of the Sample
A single multivariate observation is the collection of measurements on
p different variables taken on the same item or trial. If n observations
have been obtained, the entire data set can be placed in an n × p array (or
matrix), also called data frame:

X
(n×p)

=


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp

 (1)

Each row of X represents a multivariate observation. Since the entire data
frame is often one particular realization of what might have been observed, we
say that the data frame are a sample of size n from a p-variate “popu-
lation” . The sample then consists of n measurements, each of which has p
components.

Look at the matrix, n measurements (rows), each of which has p components
(columns). In mathematics, each n row contains p columns and vice versa.

The data frame can be plotted in two different ways:

1. p-dimensional scatter plot, where the rows represent n points in p-dimensional
space;

2. Geometrical representation, p vectors in n-dimensional space.

1.1.1 Scatter plot

For the p-dimensional scatter plot, the rows of X represent n points in
p-dimensional space:

X
(n×p)

=


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp

 =


x′
1

x′
2
...
x′
n


← 1st (multivariate) observation

← nth (multivariate) observation
(2)

The row vector x′
j , representing the jth observation, contains the coordinates

of a point. The scatter plot of n points in p-dimensional space provides
information on the locations and variability of the points.

Note: when p (dimensional space) is greater than 3, the scatter plot rep-
resentation cannot actually be graphed. Yet the consideration of the data as
n points in p dimensions provides insights that are not readily available
from algebraic expressions.

4

1.1.2 Geometrical representation

The alternative geometrical representation is constructed by considering the
data as p vectors in n-dimensional space. Here we take the elements of the
columns of the data frame to be the coordinates of the vectors:

X
(n×p)

=


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp

 = [y1 | y2 | · · · | yp] (3)

Then the coordinates of the first point y1 = [x11, x21, . . . , xn1] are the n
measurements on the first variable.

In general, the ith point yi = [x11, x21, . . . , xn1] is determined by the n-tuple
of all measurements on the ith variable.

Geometrical representations usually facilitate understanding and lead
to further insights. The ability to relate algebraic expressions to the geo-
metric concepts of length, angle and volume is therefore very important.

1.1.3 Geometrical interpretation of the process of finding a sample
mean

Before starting the explanation, you need to understand a few things.

• The length of a vector x′ = [x1, x2, . . . , xn] with n components is defined
by:

Lx =
√

x2
1 + x2

2 + · · ·+ x2
n (4)

Multiplication of a vector x by a scalar c changes the length:

Lcx =
√
c2 · x2

1 + c2 · x2
2 + · · ·+ c2 · x2

n

= |c|
√
x2
1 + x2

2 + · · ·+ x2
n

= |c|Lx

So, for example, in n = 2 dimensions, the vector:

x =

[
x1

x2

]
The length of x, written Lx, is defined to be:

Lx =
√
x2
1 + x2

2

5

• Another important concept is angle. Consider two vectors in a plane
and the angle θ between them: The value θ can be represented as the

Figure 1: The angle θ between x′ = [x1, x2] and y′ = [y1, y2].

difference between the angles θ1 and θ2 formed by the two vectors and the
first coordinate axis. Since, by definition:

cos (θ1) =
x1

Lx
cos (θ2) =

y1
Ly

sin (θ1) =
x2

Lx
sin (θ2) =

y2
Ly

cos (θ) = cos (θ2 − θ1) = cos (θ2) cos (θ1) + sin (θ2) sin (θ1)

The angle θ between the two vectors x′ = [x1, x2] and y′ = [y1, y2] is
specified by:

cos (θ) = cos (θ2 − θ1) =

(
y1
Ly

)(
x1

Lx

)
+

(
y2
Ly

)(
x2

Lx

)
=

x1y1 + x2y2
LxLy

(5)

• With the angle equation 5, it’s convenient to introduce the inner product
of two vectors:

xy′ = x1y1 + x2y2

So let us rewrite:

– The length equation 4:

x′x = x1x1 + x1x1 = x2
1 + x2

2 −→ Lx =
√
x2
1 + x2

2 =⇒ Lx =
√
x′x

(6)
– The angle equation 5:

cos (θ) =
x1y1 + x2y2

LxLy
=⇒ cos (θ) =

x′y

LxLy

And using the rewritten length equation:

cos (θ) =
x′y

LxLy
=⇒ cos (θ) =

x′y√
x′x ·

√
y′y

6

• The projection (or shadow) of a vector x on a vector y is:

(x′y)

y′y
y =

(x′y)

Ly

1

Ly
y (7)

Where the vector
1

Ly
y has unit length. The length of the projection

is:
|x′y|
Ly

= Lx

∣∣∣∣ x′y

LxLy

∣∣∣∣ = Lx |cos (θ)| (8)

Where θ is the angle between x and y:

Figure 2: The projection of x on y.

Start by defining the n × 1 vector 1′
n = [1, 1, . . . , 1]. The vector 1 forms equal

angles with each of the n coordinates axes, so the vector
(

1√
n

)
1 has unit

length in the equal-angle direction. Consider the vector y′
i = [x1i, x2i, . . . , xni].

The projection of yi on the unit vector
(

1√
n

)
1 is:

y′
i

(
1√
n
1

)
1√
n
1 =

x1i + x2i + · · ·+ xni

n
1 = xi1 (9)

Although it may seem like a complex equation at first glance, it is nothing more

than the mean! In fact, the sample mean xi =
(x1i + x2i + · · ·+ xni)

n
=

y′
i1

n
corresponds to the multiple of 1 required to give the projection of yi onto the
line determined by 1.

7

Furthermore, using the projection, you can obtain the deviation (mean cor-
rected). For each yi we have the decomposition:

Where xi1 is perpendicular to yi − xi1. The deviation, or mean corrected,
vector is:

di = yi − xi1 =


x1i − xi

x2i − xi

...
xni − xi

 (10)

The elements of di are the deviations of the measurements on the ith
variable from their sample mean.

Using the length rewritten with inner product (equation 6) and the deviation
(equation 10), we obtain:

L2
di

= d′
idi =

n∑
j=1

(xji − xi)
2 (11)

(Length of deviation vector)2 = sum of squared deviations

From the sample standard deviation, we see that the squared length is pro-
portional to the variance of the measurements on the ith variable. Equiv-
alently, the length is proportional to the standard deviation. So longer
vectors represent more variability than shorter vectors.

Furthermore, for any two deviation vectors di and dk:

d′
idk =

n∑
j=1

(xji − xi) (xjk − xk) (12)

And with a few mathematical operations, we can get it:

rik =
sik√

sii
√
skk

= cos (θik) (13)

Where the cosine of the angle is the sample correlation coefficient. Note:
sik is the sample covariance:

sik =
1

n

n∑
j=1

(xji − xi) (xjk − xk) i = 1, 2, . . . , p, k = 1, 2, . . . , p (14)

Thus:

• If the two deviation vectors have nearly the same orientation, the
sample correlation will be close to 1;

8

• If the two vectors are nearly perpendicular, the sample correlation will
be approximately zero;

• If the two vectors are oriented in nearly opposite directions, the sample
correlation will be close to −1.

1.2 Generalized Variance
Before starting the explanation, you need to understand what is a sample vari-
ance.

A sample variance is defined as:

s2k = skk =
1

n− 1

n∑
j=1

(xjk − xk)
2

k = 1, 2, . . . , p (15)

With a single variable, the sample variance is often used to describe
the amount of variation in the measurements on that variable. When
p variables are observed on each unit, the variation is described by the sample
variance-covariance matrix:

S =


s11 s12 · · · s1p
s21 s22 · · · s2p
...

...
. . .

...
sp1 sp2 · · · spp

 =

sik =
1

n− 1

n∑
j=1

(xji − xi) (xjk − xk)

 (16)

The sample covariance matrix contains p variances and
1

2
p (p− 1) potentially

different covariances. Sometimes it’s desirable to assign a single numerical
value for the variation expressed by S. One choice for a value is the deter-
minant of S, which reduces to the usual sample variance of a single characteristic
when p = 1. This determinant is called the generalized sample variance:

Generalized sample variance = det (S) = |S| (17)

Note that the determinant of S det (S) is zero if and only if the deviation vectors
are linearly dependent:

det (S) = 0 ⇐⇒ d1, . . . ,dp are linearly dependent (18)

Another value used, but not often as a determinant, is the trace1. With this
operation we can obtain the total variance:

Total variance = tr (S) = s11 + s22 + · · ·+ spp (19)

The study of the variation and interrelationships in multivariate data is often
based upon distances and the assumption that the data are multivariate nor-
mally distributed. Square distances and the multivariate normal density can be

1In linear algebra, the trace of a square matrix A, denoted tr(A), is defined to be the sum
of elements on the main diagonal (from the upper left to the lower right) of A. The trace is
only defined for a square matrix (n× n).

9

https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Determinant

expressed in terms of matrix products called quadratic forms. However, the
results involving quadratic forms and symmetric matrices are, in many cases, a
direct consequence of an expansion for symmetric matrices known as the spec-
tral decomposition. The spectral decomposition of a k×k symmetric matrix
A is given by:

A
(k×k)

= λ1 e1
(k×1)

e′1
(1×k)

+ λ2 e2
(k×1)

e′2
(1×k)

+ · · ·+ λk ek
(k×1)

e′k
(1×k)

(20)

• λ1, λ2, . . . , λk are the eigenvalues of A.

• e1, e2, . . . , ek are the associated normalized eigenvectors of A.

Thus e′iei = 1 for i = 1, 2, . . . , k, and e′iej = 0 for i ̸= j.

The generalized sample variance proved one way of writing the information on
all variances and covariances as a single number. When p > 1, some information
about the sample is lost in the process.

A geometrical interpretation of |S| (generalized sample variance) will hel
up appreciate its strengths and weakness as a descriptive summary.

Consider the area generated within the plane by two deviation vectors:

d1 = y1 − x11 d2 = y2 − x21

Let Ld1
be the length of d1 and Ld2

the length of d2. So, we have the diagram:

And the area of the trapezoid is |Ld1
sin (θ)|Ld2

. Since cos2 (θ) + sin2 (θ) = 1,
we can express this area as:

Area = Ld1
Ld2

√
1− cos2 (θ)

From the equation 11 (page 8) and the equation 12 (page 8):

Ld1
=

√√√√ n∑
j=1

(xj1 − x1)
2
=

√
left(n− 1)s11

Ld2 =

√√√√ n∑
j=1

(xj2 − x2)
2
=

√
left(n− 1)s22

10

And the sample correlation coefficient (remember eq. 13 on page 8):

cos (θ) = r12

Therefore:

Area = (n− 1)
√
s11
√
s22

√
1− r212 = (n− 1)

√
s11s22 (1− r212) (21)

Also:
|S| =

∣∣∣∣[s11 s12
s21 s22

]∣∣∣∣
=

∣∣∣∣[s11
√
s11
√
s22r12√

s11
√
s22r12 s22

]∣∣∣∣
= s11s22 − s11s22r

2
12

= s11s22
(
1− r212

)
(22)

If we compare the previous equations, we see that:

|S| = (area)2

(n− 1)
2 (23)

Now, some observations:

• Different correlation structures are not detected by |S|. The situation for
p > 2 can be even more obscure.

• Consequently, it’s often desirable to provide more than the single number
|S| as a summary of S.

• |S| can be expressed as the product λ1λ2 . . . λp of the eigenvalues of S.
These eigenvalues then provide information on the variability in all
directions in the p-space representation of the data. It’s useful, therefore,
to report their individual values, as well as their product.

11

1.3 Random Vectors and Matrices
A random vector is a vector whose elements are random variables.
Similarly, a random matrix is a matrix whose elements are random
variables.

The expected value of a random matrix (or vector) is the matrix (vector) con-
sisting of the expected values of each of its elements.

Let X = {Xij} be an n × p random matrix. Then the expected value of X,
denoted by E (X), is the n× p matrix of numbers (if they exist):

E (X) =


E (X11) E (X12) · · · E (X1p)
E (X21) E (X22) · · · E (X2p)

...
...

. . .
...

E (Xn1) E (Xn2) · · · E (Xnp)

 (24)

Where, for each element of the matrix:

E (Xij) =



∫ ∞

−∞
xij fij (xij) dxij if Xij is a continuous random variable

with probability density function fij (xij)∑
all xij

xij pij (xij) if Xij is a discrete random variable

with probability function pij (xij)

Example 1

Suppose p = 2 and n = 1, and consider the random vector X′ =
[X1, X2]. Let the discrete random variable X1 have the following prob-
ability function:

x1 −1 0 1

p1 (x1) .3 .3 .4

Then E (X1) =
∑
all x1

x1p1 (x1) = (−1) (.3) + (0) (.3) + (1) (.4) = .1.

Similarly, let the discrete random variable X2 have the probability func-
tion:

x2 0 1

p2 (x2) .8 .2

Then E (X2) =
∑
all x2

x2p2 (x2) = (0) (.8) + (1) (.2) = .2.

Thus:
E (X) =

[
E (X1)
E (X2)

]
=

[
.1
.2

]

12

1.4 Mean Vectors and Covariance Matrices
Suppose X′ = [X1, X2, . . . , Xp] is a p× 1 random vector. Then each element of
X is a random variable with its own marginal probability distribution.
The marginal means µi and variances σ2

i are defined as µi = E (Xi) and
σ2
i = E (Xi − µi)

2, i = 1, 2, . . . , p respectively.

Specifically:

µi =



∫ ∞

−∞
xifi (xi) dxi if Xi is a continuous random variable with

probability density function fi (xi)∑
allxi

xipi (xi) if Xi is a discrete random variable with
probability function pi (xi)

σ2
i =



∫ ∞

−∞
(xi − µi)

2
fi (xi) dxi if Xi is a continuous random variable

with probability density function fi (xi)∑
allxi

xipi (xi) if Xi is a discrete random variable
with probability function pi (xi)

(25)
It will be convenient in later sections to denote the marginal variance by
σii rather than the more traditional σ2

i , and consequently, we shall adopt this
notation.

The behavior of any pair of random variables, such as Xi and Xk, is described by
their joint probability function, and a measure of the linear association between
them is provided by the covariance:

σik = E (Xi − µi) (Xk − µk)

=



∫ ∞

−∞

∫ ∞

−∞
(xi − µi) (xk − µk) fik (xi, xk) dxi dxk

∑
all xi

∑
all xk

(xi − µi) (xk − µk) pik (xi, xk)

(26)

We use the double integral if Xi, Xk are continuous random variables with the
joint density function fik (xi, xk), otherwise the sum if Xi, Xk are discrete ran-
dom variables with joint probability function pik (xi, xk).

Note: µi, µk with i, k = 1, 2, . . . , p are the marginal means. When i = k,
the covariance becomes the marginal variance.

More generally, the collective behavior of the p random variables X1, X2, . . . , Xp

or, equivalently, the random vector X′ = [X1, X2, . . . , Xp], is described by a joint
probabilities density function f (x1, x2, . . . , xp) = f (x).

13

Please note an interesting thing that sometimes happens. If the joint probability
P [Xi ≤ xi and Xk ≤ xk] can be written as the product of the corresponding
marginal probabilities, so that

P [Xi ≤ xi and Xk ≤ xk] = P [Xi ≤ xi]P [Xk ≤ xk]

For all pairs of values xi, xk, then Xi and Xk are said to be statistically
independent.

When Xi and Xk are continuous random variables with joint density fik (xi, xk)
and marginal densities fi (xi) and fk (xk), the independence condition becomes:

fik (xi, xk) = fi (xi) fk (xk)

For all pairs (xi, xk).
More generally, the p continuous random variables X1, X2, . . . , Xp are mu-

tually statistically independent if their joint density can be factored as:

f12···p (x1, x2, . . . , xp) = f1 (x1) f2 (x2) · · · fp (xp) (27)

For all p-tuples (x1, x2, . . . , xp).

Statistical independence has an important implication for covariance.
The factorization (eq. 27) implies that Cov (Xi, Xk) = 0 Thus:

Cov (Xi, Xk) = 0 if Xi and Xk are independent (28)

But attention! This is not true in general; there are situations where:

Cov (Xi, Xk) = 0

But Xi and Xk are not independent.

The means and covariances of the p × 1 random vector X can be set out
as matrices.

• The expected value of each element is contained in the vector of means

µ = E (X)

(remark eq. 24 on page 12).

• The p variances σii and the
p (p− 1)

2
distinct covariances σik (i < k) are

contained in the symmetric variance-covariance matrix

Σ = E (X− µ) (X− µ)
′

Let’s do some manipulations to get some interesting forms of these equations.

14

The expected value of each element is contained in the vector of means:

E (X) =


E (X1)
E (X2)

...
E (Xp)

 =


µ1

µ2

...
µp

 = µ (29)

And, the symmetric variance-covariance matrix (we have omitted the matrix
multiplication steps):

Σ = E (X− µ) (X− µ)
′

= E



X1 − µ1

X2 − µ2

...
Xp − µp

 [X1 − µ1, X2 − µ2, . . . , Xp − µp]


= Cov (X)

=


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σpp



Σ = E (X− µ) (X− µ)
′
=


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σpp



(30)

We shall refer to µ and Σ as the population mean (vector) and population
variance-covariance (matrix), respectively.

The multivariate normal distribution is completely specified once the mean
vector µ and variance-covariance matrix Σ are given, so it’s not surprising that
these quantities play an important role in many multivariate procedures.

It’s frequently informative to separate the information contained in variances
σii from that contained in measures of association and, in particular, the mea-
sure of association known as the population correlation coefficient ρik and
variances σii and σkk as:

ρik =
σik√

σii
√
σkk

(31)

The correlation coefficient measures the amount of linear association be-
tween the random variables Xi and Xk.

This equation gives us some interesting results.

15

Let the population correlation matrix be the p× p symmetric matrix:

ρ =



σ11√
σ11
√
σ11

σ12√
σ11
√
σ22

· · · σ1p√
σ11
√
σpp

σ21√
σ22
√
σ11

σ22√
σ22
√
σ22

· · · σ2p√
σ22
√
σpp

...
...

. . .
...

σp1√
σpp
√
σ11

σp2√
σpp
√
σ22

· · · σpp√
σpp
√
σpp



=


1 ρ12 · · · ρ1p
ρ12 1 · · · ρ2p
...

...
. . .

...
ρ1p ρ2p · · · 1



(32)

And let the p× p standard deviation matrix be:

V1/2 =


√
σ11 0 · · · 0
0

√
σ22 · · · 0

...
...

. . .
...

0 0 · · · √σpp

 (33)

From this equation we get:

V1/2ρV1/2 = Σ (34)

And:
ρ =

(
V1/2

)−1

Σ
(
V1/2

)−1

(35)

That is, Σ can be obtained from V1/2 and ρ, whereas ρ can be obtained from
Σ. Moreover, the expression of these relationship in terms of matrix operations
allows the calculations to be conveniently implemented on computer.

16

1.4.1 The Mean Vector and Covariance Matrix for Linear Combina-
tions of Random Variables

Recall that if a single random variable, such as X1, is multiplied by a constant
c, then:

E (cX1) = cE (X1) = cµ1

And
Var (cX1) = E (cX1 − cµ1)

2
= c2Var (X1) = c2σ11

If X2 is a second random variable and a and b are constants, then, using addi-
tional properties of expectation, we get:

Cov (aX1, bX2) = E (aX1 − aµ1) (bX2 − bµ2)

= abE (X1 − µ1) (X2 − µ2)

= abCov (X1, X2)

= abσ12

Finally, for the linear combination aX1 + bX2, we have:

E (aX1 + bX2) = aE (X1) + bE (X2) = aµ1 + bµ2

Var (aX1 + bX2) = E [(aX1 + bX2)− (aµ1 + bµ2)]
2

= · · ·
= a2σ11 + b2σ22 + 2abσ12

(36)

With c′ = [a, b], so aX1 + bX2 can be written as:[
a b

] [X1

X2

]
= c′X

Similarly, E (aX1 + bX2) = aµ1 + bµ2 can be expressed as:[
a b

] [µ1

µ2

]
= c′µ

If we let:
Σ =

[
σ11 σ12

σ21 σ22

]
Be the variance-covariance matrix of X, so the equation 36 becomes:

Var (aX1 + bX2) = Var (c′X) = c′Σc (37)

Since:
c′Σc =

[
a b

] [σ11 σ12

σ21 σ22

] [
a
b

]
= a2σ11 + 2abσ12 + b2σ22

The preceding results can be extended to a linear combination of p random
variables:

The linear combination c′X = c1X1 + · · ·+ c′pXp has
mean = E (c′X) = c′µ

variance = Var (c′X) = c′Σc
(38)

Where µ = E (X) and Σ = Cov (X).

17

1.5 (Unbiased) Sample Variance-Covariance Matrix
Let X1,X2, . . . ,Xn be a random sample from a joint distribution that has mean
vector µ and covariance matrix Σ. Then X is an unbiased estimator of µ,
and its covariance matrix is:

1

n
Σ

That is:

• Population mean vector:

E
(
X
)
= µ (39)

• Population variance-covariance matrix divided by sample size:

Cov
(
X
)
=

1

n
Σ (40)

For the covariance matrix Sn:

E (Sn) =
n− 1

n
Σ = Σ− 1

n
Σ

Thus:
E

(
n

n− 1
Sn

)
= Σ (41)

So
[

n

(n− 1)

]
Sn is an unbiased estimator of Σ, while Sn, is a biased estimator

with:
(bias) = E (Sn)−Σ = −

(
1

n

)
Σ

® Ok, but what’s the point?

This explanation shows that the (i, k)th entry:

(n− 1)
−1

n∑
j=1

(
Xji −Xi

) (
Xjk −Xk

)

Of
[

n

(n− 1)

]
Sn is an unbiased estimator of σik.

However, the individual sample standard deviations
√
sii, calculated with either

n or n−1 as a divisor, are not unbiased estimators of the corresponding popula-
tion quantities

√
σii. Moreover, the correlation coefficients rik are not unbiased

estimators of the population quantities ρik. However, the bias:

E (
√
sii)−

√
σii

Or:
E (rik)− ρik

18

Can usually be ignored if the sample size n is moderately large.

Consideration of bias motivates a slightly modified definition of the sample
variance-covariance matrix. So the initial explanation provides us with an
unbiased estimator S of Σ:

S =

(
n

n− 1

)
Sn =

1

n− 1

n∑
j=1

(
Xj −X

) (
Xj −X

)′
(42)

Here S, without a subscript, has (i, k)th entry:

(n− 1)
−1

n∑
j=1

(
Xji −Xi

) (
Xjk −Xk

)
This definition of sample covariance is commonly used in many multivariate test
statistics. Therefore, it will replace Sn as the sample covariance matrix in most
of the material throughout the rest of this course.

19

1.6 Mahalanobis distance
The Mahalanobis distance is a measure of the distance between a point
P and a distribution D, introduced by P. C. Mahalanobis in 1936. Maha-
lanobis’s definition was prompted by the problem of identifying the similarities
of skulls based on measurements in 1927.

It is a multivariate generalization of the square of the standard score: how
many standard deviations away P is from the mean of D. This distance
is:

• Zero for P at the mean of D and grows as P moves away from the mean
along each principal components axis.

• If each of these axes is re-scaled to have unit variance, then the Maha-
lanobis distance corresponds to standard Euclidean distance in the
transformed space.

In a mathematical language: given a probability distribution Q on RN , with
mean

→
µ = (µ1, µ2, µ3, . . . , µN)

T and positive-definite covariance matrix S, the
Mahalanobis distance of a point

→
x = (x1, x2, x3, . . . , xN)

T from Q is:

dM

(
→
x,Q

)
=

√(
→
x −→

µ
)T

S−1
(
→
x −→

µ
)

(43)

Given two points
→
x and

→
y in RN , the Mahalanobis distance between them with

respect to Q is:

dM

(
→
x,

→
y ;Q

)
=

√(
→
x −→

y
)T

S−1
(
→
x −→

y
)

(44)

Which means that dM

(
→
x,Q

)
= dM

(
→
x,

→
µ ;Q

)
.

If you want to explore the Mahalanobis Distance, have a look at this video.

20

https://en.wikipedia.org/wiki/Standard_score
https://youtu.be/spNpfmWZBmg

2 Statistical Learning

2.1 Introduction
Suppose that we observe a quantitative response Y and p different predictors,
X1, X2, . . . , Xp. We assume that there is some relationship between Y and
X = (X1, X2, . . . , Xp), which can be written in the general form:

Y = f (X) + ε (45)

Where ε is an error term, which is independent of X and has mean zero.
The function f represents the systematic information that X provides about
Y . The function f that connects the input variables to the output variable is
in general unknown.

Example 1

For example, on the left-hand panel of figure 3, a plot income versus
years of education for 30 individuals in the Income data set.

10 12 14 16 18 20 22

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Years of Education

In
c
o
m

e

10 12 14 16 18 20 22

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Years of Education

In
c
o
m

e

Figure 3: The Income data set. [1]

As you can see, the plot suggests that one might be able to predict
income using years of education. Since Income is a simulated data
set, the function f is known and is shown by the blue curve in the right-
hand panel. The vertical lines represent the error terms ε. We note
that some of the 30 observations lie above the blue curve and some lie
below it; overall, the errors have approximately mean zero.

In essence, statistical learning refers to a set of approaches for estimat-
ing f . In this chapter we outline some of the key theoretical concepts that arise
in estimating f .

21

2.2 Why Estimate f (systematic information provided by
a predictor about a quantitative response)?

There are two main reasons that we may wish to estimate f : prediction and
inference.

2.2.1 Prediction

In many situations, a set of inputs X are readily available, but the output Y
cannot be easily obtained. In this setting, since the error term ε averages to
zero, we can predict Y using:

Ŷ = f̂ (X) (46)

• f̂ represents our estimate for f

• Ŷ represents prediction for Y

The function f̂ is often treated as a black box, in the sense that one is not
typically concerned with the exact form of f̂ , provided that it yields accurate
predictions for Y .

Example 2

As an example, suppose that:

• X1, . . . , Xp are characteristics of a patient’s blood sample
that can be easily measured in a lab.

• Y is a variable encoding the patient’s risk for a severe adverse
reaction to a particular drug.

It is natural to seek to predict Y using X, since we can then avoid
giving the drug in question to patients who are at high risk of an adverse
reaction. That is, patients for whom the estimate of Y is high.

The accuracy of Ŷ as a prediction for Y depends on two quantities: reducible
error and irreducible error.

• In general, f̂ will not be a perfect estimate for f , and this inaccuracy
will introduce some error. This is a reducible error because we can po-
tentially improve the accuracy of f̂ by using the most appropriate
statistical learning technique to estimate f .

• Even if it were possible to form a perfect estimate for f , so that our
estimated response took the form Ŷ = f (X), our prediction would still
have some error in it! This is because Y is also a function of ε (error term),
which, by definition, cannot be predicted using X. Therefore, variability
associated with ε also affects the accuracy of our predictions. This is the
irreducible error, because no matter how well we estimate f , we
cannot reduce the error introduced by ε.

22

The real question is: why is the irreducible error larger than zero? Well, the
quantity ε may contain unmeasured variables that are useful in predicting Y :
since we don’t measure them, f cannot use them for its prediction. The quantity
ε may also contain unmeasurable variation.

Example 3

For example, the risk of an adverse reaction might vary for a given
patient on a given day, depending on manufacturing variation in the
drug itself or the patient’s general feeling of well-being on that day.

Consider a given estimate f̂ and a set of predictors X, which yields the prediction
Ŷ = f̂ (X). Assume for a moment that both f̂ and X are fixed, so that the only
variability comes from ε (error term). Then, it’s easy to show that:

E
(
Y − Ŷ

)2

= E
[
f (X) + ε− f̂ (X)

]2
=

[
f (X)− f̂ (X)

]2
︸ ︷︷ ︸

Reducible

+ Var (ε)︸ ︷︷ ︸
Irreducible

(47)

•
[
f (X)− f̂ (X)

]2
represents the squared difference between the pre-

dicted and actual value of Y

• E
(
Y − Ŷ

)2

represents the average, or exprected value

• Var (ε) represents the variance associated with the error term ε

The focus of this course is on techniques for estimating f with the aim of min-
imizing the reducible error. It is important to keep in mind that the irre-
ducible error will always provide an upper bound on the accuracy of our pre-
diction for Y . Unfortunately, this bound is almost always unknown in practice.

Example 4

Consider a company that is interested in conducting a direct-marketing
campaign.
The goal is to identify individuals who are likely to respond positively
to a mailing, based on observations of demographic variables measured
on each individual.
In this case:

• The demographic variables serve as predictors;

• Response to the marketing campaign (either positive or negative)
serves as the outcome.

The company is not interested in obtaining a deep understanding of
the relationships between each individual predictor and the response;
instead, the company simply wants to accurately predict the re-
sponse using the predictors.
This is an example of modeling for prediction.

23

2.2.2 Inference

We are often interested in understanding the association between Y (quanti-
tative response) and X1, . . . , Xp (p-predictors). In this situation we wish to
estimate f (systematic information), but our goal is not necessarily to make
predictions for Y . Now it’s obviously that f̂ cannot be treated as a black box,
because we need to know its exact form. In this setting, one may be interested
in answering the following questions:

• Which predictors are associated with the response? It is often
the case that only a small fraction of the available predictors are substan-
tially associated with Y . So, identifying the few important predictors
among a large set of possible variables can be extremely useful.

• What is the relationship between the response and each predic-
tor? Larger values of the predictor are associated with larger values of
Y . Other predictors may have the opposite relationship. The relationship
between the response and the given predictor may depend on:

– The complexity of f ;

– The values of the other predictors.

• Can the relationship between Y and each predictor be adequately
summarized using a linear equation, or is the relationship more
complicated? Historically, most methods for estimating f have taken
linear form. But often the true relationship is more complicated, in which
case a linear model may not provide an accurate representation
of the relationship between the input and the output variables.

Example 5

Modeling the brand of a product that a customer might purchased based
on variables such as:

• Price

• Store

• Location

• Discount levels

• Competition price

And so forth. In this situation one might really be most interested in
the association between each variable and the probability of
purchase. For instance, to what extent is the product’s price associated
with sales?
This is an example of modeling for inference.

24

Example 6

Consider the following figure:

0 50 100 200 300

5
1
0

1
5

2
0

2
5

TV

S
a
le

s

0 10 20 30 40 50

5
1
0

1
5

2
0

2
5

Radio

S
a
le

s

0 20 40 60 80 100

5
1
0

1
5

2
0

2
5

Newspaper

S
a
le

s

Figure 4: The Advertising data set. The plot displays sales, in thou-
sands of units, as a function of TV, radio, and newspaper budgets, in
thousands of dollars, for 200 different markets. In each plot we show the
simple least squares fit of sales to that variable. In other words, each
blue line represents a simple model that can be used to predict sales
using TV, radio, and newspaper, respectively.

One may be interested in answering questions such as:

• Which media are associated with sales?

• Which media generate the biggest boost in sales?

• How large of an increase in sales is associated with a given increase
in TV advertising?

This situation falls into the inference model.

25

2.2.3 Difference between prediction and inference

Example 7

In a real estate setting, one may seek to relate values of homes to inputs
such as:

• Crime rate

• Zoning

• Distance from a river

• Air quality

• Schools

• Income level of community

• Size of houses

And so forth. In this case one might be interested in the association
between each individual input variable and housing price. For instance,
how much extra will a house be worth if it has a view of the river? This
is an inference problem.

But attention! Alternatively, one may simply be interested in predicting
the value of a home given its characteristics: is this house under or over
valued? And this is a prediction problem.

So, as you can see from the example, the difference between a prediction
problem and an inference problem is so small. A problem can change its nature
because the ultimate goal is also changing.

26

2.3 How do we estimate f ?
We will always assume that we have observed a set of n different data points.
For example, in figure 3 at page 21 we observed n = 30 data points. These
observations are called training data because we will use these observations
to train, or teach, our method how to estimate f .

Let:

• xij represent the value of the jth predictor, or input, for observation i,
where i = 1, 2, . . . , n and j = 1, 2, . . . , p

• yi represent the response variable for the ith observation.

Then, our training data consist of:

{(x1, y1) , (x2, y2) , . . . , (xn, yn)}

Where xi = (xi1, xi2, . . . , xip)
T .

Our goal is to apply a statistical learning method to the training data in
order to estimate the unknown function f . In other words, we want to find
a function f̂ such that Y ≈ f̂ (X) for any observations (X,Y). Most statistical
learning methods for this task can be characterized as either parametric or
non-parametric.

27

2.3.1 Parametric Methods

The parametric methods involve a two-step model-based approach:

1. Select a model.

(a) Make an assumption about the functional form, or shape, of
f . For example, one very simple assumption is that f is linear in
X:

f (X) = β0 + β1X1 + β2X2 + · · ·+ βpXp (48)

This is a linear model (that will be discussed in the future). Once
we have assumed that f is linear, the problem of estimating f
is greatly simplified. Instead of having to estimate an entirely
arbitrary p-dimensional function f (X), one only needs to estimate
the p+ 1 coefficients β0, β1, . . . , βp.

2. Use training data to fit/train the model.

(b) After a model has been selected, we need a procedure that uses
the training data to fit the model or train the model. In
the case of the linear method, we need to estimate the parameters
β0, β1, . . . , βp. So, we want to find values of these parameters such
that:

Y ≈ β0 + β1X1 + β2X2 + · · ·+ βpXp

The most common approach to fitting the (linear) model is re-
ferred to as (ordinary) least squares (that will be discussed in the
future). However, the least squares is one of many possible ways to
fit the linear model.

The parametric model-based reduces the problem of estimating f down to one
of estimating a set of parameters. In fact, assuming a parametric form for
f simplifies the problem of estimating f because it is generally much easier to
estimate a set of parameters in the linear model, than it is to fit an entirely
arbitrary function f .

. Potential disadvantage

The model we choose will usually not match the true unknown form of
f . If the chosen model is too far from the true f , then our estimate will be
poor.

✓ Possible (partial) solution

We can try to address this problem by choosing flexible models that can fit
many different possible functional forms for f . But fitting a more flexible
model requires estimating a greater number of parameters.

These more complex models (flexible models) can lead to a phenomenon
known as overfitting the data, which essentially means they follow the er-
rors, or noise, too closely (these issues are discussed throughout this course).

28

2.3.2 Non-Parametric Methods

The non-parametric methods do not make explicit assumptions about the
functional form of f . Instead they seek an estimate of f that gets as close
to the data points as possible without being too rough or wiggly.

✓ Major advantage over parametric approaches

By avoiding the assumption of a particular functional form for f , non-parametric
approaches have the potential to accurately fit a wider range of possible
shapes for f . Any parametric approach brings with it the possibility that the
functional form used to estimate f is very different from the true f , in which
case the resulting model will not fit the data well.

. Disadvantage

Since non-parametric approaches do not reduce the problem of estimating f to
a small number of parameters, a very large number of observations (far
more than is typically needed for a parametric approach) is required in order
to obtain an accurate estimate for f .

29

2.4 Supervised and Unsupervised Learning
Most statistical learning problems fall into one of two categories: supervised
learning or unsupervised learning.

Supervised learning

The examples that we have discussed in this chapter all fall into the supervised
learning domain. For each observation of the predictor measurement(s) xi, i =
1, . . . , n there is an associated response measurement yi.

We wish to fit a model that relates the response to the predictors, with
the aim of:

• Accurately predicting the response for future observations (pre-
diction, section 2.2.1)

• Better understanding the relationship between the response and
the predictors (inference, section 2.2.2)

Unsupervised learning

The unsupervised learning describes the somewhat more challenging situa-
tion in which for every observation i = 1, . . . , n, we observe a vector of
measurements xi but no associated response yi.

In this setting, we are in some sense working blind ; the situation is referred to
as unsupervised because we lack a response variable that can supervise
our analysis. We can seek to understand the relationships between the
variables or between the observations.

30

2.5 Assessing Model Accuracy
The aim of this section is to decide which method will give the best results for
a given set of data.

2.5.1 Measuring the Quality of Fit (MSE)

In order to evaluate the performance of a statistical learning method on a given
data set, we need some way to measure how well its predictions actually match
the observed data. We need to quantify the extent to which the predicted
response value for a given observation is close to the true response
value for that observation. The most commonly-used measure is the mean
squared error (MSE):

MSE =
1

n

n∑
i=1

(
yi − f̂ (xi)

)2

(49)

• f̂ (xi) is the prediction that f̂ gives for the ith observation

• yi the ith true response

Obviously,the MSE will be:

• Small if the predicted responses are very close to the true responses;

• Large if for some of the observations, the predicted and true responses
differ substantially.

In general, we do not really care how well the method works on the training
data. Rather, we are interested in the accuracy of the predictions that
we obtain when we apply our method to previously unseen test data.

Example 8

Suppose that we are interested in developing an algorithm to predict a
stock’s price based on previous stock returns.

We can train the method using stock returns from the past 6 months.
But we don’t really care how well our method predicts last week’s stock
price.
We instead care about how well it predict tomorrow’s price or
next month’s price.

31

Example 9

Suppose that we have clinical measurements (e.g. weight, blood pressure,
height, age, family history of disease) for a number of patients, as well
as information about whether each patient has diabetes.

We can use these patients to train a statistical learning method to predict
risk of diabetes based on clinical measurements.

In practice, we want this method to accurately predict diabetes
risk for future patients based on their clinical measurements.
Again, we are not very interested in whether or not the method accu-
rately predicts diabetes risk for patients used to train the mode, since
we already know which of those patients have diabetes!

In mathematical terms, suppose that we fit our statistical learning method on
our training observations:

{(x1, y1) , (x2, y2) , . . . , (xn, yn)}

And we obtain the estimate f̂ . We can then compute:

f̂ (x1) , f̂ (x2) , . . . , f̂ (xn)

If these are approximately equal to:

y1, y2, . . . , yn

Then the training MSE is small.

However, we are really not interested in whether f̂ (xi) ≈ yi; instead, we want
to know whether f̂ (x0) is approximately equal to y0, where (x0, y0) is a previ-
ously unseen test observation not used to train the statistical learning
method.

We want to choose the method that gives the lowest test mean
squared error (MSE), as opposed to the lowest training MSE. In other words,
if we had a large number of test observations, we could compute:

Ave
(
y0 − f̂ (x0)

)2

(50)

The average squared prediction error for these test observations (x0, y0).

. Problem to find the lowest training MSE

There is no guarantee that the method with the lowest training MSE will also
have the lowest test MSE.

The problem is that many statistical methods specifically estimate
coefficients so as to minimize the training set MSE. For these methods,
the training set MSE can be quite small, but the test MSE is often
much larger.

32

Example 10

0 20 40 60 80 100

2
4

6
8

1
0

1
2

X

Y

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Figure 5: On the left: data simulated from f , shown in black. Three
estimates of f are shown: the linear regression (orange curve), and two
smoothing spline fits (blue and green curves). Right: Training MSE (grey
curve), test MSE (red curve), and minimum possible test MSE over all
methods (dashed line). Squares represent the training and test MSEs for
the three fits shown in the left-hand panel. [1]

In the left-hand panel we have generated observations from the (error
term) equation 45 with the true f given by the black curve.
The orange, blue and green curves illustrate three possible estimates for
f obtained using methods with increasing levels of flexibility.

It is clear that as the level of flexibility increases, the curves fit the
observed data more closely.
The green curve is the most flexible and matches the data very well; how-
ever, we observe that it fits the true f (shown in black) poorly because
it is too wiggly.
By adjusting the level of flexibility of the smoothing spline fit, we
can produce many different fits to this data.

33

Example 10

Referring to Figure 5

We now move on to the right-hand panel. The grey curve displays the
average training MSE as a function of flexibility, or more formally the
degrees of freedoma, for a number of smoothing splines.
The orange, blue and green squares indicate the MSEs associated with
the corresponding curve in the left-hand panel.
A more restricted and hence smoother curve has fewer degrees of freedom
than a wiggly curve. The linear regression is at the most restrictive end,
with two degrees of freedom.

The training MSE declines monotonically as flexibility in-
creases. In this example, the true f is non-linear, and so the orange
linear fit is not flexible enough to estimate f well.
The green curve has the lowest training MSE of all three methods, since
it corresponds to the most flexible of the three curves fit in the left-hand
panel.

The test MSE is displayed using the red curve. As with the training
MSE, the test MSE initially declines as the level of flexibility increases.
At some point, the test MSE levels off and then starts to increase again.
Consequently, the orange and green curves both have high test MSE.
The blue curve minimizes the test MSE, which should not be surprising
given that visually it appears to estimate f the best in the left-hand
panel.
The horizontal dashed line indicates Var (ε), the irreducible error
(eq. 47), which corresponds to the lost achievable test MSE
among all possible methods. Hence, the smoothing spline repre-
sented by the blue curve is close to optimal.

aThe degrees of freedom is a quantity that summarizes the flexibility of a
curve.

In the right-hand panel of figure 5, as the flexibility of the Statistical learning
method increases, we observe a monotone decrease in the training MSE
and a U-shape in the test MSE. This is a fundamental property of sta-
tistical learning that holds regardless of the particular data set at hand and
regardless of the Statistical method being used.

As model flexibility increases, the training MSE will decrease, but the test
MSE may not. When a given method yields a small training MSE but
a large test MSE, we are said to be overfitting the data.

® Why does this phenomenon happen?

This happens because our statistical learning procedure is working too hard
to find patterns in the training data, and may be picking up some patterns
that are just caused by random chance rather than by true properties of
the unknown function f .

34

So when we overfit the training data, the test MSE will be very large because
the supposed patterns that the method found in the training data
simply don’t exist in the test data.

We almost always expect the training MSE to be smaller than the test
MSE because most statistical learning methods either directly or indirectly
seek to minimize the training MSE. Overfitting refers specifically to the test
case in which a less flexible model would have yielded a smaller test
MSE.

Example 11

0 20 40 60 80 100

2
4

6
8

1
0

1
2

X

Y

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Figure 6: Details are as in Figure 5, using a different true f that is much
closer to linear. In this setting, linear regression provides a very good fit
to the data. [1]

This figure provides another example in which the true f is approxi-
mately linear. Again we observe that the training MSE decreases mono-
tonically as the model flexibility increases, and that there is a U-shape
in the test MSE.

However, because the truth is close to linear, the test MSE only de-
creases slightly before increasing again, so that the orange least
squares fit is substantially better than the highly flexible green
curve.

35

Example 12

0 20 40 60 80 100

−
1
0

0
1
0

2
0

X

Y

2 5 10 20

0
5

1
0

1
5

2
0

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Figure 7: Details are as in Figure 5, using a different true f that is far
from linear. In this setting, linear regression provides a very poor fit to
the data. [1]

Finally, this figure displays an example in which f is highly non-linear.

The training and test MSE curves still exhibit the same general patterns,
but now there is a rapid decrease in both curves before the test MSE
start to increase slowly.

36

2.5.2 The Bias-Variance Trade-Off

The U-shape observed in the test MSE curves (Figures: 5, 6, 7) turns out to be
the result of two competing properties of statistical learning methods.

The expected test MSE, for a given value x0, can always be decomposed into
the sum of three fundamental quantities:

• The variance of f̂ (x0)

• The squared bias of f̂ (x0)

• The variance of the error terms ε

E
(
y0 − f̂ (x0)

)2

= Var
(
f̂ (x0)

)
+
[
Bias

(
f̂ (x0)

)]2
+Var (ε) (51)

Where E
(
y0 − f̂ (x0)

)2

defines the expected test MSE at x0 and refers to
the average test MSE that we would obtain if we repeatedly estimated f
using a large number of training sets, and tested each at x0.

The equation 51 tell us that in order to minimize the expected test error, we
need to simultaneously select a statistical learning method that achieves
low variance and low bias. Note that variance is inherently a nonnegative
quantity, and squared bias is also nonnegative. Hence, we see that the expected
test MSE can never lie below Var (ε), the irreducible error (equation 47).

⋆ Meaning of the variance

The variance refers to the amount by which f̂ would change if we es-
timated it using a different training data set. So different training data
sets will result in a different f̂ . But ideally the estimate for f should not vary
too much between training sets. However, if a method has high variance
then small changes in the training data can result in large changes in
f̂ .
In general, more flexible statistical methods have higher variance.

Example 13

Consider the green and the orange curves in Figure 5 at page 33.

The flexible green curve is following the observations very closely. It has
high variance because changing any one of these data points may cause
the estimate f̂ to change considerably.

In contrast, the orange least squares line is relatively inflexible and has
low variance, because moving any single observations will likely cause
only a small shift in the position of the line.

37

⋆ Meaning of the bias

The bias refers to the error that is introduced by approximating a real-
life problem, which may be extremely complicated, by a much simpler
model.

Example 14

For example, linear regression assumes that there is a linear relationship
between Y and X1, X2, . . . , Xp. It is unlikely that any real-life problem
truly has such a simple linear relationship, and so performing linear
regression will undoubtedly result in some bias in the estimate of f .

In the Figure 7 on page 36, the true f is substantially non-linear, so
no matter how many training observations we are given, it will not be
possible to produce an accurate estimate using linear regression. In other
words, linear regression results in high bias in this example.

However, in Figure 6 on page 35 the true f is very close to linear, and so
given enough data, it should be possible for linear regression to produce
an accurate estimate.

Generally, as we use more flexible methods, the variance will increase and
the bias will decrease.

As we increase the flexibility of a class of methods, the bias tends to initially
decrease faster than the variance increases. Consequently, the expected test
MSE declines. However, at some point increasing flexibility has little impact
on the bias but starts to significantly increase the variance. When this happens
the test MSE increases. Note that we observed this pattern of decreasing test
MSE followed by increasing test MSE in the right-hand panels of Figures 5, 6,
7. In summary:

1. We increase the flexibility of a class of methods;

2. The bias tends to initially decrease faster than the variance increases;

3. The expected test MSE declines;

4. At some point increasing flexibility has little impact on the bias but starts
to significantly increase the variance;

5. The test MSE increases.

38

Example 15

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
5

1
0

1
5

2
0

Flexibility

MSE
Bias
Var

Figure 8: Squared bias (blue curve), variance (orange curve), Var (ε)
(dashed line), and test MSE (red curve) for the three data sets in Figures
5, 6, 7. The vertical dotted line indicates the flexibility level correspond-
ing to the smallest test MSE. [1]

Three plots illustrate equation 51 on page 37 for the examples in Figure
5, 6, 7.
In each case the blue solid curve represents the squared bias, for different
levels of flexibility, while the orange curve corresponds to the variance.
The horizontal dashed line represents Var (ε), the irreducible error. Fi-
nally, the red curve, corresponding to the test set MSE, is the sum of
these three quantities.

In all three cases, the variance increases and the bias decreases as the
method’s flexibility increases. However, the flexibility level correspond-
ing to the optimal test MSE differs considerably among the three data
sets, because the squared bias and variance change at different rates in
each of the data sets.

In the left-hand panel of this Figure, the bias initially decreases rapidly,
resulting in an initial sharp decrease in the expected test MSE.

On the other hand, in the center panel of this Figure the true f is close
to linear, so there is only a small decrease in bias as flexibility increases,
and the test MSE only declines slightly before increasing rapidly as the
variance increases.

Finally, in the right-hand panel of this Figure, as flexibility increases,
there is a dramatic decline in bias because the true f is very non-linear.
There is also very little increase in variance as flexibility increases. Con-
sequently, the test MSE declines substantially before experiencing a small
increase as model flexibility increases.

39

⋆ Meaning of the bias-variance trade-off

The relationship between bias, variance, and test set MSE given in equation 51
on page 37 and displayed in the Figure 8 (previous example) is referred to as
the bias-variance trade-off .

Good test set performance of a statistical learning method requires low variance
as well as low squared bias. This is referred to as a trade-off because it is easy
to obtain a method with extremely low bias but high variance2 or a
method with very low variance but high bias (by fitting a horizontal line
to the data).

The challenge lies in finding a method for which both the variance
and the squared bias are low. This trade-off is one of the most important
recurring themes in this course.

2For instance, by drawing a curve that passes through every single training observation

40

2.6 Algorithm: K-Nearest Neighbors (KNN)
Many approaches attempt to estimate the conditional distribution of Y
given X, and then classify a given observation to the class with high-
est estimated probability. One such method is the K-nearest neighbors
(KNN) classifier.

In mathematical terms, given a positive integer K and a test observation x0 the
KNN classifier:

1. Identifies the K points in the training data that are closest to x0, repre-
sented by N0.

2. It then estimates the conditional probability for class j as the fraction
of points in N0 whose response values equal j:

Pr (Y = J |X = x0) =
1

K

∑
i∈N0

I (yi = j) (52)

3. Finally, KNN classifies the test observation x0 to the class with the largest
probability from the previous equation.

Example 16

Suppose that we choose K = 3. Then KNN algorithm:

1. Identify the three observations that are closet to the cross. As you
can see in the Figure 9 on page 42, this neighborhood is shown
as a circle. It consists of two blue points and one orange point,

resulting in estimated probabilities of
2

3
for the blue class and

1

3
for the orange class.

2. Hence, KNN will predict that the black cross belongs to the blue
class.

41

Example 17

o

o

o

o

o

oo

o

o

o

o

o o

o

o

o

o

oo

o

o

o

o

o

Figure 9: The KNN approach, using K = 3, is illustrated in a simple
situation with six blue observations and six orange observations. Left:
a test observation at which a predicted class label is desired is shown
as a black cross. The three closest points to the test observation are
identified, and it is predicted that the test observation belongs to the most
commonly-occurring class, in this case blue. Right: the KNN decision
boundary for this example is shown in black. The blue grid indicates the
region in which a test observation will be assigned to the blue class, and
the orange grid indicates the region in which it will be assigned to the
orange class.

This figure provides an illustrative example of the KNN approach. In
the left-hand panel, we have plotted a small training data set consisting
of six blue and six orange observations. Our goal is to make a prediction
for the point labeled by the black cross.

In the right-hand panel, we have applied the KNN approach with K = 3
at all of the possible values for X1 and X2, and have drawn in the
corresponding KNN decision boundary.

42

Example 18

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

X1

X
2

Figure 10: The black curve indicates the KNN decision boundary on the
data, using K = 10. The Bayes decision boundary is shown as a purple
dashed line. The KNN and Bayes decision boundaries are very similar.

This Figure displays the KNN decision boundary, using K = 10, when
applied to the larger simulated data set.

43

3 R language programming

3.1 Introduction to R
There is no introduction to RStudio in these notes. But you can find a detailed
guide here.

R uses functions to perform operations. To run a function called funcname, we
type funcname(input1, input2), where the inputs (or arguments) input1 and
input2 tell R how to run the function.

44

https://moderndive.netlify.app/1-getting-started#getting-started

3.1.1 Scalars, vectors and matrices

• Create a scalar
1 a <- 1 # classic R syntax for assignment
2 a = 1 # equivalent assignment using "="
3 a # print the value

• Create a vector
1 v <- c(2, 3, 4, 5)
2 v
3

4 u <- seq(2, 5, len=4)
5 u
6

7 u <- seq(2, 5, by=1)
8 u
9

10 z <- 2:5
11 z

And the result is always the same:
1 [1] 2 3 4 5

– c function (documentation) takes n arguments to create a vector of
length n.

– seq function (doc) takes two arguments to create a vector with these
two values as its lower and upper bound. In the example code, the
values are passed implicitly, but we can make them explicit with from
and to:

1 u <- seq(from=2, to=5)
2 u

And the result is always the same:
1 [1] 2 3 4 5

The len parameter specifies the length of the vector. For example:
1 u <- seq(2, 5, len =10)
2 u

And the result is:
1 [1] 2.000000 2.333333 2.666667 3.000000 3.333333 3.666667

4.000000 4.333333 4.666667 5.000000

With the by argument, we can increment the sequence:
1 u <- seq(2, 5, by=0.5)
2 u

And the result is:
1 [1] 2.0 2.5 3.0 3.5 4.0 4.5 5.0

– The : (colon operator, doc) generates a regular sequence. It’s very
easy to use: from:to.

45

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/c
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/seq
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Colon

• Create a matrix
1 W <- rbind(c(11, 13, 15), c(12, 14, 16))
2 W
3

4 W <- cbind(c(11, 12), c(13, 14), c(15, 16))
5 W
6

7 W <- matrix(data = c(11, 12, 13, 14, 15, 16),
8 nrow = 2, ncol = 3, byrow = F)
9 W

10

11 W <- matrix(c(11, 12, 13, 14, 15, 16), 2, 3)
12 W

And the result is always the same:
1 [,1] [,2] [,3]
2 [1,] 11 13 15
3 [2,] 12 14 16

– The rbind and cbind (doc) functions are very similar. Both take a
sequence of vector, matrix or data-frame arguments and combine by
rows or columns, respectively. So if we use rbind, we need to specify
the lines. If we use cbind instead, we need to specify each column.
A useful piece of advice when using rbind or cbind is the code style.
The following code is easier to read:

1 W <- rbind(
2 c(11, 13, 15),
3 c(12, 14, 16)
4)
5

6 W <- cbind(
7 c(11, 12),
8 c(13, 14),
9 c(15, 16)

10)

We can also convert a vector into a row vector with rbind or a column
vector with cbind.

– The matrix (doc) function creates a matrix from the given set of
values. The arguments:

∗ data is an optional data vector.
∗ nrow is the desired number of rows.
∗ ncol is the desired number of columns.
∗ byrow is a logical argument. If FALSE (or F, the default) the

matrix is filled by columns, otherwise the matrix is filled by rows.

1 W <- matrix(c(11, 12, 13,
2 14, 15, 16), nrow=2, ncol=3, byrow=TRUE)
3 W
4 # [,1] [,2] [,3]
5 # [1,] 11 12 13
6 # [2,] 14 15 16

46

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/cbind
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/matrix

3.1.2 Access elements

We can access to an element of a vector using the square brackets.

• By explicitly inserting the index
1 v <- c(2, 3, 4, 5)
2 v[2]
3 # Output: [1] 3

• By explicitly inserting a vector as an index to access multiple elements
1 v[c(2, 3)]
2 # Output: [1] 3 4

• By explicitly inserting a negative value as an index to access all values
except the specified index value (is the opposite of a positive index value)

1 v[-1]
2 # [1] 3 4 5
3 v[-2]
4 # [1] 2 4 5
5 v[-3]
6 # [1] 2 3 5
7 v[-4]
8 # [1] 2 3 4

• By explicitly inserting a negative vector as an index to access all values
except the specified vector value (is the opposite of a positive vector value)

1 v[-c(1, 4)]
2 # [1] 3 4

We can access to an element of a matrix using the square brackets.

• By explicitly inserting the index
1 W <- matrix(data = c(11, 12, 13, 14, 15, 16), nrow = 2, ncol =

3, byrow = F)
2 W
3 # [,1] [,2] [,3]
4 # [1,] 11 13 15
5 # [2,] 12 14 16
6 W[2, 3]
7 # [1] 16

• By explicitly inserting a vector as an index (column or row) to access
multiple elements

1 W[2, c(2, 3)]
2 # [1] 14 16

• By explicitly inserting a blank to access all values of the row/column
1 W[2,]
2 # [1] 12 14 16
3 W[, c(2, 3)]
4 # [,1] [,2]
5 # [1,] 13 15
6 # [2,] 14 16

47

3.1.3 Algebraic operations

By default, operations in R are performed on a component-by-component basis.
For example, given the following data:

1 a <- 1
2 b <- 2
3

4 f <- c(2, 3, 4)
5 d <- c(10, 10, 10)
6

7 Z <- matrix(c(1, 10, 3, 10, 5, 10), nrow = 2, ncol = 3, byrow = F)

Operations with the vectors:

• Sum between two scalars
1 a + b # scalar + scalar
2 # [1] 3

• Sum between two vectors
1 f + d # vector + vector
2 # [1] 12 13 14

• Sum between a vector and a scalar
1 f + a # vector + scalar
2 # [1] 3 4 5

• Sums the components of a vector
1 sum(f) # sums the components of f
2 # [1] 9

• Multiply between two scalars
1 a * b # scalar * scalar
2 # [1] 2

• Multiply between two vectors
1 f * d # vector * vector (component -wise)
2 # [1] 20 30 40

• Multiplies between the components of a vector
1 prod(f) # returns the product of the components of f
2 # [1] 24

• Exponential of a vector
1 f^2
2 # [1] 4 9 16

• Exponential function of a vector
1 exp(f)
2 # [1] 7.389056 20.085537 54.598150

48

Operations with the matrices. Given the following data:
1 a <- 1
2 f <- c(2, 3, 4)
3 Z <- matrix(c(1, 10, 3, 10, 5, 10), nrow=2, ncol=3, byrow=F)
4 W <- matrix(c(11, 12, 13, 14, 15, 16), nrow=2, ncol=3, byrow=F)

• Transpose of a matrix
1 V <- t(W) # transpose of a matrix
2 # [,1] [,2]
3 # [1,] 11 12
4 # [2,] 13 14
5 # [3,] 15 16

• Inverse of a matrix
1 A <- matrix(c(11, 13, 12, 14), ncol=2, nrow=2, byrow=TRUE)
2 # [,1] [,2]
3 # [1,] 11 13
4 # [2,] 12 14

• Determinant of a matrix
1 det(A)
2 # [1] -2

• The generic function solves the equation a %*% x = b for x, where b can
be either a vector or a matrix. If b is missing, it’s taken to be an identity
matrix and solve will return the inverse of a.

1 solve(A)
2 # [,1] [,2]
3 # [1,] -7 6.5
4 # [2,] 6 -5.5
5

6 # Solution of a linear system Ax=b
7 b <- c(1, 1)
8 solve(A, b)
9 # [1] -0.5 0.5

• Sum between matrices
1 Z + W # matrix + matrix (component -wise)
2 # [,1] [,2] [,3]
3 # [1,] 12 16 20
4 # [2,] 22 24 26

• Sum between matrices and scalars
1 W + a # matrix + scalar
2 # [,1] [,2] [,3]
3 # [1,] 12 14 16
4 # [2,] 13 15 17

• Sum between matrices and vectors
1 W + f # matrix + vector
2 # [,1] [,2] [,3]
3 # [1,] 13 17 18
4 # [2,] 15 16 20

49

• Multiplication (component-by-component) between matrices
1 Z * W # matrix * matrix (component -wise)
2 # [,1] [,2] [,3]
3 # [1,] 11 39 75
4 # [2,] 120 140 160

• Multiplication (classic) between matrices
1 V * W # matrix * matrix (component -wise) (error!)
2 # Error in V * W : non -conformable arrays
3

4 V %*% W # Matrix multiplication
5 # [,1] [,2] [,3]
6 # [1,] 265 311 357
7 # [2,] 311 365 419
8 # [3,] 357 419 481
9

10 W %*% V
11 # [,1] [,2]
12 # [1,] 515 554
13 # [2,] 554 596

50

3.1.4 Categorical data

The function factor is used to encode a vector as a factor. Arguments:

• x: a vector of data, usually taking a small number of distinct values.

• levels: an optional vector of the unique values (as character strings) that
x might have taken.

For example:
1 district <- c(’MI’, ’MI’, ’VA’, ’BG’, ’LO’, ’LO’, ’CR’, ’Alt’,
2 ’CR’, ’MI’, ’Alt’, ’CR’, ’LO’, ’VA’, ’MI’, ’Alt’,
3 ’LO’, ’MI’)
4 district <- factor(district ,
5 levels=c(’MI’, ’LO’, ’BG’, ’CR’, ’VA’, ’Alt’))
6 district
7 # [1] MI MI VA BG LO LO CR Alt CR MI Alt CR LO VA MI

Alt LO MI
8 # Levels: MI LO BG CR VA Alt

The function table uses cross-classifying factors to build a contingency table of
the counts at each combination of factor levels.

1 # table of absolute frequencies
2 resass <- table(district)
3 resass
4 # district
5 # MI LO BG CR VA Alt
6 # 5 4 1 3 2 3
7

8 # table of relative frequencies
9 resrel <- table(district) / length(district)

10 resrel
11 # district
12 # MI LO BG CR VA Alt
13 # 0.27777778 0.22222222 0.05555556 0.16666667 0.11111111 0.16666667

51

3.1.5 Lists

A list in R is a generic object consisting of an ordered collection of objects.
Lists are one-dimensional, heterogeneous data structures. The list can be a list
of vectors, a list of matrices, a list of characters and a list of functions, and so
on.

For example, here is a list containing the results of an exam:
1 exam <- list (
2 course = ’Applied Statistics ’,
3 date = ’27/09/2022’,
4 enrolled = 7,
5 corrected = 6,
6 student_id = as.character(c(45020 , 45679 ,
7 46789, 43126,
8 42345, 47568, 45674)),
9 evaluation = c(30, 29, 30, NA, 25, 26, 27)

10)
11 exam
12 # $course
13 # [1] "Applied Statistics"
14 #
15 # $date
16 # [1] "27/09/2022"
17 #
18 # $enrolled
19 # [1] 7
20 #
21 # $corrected
22 # [1] 6
23 #
24 # $student_id
25 # [1] "45020" "45679" "46789" "43126" "42345" "47568" "45674"
26 #
27 # $evaluation
28 # [1] 30 29 30 NA 25 26 27

To access a property of the object, we can use the $ symbol or the square
brackets:

1 exam$evaluation
2 # [1] 30 29 30 NA 25 26 27
3

4 exam [[6]]
5 # [1] 30 29 30 NA 25 26 27

52

3.1.6 Data Frames

The function data.frame() creates data frames, tightly coupled collections of
variables which share many of the properties of matrices and of lists, used as
the fundamental data structure by most of R’s modeling software.

For example:
1 exam <- data.frame(
2 student_id = factor(as.character(c(45020 , 45679 ,
3 46789, 43126,
4 42345, 47568,
5 45674))),
6 # evaluation aka: evaluate
7 evaluate_W = c(30, 29, 30, NA, 25, 26, 17),
8 evaluate_O = c(28, 30, 30, NA, 28, 27, NA),
9 evaluate_P = c(30, 30, 30, 30, 28, 28, 28),

10 outcome = factor(c(’Passed ’, ’Passed ’, ’Passed ’,
11 ’To be repeated ’, ’Passed ’,
12 ’Passed ’, ’To be repeated ’)))
13 exam
14 # student_id evaluate_W evaluate_O evaluate_P outcome
15 # 1 45020 30 28 30 Passed
16 # 2 45679 29 30 30 Passed
17 # 3 46789 30 30 30 Passed
18 # 4 43126 NA NA 30 To be repeated
19 # 5 42345 25 28 28 Passed
20 # 6 47568 26 27 28 Passed
21 # 7 45674 17 NA 28 To be repeated

Like the lists, to access a property of the data frame, we can use $, or the square
brackets:

1 # a data.frame is a particular kind of list!
2 exam$evaluate_W
3 # [1] 30 29 30 NA 25 26 17
4 exam [[2]]
5 # [1] 30 29 30 NA 25 26 17
6 exam[2,]
7 # student_id evaluate_W evaluate_O evaluate_P outcome
8 # 2 45679 29 30 30 Passed

The data frame has two important and frequently used functions: attach and
detach:

• In R, attach() is a function that allows us to attach a database (usually a
data frame) to the R search path. This function makes it easier to interact
with objects within data frames by eliminating the need to repeatedly
reference the data frame itself.

In simpler terms, the attach() function takes a data frame and places
it in the search path of R’s environment. Once a data frame is attached,
we can call its variables directly, without the need to use the $
operator or square brackets.

1 attach(exam)
2 # Note: This variable has not been declared before!
3 # It’s a property of exam!
4 evaluate_W
5 # [1] 30 29 30 NA 25 26 17

53

• The detach() function detaches a database. Usually this is either a
data.frame which has been attached or a package which was attached
by library.

1 detach(exam)
2 evaluate_W
3 # Error: object ’evaluate_W’ not found

54

3.1.7 Reading and writing data

The read.table function reads a file in table format and creates a data frame
from it, with cases corresponding to lines and variables to fields in the file. It
can also read a csv file. It has the following (not all) parameters:

• file: the name of the file which the data are to be read from.
Each row of the table appears as one line of the file. If it does not contain
an absolute path, the file name is relative to the current working directory,
getwd().

For example, if our working directory is

C:\Users\Applied-Statistics

and we have a folder 1-lesson within the working directory, to access a
file within the folder we can write the absolute path:

C:\Users\Applied-Statistics\1-lesson\file-name.txt

or the relative path 1-lesson\file-name.txt.

• header: a logical value indicating whether the file contains the names of
the variables as its first line. If missing, the value is determined from
the file format: header is set to TRUE if and only if the first row
contains one fewer field than the number of columns.

For example, given the following raw (txt) file:
1 "m100" "m200" "m400" "m800" "m1500" "m3000" "Marathon"
2 "argentin" 11.61 22.94 54.5 2.15 4.43 9.79 178.52
3 "australi" 11.2 22.35 51.08 1.98 4.13 9.08 152.37
4 "austria" 11.43 23.09 50.62 1.99 4.22 9.34 159.37
5 "belgium" 11.41 23.04 52 2 4.14 8.88 157.85
6 "bermuda" 11.46 23.05 53.3 2.16 4.58 9.81 169.98
7 "brazil" 11.31 23.17 52.8 2.1 4.49 9.77 168.75
8 "burma" 12.14 24.47 55 2.18 4.45 9.51 191.02
9 "canada" 11 22.25 50.06 2 4.06 8.81 149.45

10 "chile" 12 24.52 54.9 2.05 4.23 9.37 171.38
11 "china" 11.95 24.41 54.97 2.08 4.33 9.31 168.48
12 "columbia" 11.6 24 53.26 2.11 4.35 9.46 165.42
13 "cookis" 12.9 27.1 60.4 2.3 4.84 11.1 233.22
14 "costa" 11.96 24.6 58.25 2.21 4.68 10.43 171.8
15 "czech" 11.09 21.97 47.99 1.89 4.14 8.92 158.85
16 "denmark" 11.42 23.52 53.6 2.03 4.18 8.71 151.75
17 "domrep" 11.79 24.05 56.05 2.24 4.74 9.89 203.88
18 "finland" 11.13 22.39 50.14 2.03 4.1 8.92 154.23
19 "france" 11.15 22.59 51.73 2 4.14 8.98 155.27
20 "gdr" 10.81 21.71 48.16 1.93 3.96 8.75 157.68
21 "frg" 11.01 22.39 49.75 1.95 4.03 8.59 148.53
22 "gbni" 11 22.13 50.46 1.98 4.03 8.62 149.72
23 "greece" 11.79 24.08 54.93 2.07 4.35 9.87 182.2
24 "guatemal" 11.84 24.54 56.09 2.28 4.86 10.54 215.08
25 "hungary" 11.45 23.06 51.5 2.01 4.14 8.98 156.37
26 "india" 11.95 24.28 53.6 2.1 4.32 9.98 188.03
27 "indonesi" 11.85 24.24 55.34 2.22 4.61 10.02 201.28
28 "ireland" 11.43 23.51 53.24 2.05 4.11 8.89 149.38
29 "israel" 11.45 23.57 54.9 2.1 4.25 9.37 160.48
30 "italy" 11.29 23 52.01 1.96 3.98 8.63 151.82

55

31 "japan" 11.73 24 53.73 2.09 4.35 9.2 150.5
32 "kenya" 11.73 23.88 52.7 2 4.15 9.2 181.05
33 "korea" 11.96 24.49 55.7 2.15 4.42 9.62 164.65
34 "dprkorea" 12.25 25.78 51.2 1.97 4.25 9.35 179.17
35 "luxembou" 12.03 24.96 56.1 2.07 4.38 9.64 174.68
36 "malaysia" 12.23 24.21 55.09 2.19 4.69 10.46 182.17
37 "mauritiu" 11.76 25.08 58.1 2.27 4.79 10.9 261.13
38 "mexico" 11.89 23.62 53.76 2.04 4.25 9.59 158.53
39 "netherla" 11.25 22.81 52.38 1.99 4.06 9.01 152.48
40 "nz" 11.55 23.13 51.6 2.02 4.18 8.76 145.48
41 "norway" 11.58 23.31 53.12 2.03 4.01 8.53 145.48
42 "png" 12.25 25.07 56.96 2.24 4.84 10.69 233
43 "philippi" 11.76 23.54 54.6 2.19 4.6 10.16 200.37
44 "poland" 11.13 22.21 49.29 1.95 3.99 8.97 160.82
45 "portugal" 11.81 24.22 54.3 2.09 4.16 8.84 151.2
46 "rumania" 11.44 23.46 51.2 1.92 3.96 8.53 165.45
47 "singapor" 12.3 25 55.08 2.12 4.52 9.94 182.77
48 "spain" 11.8 23.98 53.59 2.05 4.14 9.02 162.6
49 "sweden" 11.16 22.82 51.79 2.02 4.12 8.84 154.48
50 "switzerl" 11.45 23.31 53.11 2.02 4.07 8.77 153.42
51 "taipei" 11.22 22.62 52.5 2.1 4.38 9.63 177.87
52 "thailand" 11.75 24.46 55.8 2.2 4.72 10.28 168.45
53 "turkey" 11.98 24.44 56.45 2.15 4.37 9.38 201.08
54 "usa" 10.79 21.83 50.62 1.96 3.95 8.5 142.72
55 "ussr" 11.06 22.19 49.19 1.89 3.87 8.45 151.22
56 "wsamoa" 12.74 25.85 58.73 2.33 5.81 13.04 306

The R code to read it is:
1 record <- read.table(’1_IntroR/record.txt’, header=TRUE)

Some useful functions:

• head or tail: Returns the first or last parts of a vector, matrix, table,
data frame or function.

1 head(record)
2 # m100 m200 m400 m800 m1500 m3000 Marathon
3 # argentin 11.61 22.94 54.50 2.15 4.43 9.79 178.52
4 # australi 11.20 22.35 51.08 1.98 4.13 9.08 152.37
5 # austria 11.43 23.09 50.62 1.99 4.22 9.34 159.37
6 # belgium 11.41 23.04 52.00 2.00 4.14 8.88 157.85
7 # bermuda 11.46 23.05 53.30 2.16 4.58 9.81 169.98
8 # brazil 11.31 23.17 52.80 2.10 4.49 9.77 168.75

• dim: Retrieve or set the dimension of an object.

– For data.frame returns the lengths of the row.names attribute of x
and of x (as the numbers of rows and columns respectively).

– For an array (and hence in particular, for a matrix) dim retrieves
the dim attribute of the object.

In the previous example, the number of rows, excluding the header, is 55
and the number of columns is 7:

1 dim(record)
2 # [1] 55 7

56

• dimnames: Retrieve or set the dimnames of an object. The dimnames of a
data frame are its row.names and its names.

1 dimnames(record)
2 # [[1]]
3 # [1] "argentin" "australi" "austria" "belgium" "bermuda"

"brazil" "burma" "canada" "chile" "china"
4 # [11] "columbia" "cookis" "costa" "czech" "denmark"

"domrep" "finland" "france" "gdr" "frg"
5 # [21] "gbni" "greece" "guatemal" "hungary" "india"

"indonesi" "ireland" "israel" "italy" "japan"
6 # [31] "kenya" "korea" "dprkorea" "luxembou" "malaysia"

"mauritiu" "mexico" "netherla" "nz" "norway"
7 # [41] "png" "philippi" "poland" "portugal" "rumania"

"singapor" "spain" "sweden" "switzerl" "taipei"
8 # [51] "thailand" "turkey" "usa" "ussr" "wsamoa"
9 #

10 # [[2]]
11 # [1] "m100" "m200" "m400" "m800" "m1500" "

m3000" "Marathon"

To serialize (“save”) a specific object or an entire workspace, we can use:

• save writes an external representation of R objects to the specified file.
The objects can be read back from the file at a later date by using the
function load or attach (or data in some cases).

• save.image is short-cut for “save my current workspace”.

• load: Reload datasets written with the function save.

Note: the extension of the serialization file must be .RData

1 # to save several objects in the workspace
2 W <- matrix(data = c(11, 12, 13, 14, 15, 16), nrow = 2, ncol = 3,

byrow = F)
3 V <- t(W)
4 a <- 1
5

6 save(W, V, a, file = ’variousobjects.RData ’)
7

8 # to save the entire workspace: save.image(’FILENAME.RData ’)
9 save.image("myworkspace.RData")

10

11 # to load a workspace (i.e., .RData)
12 load("variousobjects.RData")

We can also use the ls and rm combination to clean up the entire workspace:

• ls returns a vector of character strings giving the names of the objects
in the specified environment. When invoked with no argument at the top
level prompt, ls shows what data sets and functions a user has defined.
When invoked with no argument inside a function, ls returns the names
of the function’s local variables.

• rm can be used to remove objects.

1 # this command remove all the variable of the workspace
2 ls()
3 rm(list=ls())

57

3.1.8 Example: analysis of quantitative data

Given the raw file on page 55, we convert the values of the last 4 columns into
seconds. Then we load it:

1 record <- read.table(’record.txt’, header=T)
2

3 # Transform times in seconds
4 record[, 4:7] <- record[, 4:7] * 60
5

6 write.table(record , file = ’1_IntroR/record_mod.txt’)
7

8 record <- read.table(’record_mod.txt’, header=T)
9 record

10 # m100 m200 m400 m800 m1500 m3000 Marathon
11 # argentin 11.61 22.94 54.50 129.0 265.8 587.4 10711.2
12 # australi 11.20 22.35 51.08 118.8 247.8 544.8 9142.2
13 # austria 11.43 23.09 50.62 119.4 253.2 560.4 9562.2
14 # belgium 11.41 23.04 52.00 120.0 248.4 532.8 9471.0
15 # bermuda 11.46 23.05 53.30 129.6 274.8 588.6 10198.8
16 # brazil 11.31 23.17 52.80 126.0 269.4 586.2 10125.0
17 # burma 12.14 24.47 55.00 130.8 267.0 570.6 11461.2
18 # canada 11.00 22.25 50.06 120.0 243.6 528.6 8967.0
19 # chile 12.00 24.52 54.90 123.0 253.8 562.2 10282.8
20 # china 11.95 24.41 54.97 124.8 259.8 558.6 10108.8
21 # columbia 11.60 24.00 53.26 126.6 261.0 567.6 9925.2
22 # cookis 12.90 27.10 60.40 138.0 290.4 666.0 13993.2
23 # costa 11.96 24.60 58.25 132.6 280.8 625.8 10308.0
24 # czech 11.09 21.97 47.99 113.4 248.4 535.2 9531.0
25 # denmark 11.42 23.52 53.60 121.8 250.8 522.6 9105.0
26 # domrep 11.79 24.05 56.05 134.4 284.4 593.4 12232.8
27 # finland 11.13 22.39 50.14 121.8 246.0 535.2 9253.8
28 # france 11.15 22.59 51.73 120.0 248.4 538.8 9316.2
29 # gdr 10.81 21.71 48.16 115.8 237.6 525.0 9460.8
30 # frg 11.01 22.39 49.75 117.0 241.8 515.4 8911.8
31 # gbni 11.00 22.13 50.46 118.8 241.8 517.2 8983.2
32 # greece 11.79 24.08 54.93 124.2 261.0 592.2 10932.0
33 # guatemal 11.84 24.54 56.09 136.8 291.6 632.4 12904.8
34 # hungary 11.45 23.06 51.50 120.6 248.4 538.8 9382.2
35 # india 11.95 24.28 53.60 126.0 259.2 598.8 11281.8
36 # indonesi 11.85 24.24 55.34 133.2 276.6 601.2 12076.8
37 # ireland 11.43 23.51 53.24 123.0 246.6 533.4 8962.8
38 # israel 11.45 23.57 54.90 126.0 255.0 562.2 9628.8
39 # italy 11.29 23.00 52.01 117.6 238.8 517.8 9109.2
40 # japan 11.73 24.00 53.73 125.4 261.0 552.0 9030.0
41 # kenya 11.73 23.88 52.70 120.0 249.0 552.0 10863.0
42 # korea 11.96 24.49 55.70 129.0 265.2 577.2 9879.0
43 # dprkorea 12.25 25.78 51.20 118.2 255.0 561.0 10750.2
44 # luxembou 12.03 24.96 56.10 124.2 262.8 578.4 10480.8
45 # malaysia 12.23 24.21 55.09 131.4 281.4 627.6 10930.2
46 # mauritiu 11.76 25.08 58.10 136.2 287.4 654.0 15667.8
47 # mexico 11.89 23.62 53.76 122.4 255.0 575.4 9511.8
48 # netherla 11.25 22.81 52.38 119.4 243.6 540.6 9148.8
49 # nz 11.55 23.13 51.60 121.2 250.8 525.6 8728.8
50 # norway 11.58 23.31 53.12 121.8 240.6 511.8 8728.8
51 # png 12.25 25.07 56.96 134.4 290.4 641.4 13980.0
52 # philippi 11.76 23.54 54.60 131.4 276.0 609.6 12022.2
53 # poland 11.13 22.21 49.29 117.0 239.4 538.2 9649.2
54 # portugal 11.81 24.22 54.30 125.4 249.6 530.4 9072.0
55 # rumania 11.44 23.46 51.20 115.2 237.6 511.8 9927.0
56 # singapor 12.30 25.00 55.08 127.2 271.2 596.4 10966.2
57 # spain 11.80 23.98 53.59 123.0 248.4 541.2 9756.0
58 # sweden 11.16 22.82 51.79 121.2 247.2 530.4 9268.8

58

59 # switzerl 11.45 23.31 53.11 121.2 244.2 526.2 9205.2
60 # taipei 11.22 22.62 52.50 126.0 262.8 577.8 10672.2
61 # thailand 11.75 24.46 55.80 132.0 283.2 616.8 10107.0
62 # turkey 11.98 24.44 56.45 129.0 262.2 562.8 12064.8
63 # usa 10.79 21.83 50.62 117.6 237.0 510.0 8563.2
64 # ussr 11.06 22.19 49.19 113.4 232.2 507.0 9073.2
65 # wsamoa 12.74 25.85 58.73 139.8 348.6 782.4 18360.0

Now we want to calculate: the means of each column (we will show two meth-
ods); the standard deviation; the variance; the covariance.

• colMeans: Form row and column sums and means for numeric arrays (or
data frames).

• apply: Returns a list of the same length as X (input parameter), each
element of which is the result of applying FUN (function, e.g. mean, var,
etc.) to the corresponding element of X.

• mean: Arithmetic mean.

• sd: This function computes the standard deviation of the values in x
(input parameter). If na.rm is TRUE then missing values are removed
before computation proceeds.

• var: Computes the variance.

• cov: Computes the covariance.

• cor: Computes the correlation.

1 # some synthetic indices
2 colMeans(record)
3 sapply(record , mean)
4 sapply(record , sd)
5 sapply(record , var)
6 cov(record)
7 cor(record)

And the result is on the following page.

59

> # some synthetic indices
> colMeans(record)
 m100 m200 m400 m800 m1500 m3000 Marathon
 11.61855 23.64164 53.40582 124.58182 259.52727 566.85818 10395.19636

> sapply(record, mean)
 m100 m200 m400 m800 m1500 m3000 Marathon
 11.61855 23.64164 53.40582 124.58182 259.52727 566.85818 10395.19636

> sapply(record, sd)
 m100 m200 m400 m800 m1500 m3000 Marathon
 0.4522103 1.1110602 2.6783367 6.4934466 19.9455319 49.4601474 1825.7726951

> sapply(record, var)
 m100 m200 m400 m800 m1500 m3000 Marathon
2.044941e-01 1.234455e+00 7.173488e+00 4.216485e+01 3.978242e+02 2.446306e+03 3.333446e+06

> cov(record)
 m100 m200 m400 m800 m1500 m3000 Marathon
m100 0.2044941 0.4787135 1.010955 2.136788 6.569596 16.58912 566.6616
m200 0.4787135 1.2344547 2.550142 5.223808 15.476232 39.00968 1390.7176
m400 1.0109549 2.5501422 7.173488 15.624737 42.087172 103.01428 3449.5477
m800 2.1367879 5.2238081 15.624737 42.164848 116.772727 277.34848 9238.9436
m1500 6.5695960 15.4762323 42.087172 116.772727 397.824242 956.09394 31970.8279
m3000 16.5891232 39.0096808 103.014285 277.348485 956.093939 2446.30618 81258.0017
Marathon 566.6616242 1390.7175616 3449.547725 9238.943636 31970.827879 81258.00170 3333445.9341

> cor(record)
 m100 m200 m400 m800 m1500 m3000 Marathon
m100 1.0000000 0.9527911 0.8346918 0.7276888 0.7283709 0.7416988 0.6863358
m200 0.9527911 1.0000000 0.8569621 0.7240597 0.6983643 0.7098710 0.6855745
m400 0.8346918 0.8569621 1.0000000 0.8984052 0.7878417 0.7776369 0.7054241
m800 0.7276888 0.7240597 0.8984052 1.0000000 0.9016138 0.8635652 0.7792922
m1500 0.7283709 0.6983643 0.7878417 0.9016138 1.0000000 0.9691690 0.8779334
m3000 0.7416988 0.7098710 0.7776369 0.8635652 0.9691690 1.0000000 0.8998374
Marathon 0.6863358 0.6855745 0.7054241 0.7792922 0.8779334 0.8998374 1.0000000

60

Univariate t-test for the mean value of the quantity
We print a quantile-quantile plot3 (qqplot) to verify (qualitatively) the Gaus-
sian assumption on the distribution generating sample.

• qqnorm is a generic function the default method of which produces a nor-
mal QQ plot of the values in y (input parameter).

• qqline adds a line to a “theoretical”, by default normal, quantile-quantile
plot which passes through the probs quantiles, by default the first and
third quartiles.

1 qqnorm(record$m100) # quantile -quantile plot
2 qqline(record$m100 , col=’red’) # theoretical line

−2 −1 0 1 2

11
.0

11
.5

12
.0

12
.5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Furthermore, we use Shapiro-Wilk test4 to verify (quantitatively) the Gaussian
assumption on the distribution generating sample.

1 shapiro.test(record$m100)
2 # Shapiro -Wilk normality test
3 #
4 # data: record$m100
5 # W = 0.97326 , p-value = 0.2569

• W: the value of the Shapiro-Wilk statistic.

• p.value: an approximate p-value for the test. This is said in Royston
(1995) to be adequate for p.value < 0.1.

• data.name: a character string giving the name(s) of the data.

3In statistics, a Q-Q plot (quantile-quantile plot) is a probability plot, a graphical method
for comparing two probability distributions by plotting their quantiles against each other. [4]

4The Shapiro-Wilk test is a test of normality. In statistics, normality tests are used to
determine if a data set is well-modeled by a normal distribution and to compute how likely it
is for a random variable underlying the data set to be normally distributed (source).

61

https://en.wikipedia.org/wiki/Normality_test

The null-hypothesis of this test is that the population is normally distributed.
Thus, if:

• The p.value is less than the chosen alpha level, then the null hypothe-
sis is rejected and there is evidence that the data tested are not normally
distributed.

• The p.value is greater than the chosen alpha level, then the null
hypothesis (that the data came from a normally distributed population)
can not be rejected.

So in our case the data is normally distributed because the alpha level is 0.05.

Now, we perform the Student’s t-Test5. The arguments:

• x a non-empty numeric vector of data values.

• alternative a character string specifying the alternative hypothesis, must
be one of "two.sided" (default), "greater" or "less"

• mu a number indicating the true value of the mean (or difference in means
if you are performing a two sample test).

• conf.level confidence level of the interval.

The output values:

• t: the value of the t-test.

• df: the degrees of freedom for the t-test.

• p-value: the p-value for the test.

• confidence interval: a confidence interval for the mean appropriate to
the specified alternative hypothesis.

• estimate: the estimated mean or difference in means depending on whether
it was a one-sample test or a two-sample test.

See the code in the following page.

5Student’s t-Test is a statistical test used to test whether the difference between the re-
sponse of two groups is statistically significant or not. A one-sample Student’s t-test is a
location test of whether the mean of a population has a value specified in a null hypothesis.
In testing the null hypothesis that the population mean is equal to a specified value µ0, one
uses the statistic:

t =
x− µ0

s÷
√
n

Where x is the sample mean, s is the sample standard deviation and n is the sample size. The
degrees of freedom used in this test are n− 1. Although the parent population does not need
to be normally distributed, the distribution of the population of sample means x is assumed
to be normal.

62

1 alpha <- .05
2 mean.H0 <- 11.5
3

4 # automatically
5 t.test(record$m100 , mu = mean.H0, alternative = ’two.sided ’, conf.

level = 1-alpha)
6 # One Sample t-test
7 #
8 # data: record$m100
9 # t = 1.9441 , df = 54, p-value = 0.0571

10 # alternative hypothesis: true mean is not equal to 11.5
11 # 95 percent confidence interval:
12 # 11.4963 11.7408
13 # sample estimates:
14 # mean of x
15 # 11.61855

We can also run the Student’s t-test manually:
1 sample.mean <- mean(record$m100)
2 sample.sd <- sd(record$m100)
3 n <- length(record$m100)
4 tstat <- (sample.mean - mean.H0) / (sample.sd / sqrt(n))
5 cfr.t <- qt(1 - alpha/2, n-1)
6 abs(tstat) < cfr.t # cannot reject H0 (accept H0)
7 # [1] TRUE
8

9 pval <- ifelse(tstat >= 0, (1 - pt(tstat , n-1))*2, pt(tstat , n-1)*
2)

10 pval
11 # [1] 0.05709702
12

13 IC <- c(inf = sample.mean - sample.sd / sqrt(n) * qt(1 - alpha/
2, n-1),

14 center = sample.mean ,
15 sup = sample.mean + sample.sd / sqrt(n) * qt(1 - alpha/

2, n-1))
16 IC
17 # inf center sup
18 # 11.49630 11.61855 11.74080

63

Simple linear regression

We want to calculate the simple linear regression6 of the property m100 and of
the property m200. We then want to create a scatter plot to see the graphical
relationship between these two sets of data. We will also create a linear model
to calculate the true linear regression.

In this section, m100 e m200 are properties of the record object created on
page 58.

First, we plot m100 and m200 using:

• par: prepares the graphical environment. It is a powerful tool and in this
case it is used to create a 2 × 2 matrix so that each graph can be placed
in just one figure. It’s also possible to use the layout function.

• hist: The generic function hist computes a histogram of the given data
values. With the arguments:

– main, xlab, ylab: main title and axis labels.

– par: is for S compatibility (not required)

• boxplot: produce box-and-whisker plot(s) of the given (grouped) values.

• plot: generic function for plotting of R objects.

1 # More than one plot in a unique device (commands par or layout)
2 # (command par)
3 par(mfrow=c(2, 2))
4 hist(m100 , main="Histogram records 100m", xlab="sec")
5 hist(m200 , prob=T, main="Histogram records 200m", xlab="sec")
6 boxplot(record [,1:2], main="Boxplot records 100m and 200m",
7 xlab="sec")
8 plot(m100 , m200 , main=’Scatter plot records 100m and 200m’,
9 xlab="Records 100m", ylab="Records 200m")

10

11 dev.off() # Clear plot
12

13 # (command layout)
14 layout(cbind(c(1, 1), c(2, 3)), widths=c(2, 1), heights=c(1, 1))
15 plot(m100 , m200)
16 hist(m100 , prob=T)
17 hist(m200 , prob=T)

6In statistics, simple linear regression (SLR) is a linear regression model with a single
explanatory variable. That is, it concerns two-dimensional sample points with one independent
variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian
coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately
as possible, predicts the dependent variable values as a function of the independent variable.
The adjective simple refers to the fact that the outcome variable is related to a single predictor.

64

https://en.wikipedia.org/wiki/S_%28programming_language%29

Histogram records 100m

sec

F
re

qu
en

cy

10.5 11.0 11.5 12.0 12.5 13.0

0
5

10
15

20
Histogram records 200m

sec

D
en

si
ty

21 22 23 24 25 26 27 28

0.
00

0.
10

0.
20

0.
30

m100 m200

15
20

25

Boxplot records 100m and 200m

sec

11.0 11.5 12.0 12.5

22
24

26

Scatter plot records 100m and 200m

Records 100m

R
ec

or
ds

 2
00

m

Using par command

11.0 11.5 12.0 12.5

22
23

24
25

26
27

m100

m
20

0

Histogram of m100

m100

D
en

si
ty

10.5 11.5 12.5

0.
0

0.
2

0.
4

0.
6

0.
8

Histogram of m200

m200

D
en

si
ty

21 23 25 27

0.
00

0.
10

0.
20

0.
30

Using layout command

65

Now we calculate the regression using the function:

• lm is used to fit linear models, including multivariate ones. It can
be used to carry out regression, single stratum analysis of variance and
analysis of covariance. Arguments:

– formula: a symbolic description of the model to be fitted.

Models for lm are specified symbolically. A typical model has the form response
∼ terms where

• response is the (numeric) response vector.

• terms is a series of terms which specifies a linear predictor for response.

A terms specification of the form:

• first + second indicates all the terms in first together with all the
terms in second with duplicates removed.

• first:second indicates the set of terms obtained by taking the interac-
tions of all terms in first with all terms in second.

• first*second indicates the cross of first and second. This is the same
as first + second + first:second.

Note 1: tilde ∼ is used to separate the left- and right-hand sides in a model
formula.
Note 2: summary is a generic function used to produce result summaries of
the results of various model fitting functions. The function invokes particular
methods which depend on the class of the first argument.

1 # Fit of the linear model (command lm)
2 # Model: m200 = beta0 + beta1 * m100 + eps , eps ∼ N(0, sigma ^2)
3 regression <- lm(m200 ∼ m100)
4 regression
5 # Call:
6 # lm(formula = m200 ∼ m100)
7 #
8 # Coefficients:
9 # (Intercept) m100

10 # -3.557 2.341
11

12 summary(regression)
13 # Call:
14 # lm(formula = m200 ∼ m100)
15 #
16 # Residuals:
17 # Min 1Q Median 3Q Max
18 # -0.86303 -0.16559 -0.00756 0.16599 1.10722
19 #
20 # Coefficients:
21 # Estimate Std. Error t value Pr(>|t|)
22 # (Intercept) -3.5570 1.1914 -2.985 0.00428 **
23 # m100 2.3410 0.1025 22.845 < 2e-16 ***
24 # ---
25 # Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
26 #
27 # Residual standard error: 0.3405 on 53 degrees of freedom
28 # Multiple R-squared: 0.9078 , Adjusted R-squared: 0.9061
29 # F-statistic: 521.9 on 1 and 53 DF, p-value: < 2.2e-16

66

With the regression it is possible to calculate some interesting values:

• coef is a generic function which extracts model coefficients from ob-
jects returned by modeling functions. coefficients is an alias for it.

• vcov returns the variance-covariance matrix of the main parameters
of a fitted model object. The “main” parameters of model correspond
to those returned by coef, and typically do not contain a nuisance scale
parameter (sigma).

• residuals is a generic function which extracts model residuals from
objects returned by modeling functions.

• fitted is a generic function which extracts fitted values from objects
returned by modeling functions. fitted.values is an alias for it.

In the following code we use:

• abline adds one or more straight lines through the current plot.

• points is a generic function to draw a sequence of points at the speci-
fied coordinates. The specified character(s) are plotted, centered at the
coordinates.

• legend used to add legends to plots. Arguments:

– x (first argument), y (second argument): the x and y co-ordinates to
be used to position the legend.

– col: the color of points or lines appearing in the legend.

– lty, lwd: the line types and widths for lines appearing in the legend.
One of these two must be specified for line drawing.

– pch: the plotting symbols appearing in the legend, as numeric vec-
tor or a vector of 1-character strings (see points). Unlike points,
this can all be specified as a single multi-character string. Must be
specified for symbol drawing.

1 coef(regression)
2 # (Intercept) m100
3 # -3.556967 2.340965
4

5 vcov(regression)
6 # (Intercept) m100
7 # (Intercept) 1.4195378 -0.12199717
8 # m100 -0.1219972 0.01050021
9

10 residuals(regression)
11 # 1 2 3 4 5

6 7 8 9
12 # -0.681631757 -0.311836293 -0.110258139 -0.113438848 -0.220487075

0.250657607 -0.392342968 0.056356617 -0.014607931
13 # 10 11 12 13 14

15 16 17 18
14 # -0.007559704 0.401777888 0.458523975 0.159030651 -0.434330192

0.343151507 0.006994624 -0.107968774 0.045211935
15 # 19 20 21 22 23

24 25 26 27

67

16 # -0.038860119 0.172946971 -0.063643383 0.036994624 0.379946396
-0.187077430 -0.137559704 0.056536751 0.309741861

17 # 28 29 30 31 32
33 34 35 36

18 # 0.322922570 0.127476898 0.097452497 -0.022547503 0.049030651
0.660150932 0.355163132 -0.863029777 1.107223560

19 # 37 38 39 40 41
42 43 44 45

20 # -0.657101831 0.031115480 -0.351173885 -0.241402821 -0.049849068
-0.432776440 -0.287968774 0.130175333 0.236332216

21 # 46 47 48 49 50
51 52 53 54

22 # -0.236897296 -0.086415022 0.251802289 0.062922570 -0.088655584
0.510633206 -0.047788640 0.127959172 -0.144101256

23 # 55
24 # -0.416921697
25

26 fitted(regression)
27 # 1 2 3 4 5 6 7

8 9 10 11 12 13
28 # 23.62163 22.66184 23.20026 23.15344 23.27049 22.91934 24.86234

22.19364 24.53461 24.41756 23.59822 26.64148 24.44097
29 # 14 15 16 17 18 19 20

21 22 23 24 25 26
30 # 22.40433 23.17685 24.04301 22.49797 22.54479 21.74886 22.21705

22.19364 24.04301 24.16005 23.24708 24.41756 24.18346
31 # 27 28 29 30 31 32 33

34 35 36 37 38 39
32 # 23.20026 23.24708 22.87252 23.90255 23.90255 24.44097 25.11985

24.60484 25.07303 23.97278 24.27710 22.77888 23.48117
33 # 40 41 42 43 44 45 46

47 48 49 50 51 52
34 # 23.55140 25.11985 23.97278 22.49797 24.08982 23.22367 25.23690

24.06642 22.56820 23.24708 22.70866 23.94937 24.48779
35 # 53 54 55
36 # 21.70204 22.33410 26.26692
37

38 # print the linear regression
39 plot(m100 , m200 , asp=1, cex =0.75)
40 abline(coef(regression))
41 points(m100 , fitted(regression), col=’red’, pch =19)
42

43 legend(
44 ’bottomright ’,
45 c(’Obs.’, ’Fit’, ’Reg. line’),
46 col = c(’black’, ’red’, ’black’),
47 lwd = c(1, 1, 1),
48 lty = c(-1, -1, 1),
49 pch = c(c(1, 19, -1))
50)
51

52 title(main=’Linear regression (m200 vs m100)’)

68

8 10 12 14 16

22
23

24
25

26
27

m100

m
20

0

Obs.
Fit
Reg. line

Linear regression (m200 vs m100)

We can do the F-test7 by hand:
1 # Test F "by hand" (H0: beta1 =0 vs H1: beta1!=0)
2 SSreg <- sum((fitted(regression) - mean(m200))^2)
3 SSres <- sum(residuals(regression)^2)
4 SStot <- sum((m200 - mean(m200))^2)
5

6 n <- length(m200)
7 Fstat <- (SSreg/1) / (SSres/(n-2))
8 P <- 1 - pf(Fstat , 1, n-2)
9 P # reject H0

10 # [1] 0

Furthermore, we can calculate confidence and prediction interval using predict
command:

• predict is a generic function for predictions from the results of various
model fitting functions. The function invokes particular methods which
depend on the class of the first argument.

7An F-test is any statistical test used to compare the variances of two samples or the
ratio of variances between multiple samples. The test statistic, random variable F, is used
to determine if the tested data has an F-distribution under the true null hypothesis, and
true customary assumptions about the error term (ε). It is most often used when comparing
statistical models that have been fitted to a data set, in order to identify the model that best
fits the population from which the data were sampled.

69

1 newdata <- data.frame(m100=c(10, 11, 12))
2 pred_nd <- predict(regression , newdata)
3 pred_nd
4 # 1 2 3
5 # 19.85268 22.19364 24.53461
6

7 IC_nd <- predict(regression , newdata , interval=’confidence ’, level
=.99)

8 IC_nd
9 # fit lwr upr

10 # 1 19.85268 19.39288 20.31248
11 # 2 22.19364 21.98453 22.40276
12 # 3 24.53461 24.37350 24.69572
13

14 IP_nd <- predict(regression , newdata , interval=’prediction ’, level
=.99)

15 IP_nd
16 # fit lwr upr
17 # 1 19.85268 18.83330 20.87206
18 # 2 22.19364 21.26013 23.12716
19 # 3 24.53461 23.61066 25.45856
20

21 plot(m100 , m200 , asp=1, ylim=c(18.5 , 27.5) , cex =0.5)
22 abline(coef(regression))
23 points(m100 , fitted(regression), col=’red’, pch =20)
24 points(c(10, 11, 12), pred_nd , col=’blue’, pch =16)
25

26 matlines(rbind(c(10, 11, 12), c(10, 11, 12)), t(IP_nd[, -1]), type=
"l", lty=2,

27 col=’dark grey’, lwd=2)
28 matpoints(rbind(c(10, 11, 12), c(10, 11, 12)), t(IP_nd[, -1]), pch=

"-", lty=2,
29 col=’dark grey’, lwd=2, cex =1.5)
30 matlines(rbind(c(10, 11, 12), c(10, 11, 12)), t(IC_nd[, -1]), type=

"l", lty=1,
31 col=’black ’, lwd=2)
32 matpoints(rbind(c(10, 11, 12), c(10, 11, 12)), t(IC_nd[, -1]), pch=

"-", lty=1,
33 col=’black ’, lwd=2, cex =1.5)
34

35 legend(
36 ’bottomright ’,
37 c(’Obs.’, ’Fit’, ’Reg. line’, ’Pred. new’, ’IC’, ’IP’),
38 col = c(’black’, ’red’, ’black’, ’blue’, ’black ’, ’dark grey’),
39 lwd = c(1, 1, 1, 1, 2, 2),
40 lty = c(-1, -1, 1, -1, 1, 2),
41 pch = c(c(1, 19, -1, 19, -1, -1))
42)
43

44 title(main=’Linear regression (m200 vs m100)’)

70

5 10 15 20

20
22

24
26

m100

m
20

0

−

−
−

−
−

−

−

−

−
−

−−

Obs.
Fit
Reg. line
Pred. new
IC
IP

Linear regression (m200 vs m100)

71

Once we’ve fitted a regression model, it’s a good idea to also produce diagnostic
plots to analyze the residuals of the model and make sure that a linear model
is appropriate for the particular data we’re working with.

1 # diagnostic of residuals
2 par(mfrow=c(2, 2))
3 boxplot(residuals(regression), main=’Boxplot of residuals ’)
4 qqnorm(residuals(regression))
5 plot(m100 , residuals(regression), main=’Residuals vs m100’)
6 abline(h=0, lwd=2)
7 plot(fitted(regression), residuals(regression), main=’Residuals vs

fitted m200’)
8 abline(h=0, lwd=2)
9

10 par(mfrow=c(2, 2))
11 plot(regression)

22 23 24 25 26

−
1.

0
0.

0
0.

5
1.

0

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

36

35
1

−2 −1 0 1 2

−
2

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

36

35
1

22 23 24 25 26

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
36

35

1

0.00 0.05 0.10 0.15

−
3

−
1

1
2

3
4

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance 1

0.5

0.5

1

Residuals vs Leverage

12

35

55

• Residuals vs Fitted. This plot is used to determine if the residuals
exhibit non-linear patterns. If the red line across the center of the
plot is roughly horizontal then we can assume that the residuals follow a
linear pattern.
In our example, we can see that the red line is almost the same as the
perfect horizontal line. We declare that the residuals follow a roughly
linear pattern and that a linear regression model is appropriate for this
dataset.

• Q-Q residuals. This plot is used to determine if the residuals of the
regression model are normally distributed. If the points in this
plot fall roughly along a straight diagonal line, then we can assume the
residuals are normally distributed.
In our example, we can see that the points fall roughly along the straight
diagonal line. We can then assume that the residuals are normally dis-
tributed.

72

• Scale-Location. This plot is used to check the assumption of equal
variance (also called homoscedasticity) among the residuals in our
regression model. If the red line is roughly horizontal across the plot,
then the assumption of equal variance is likely met.

In our example, we can see that the red line isn’t exactly horizontal across
the plot, but it doesn’t deviate too much at any point. We would probably
say that the assumption of equal variance is not violated in this case.

• Residuals vs Leverage. This plot is used to identify influential ob-
servations. If any points in this plot fall outside of Cook’s distance8 (the
dashed lines) then it is an influential observation.

In our example we can see that observations 12, 35 and 55 are closest to
the boundary of Cook’s distance, but they don’t fall outside the dashed
line. This means that there aren’t any overly influential points in our data
set.

A useful guide to follow when creating diagnostic plots: How to Interpret Diag-
nostic Plots in R.

8In statistics, Cook’s distance or Cook’s D is a commonly used estimate of the influence
of a data point when performing a least-squares regression analysis. In a practical ordinary
least squares analysis, Cook’s distance can be used in several ways: to indicate influential data
points that are particularly worth checking for validity; or to indicate regions of the design
space where it would be good to be able to obtain more data points.

73

https://en.wikipedia.org/wiki/Homoscedasticity_and_heteroscedasticity
https://www.statology.org/diagnostic-plots-in-r/
https://www.statology.org/diagnostic-plots-in-r/

3.1.9 Visualization of multivariate data

Example 1: dataset record (all the variables)

Read the modified data created on page 58:
1 record <- read.table(’record_mod.txt’, header=T)
2 head(record)
3 # m100 m200 m400 m800 m1500 m3000 Marathon
4 # argentin 11.61 22.94 54.50 129.0 265.8 587.4 10711.2
5 # australi 11.20 22.35 51.08 118.8 247.8 544.8 9142.2
6 # austria 11.43 23.09 50.62 119.4 253.2 560.4 9562.2
7 # belgium 11.41 23.04 52.00 120.0 248.4 532.8 9471.0
8 # bermuda 11.46 23.05 53.30 129.6 274.8 588.6 10198.8
9 # brazil 11.31 23.17 52.80 126.0 269.4 586.2 10125.0

Print the scatter plots of each column. We use the pairs function to automat-
ically create a collage. But we could have used the plot function to get the
same result.

1 # Scatter plot
2 pairs(record) # or plot(record)

m100

22
25

11
5

13
0

50
0

65
0

11.0 12.0

22 24 26

m200

m400

48 52 56 60

115 125 135

m800

m1500

240 280 320

500 600 700

m3000

11
.0

12
.5

48
54

60
24

0
30

0

10000 16000

10
00

0
18

00
0

Marathon

Image generated with the pairs function.

74

We print two box plots. The first is the data itself, the second is the logarithm.
The second is more “scaled” than the first.9

1 # Box plot
2 boxplot(record , col=’gold’)
3

4 boxplot(log(record), col=’gold’)

m100 m200 m400 m800 m1500 m3000 Marathon

0
50

00
10

00
0

15
00

0

m100 m200 m400 m800 m1500 m3000 Marathon

4
6

8
10

9See the following question: Cross Validated

75

https://stats.stackexchange.com/questions/211327/r-box-plot-on-log-scale-vs-log-transforming-then-creating-box-plot-dont-ge

Now, we use a star plot (or radar chart) for displaying multivariate data, in
which each variable provides the measure of some common property of each
observation. Each star in the plot represents a single observation. Star plot is
used to examine the relative values of a single data point and locate similar and
dissimilar points.

The star plot consists of the sequence of equiangular spokes called radii with
each spoke representing the value of observation on one of the variables. The
data length of a spoke is proportional to the magnitude of the variable for the
point related to the maximum data point in that variable. A line is drawn
connecting to all the data points.10

The star plot can be used to answer the following questions:

• which variable is dominant for a given observation?

• which observations are most similar i.e are there any clusters of observa-
tions?

• are there outliers?

The stars function draws star plots or segment diagrams of a multivariate data
set.

• col.stars: color vector (integer or character), each specifying a color for
one of the stars (cases). Ignored if draw.segments = TRUE.

• draw.segments: logical. If TRUE draw a segment diagram.

1 # Starplot
2 stars(record , col.stars=rep(’gold’ ,55))
3

4 # Radarplot
5 stars(record , draw.segments=T)

10Source: Star Charts in Python

76

https://www.geeksforgeeks.org/star-charts-in-python/

argentin
australi

austria
belgium

bermuda
brazil

burma

canada
chile

china
columbia

cookis
costa

czech

denmark
domrep

finland
france

gdr
frg

gbni

greece
guatemal

hungary
india

indonesi
ireland

israel

italy
japan

kenya
korea

dprkorea
luxembou

malaysia

mauritiu
mexico

netherla
nz

norway
png

philippi

poland
portugal

rumania
singapor

spain
sweden

switzerl

taipei
thailand

turkey
usa

ussr
wsamoa

Star plot.

77

argentin
australi

austria
belgium

bermuda
brazil

burma

canada
chile

china
columbia

cookis
costa

czech

denmark
domrep

finland
france

gdr
frg

gbni

greece
guatemal

hungary
india

indonesi
ireland

israel

italy
japan

kenya
korea

dprkorea
luxembou

malaysia

mauritiu
mexico

netherla
nz

norway
png

philippi

poland
portugal

rumania
singapor

spain
sweden

switzerl

taipei
thailand

turkey
usa

ussr
wsamoa

Radar plot.

78

Finally, we show the Chernoff faces. Invented by the applied mathematician,
statistician and physicist Herman Chernoff in 1973, display multivariate data
in the shape of a human face. The individual parts, such as eyes, ears, mouth
and nose represent values of the variables by their shape, size, placement and
orientation.

The idea behind using faces is that humans easily recognize faces and notice
small changes without difficulty. Chernoff faces handle each variable differently.
Because the features of the faces vary in perceived importance, the way in which
variables are mapped to the features should be carefully chosen (e.g. eye size
and eyebrow-slant have been found to carry significant weight). [3]

1 # Chernoff faces
2 source(’1_IntroR/faces.R’)
3 faces(record)

Index

argentin

Index

australi

Index

austria

Index

belgium

Index

bermuda

Index

brazil

Index

burma

Index

canada

Index

chile

Index

china

Index

columbia

Index

cookis

Index

costa

Index

czech

Index

denmark

Index

domrep

Index

finland

Index

france

Index

gdr

Index

frg

Index

gbni

Index

greece

Index

guatemal

Index

hungary

Index

india

Index

indonesi

Index

ireland

Index

israel

Index

italy

Index

japan

Index

kenya

Index

korea

Index

dprkorea

Index

luxembou

Index

malaysia

Index

mauritiu

Index

mexico

Index

netherla

Index

nz

Index

norway

Index

png

Index

philippi

Index

poland

Index

portugal

Index

rumania

Index

singapor

Index

spain

Index

sweden

Index

switzerl

Index

taipei

Index

thailand

Index

turkey

Index

usa

Index

ussr

Index

wsamoa

Chernoff faces.

79

Example 2: cerebral aneurysm

Given the following cerebral aneurysm data set:
1 aneurysm <- read.table(’aneurysm.txt’, header=T, sep=’,’)
2 aneurysm
3 # R1 R2 C1 C2 POSLH ROT
4 # 1 4.61236917 1.81893482 -0.71134947 -0.8126038117 1 1
5 # 2 3.06352902 0.53588206 -0.23214058 0.2195964300 1 2
6 # 3 -2.50730813 -1.82963610 -0.14779570 1.0275683245 2 1
7 # 4 -0.48317413 -1.36705216 -0.13446542 0.7809211387 2 2
8 # 5 8.67750542 -0.72148198 -0.87794641 -0.8643967116 1 1
9 # 6 -1.40053106 0.30169181 0.36947194 0.8115340276 2 1

10 # 7 -4.83327005 -2.45149412 0.66961431 0.3983650917 2 1
11 # 8 3.53227839 -0.19303378 0.38545936 -0.9127160840 1 1
12 # 9 -1.11398956 -0.24176688 0.33910068 0.3370752431 1 1
13 # 10 3.81767582 0.61110120 0.21152746 0.0352946254 1 1
14 # 11 -0.99197415 1.47913803 -0.35256538 0.5106292669 2 2
15 # 12 2.45761147 1.10978681 0.50925506 -0.3519610865 1 1
16 # 13 1.60402907 0.81025313 0.48442554 0.4812435769 2 1
17 # 14 0.17245993 6.45659597 -0.08855854 -0.7949618583 1 1
18 # 15 10.06582110 0.40315653 0.14925257 -0.6444798500 1 2
19 # 16 -0.20649939 -1.97789537 0.24777487 0.4033710981 2 1
20 # 17 -0.39624526 -2.64895090 0.23767542 -0.1292530144 2 2
21 # 18 -2.29454558 -1.12230380 -0.26834700 0.0572614606 2 1
22 # 19 1.89749093 -0.43464404 -0.46233201 0.4906762013 2 2
23 # 20 -3.93543619 0.30373095 0.58250352 0.2207769119 2 1
24 # 21 2.19442857 -1.69890160 -0.93281115 0.5782571944 1 1
25 # 22 2.11325302 1.74226491 -0.45335948 0.4238558039 2 1
26 # 23 1.16596411 -3.31197771 -1.34906105 -0.5020878424 1 1
27 # 24 -3.37262214 -0.75856533 -0.56482817 0.2505782913 1 1
28 # 25 -5.79482948 0.04857145 0.10001856 -0.0571355690 2 2
29 # 26 0.27694619 -1.21581098 0.44075523 -0.1484948189 1 1
30 # 27 -4.76916841 -1.36402011 0.45027210 -0.3250188936 1 1
31 # 28 2.51646746 -0.65854940 -0.25560833 0.0287800501 2 2
32 # 29 1.28443876 -1.40939177 0.63878566 -0.2593380679 1 2
33 # 30 2.55664936 1.19188918 -0.26838756 0.4872637502 1 1
34 # 31 1.23623115 -0.60517101 0.22256448 0.6311006474 2 2
35 # 32 0.73829762 0.61147015 -0.05363886 -0.6614512618 1 1
36 # 33 -3.75948527 -2.01138985 0.68213495 0.3747712029 2 2
37 # 34 -0.48167193 -0.39814792 0.51399010 -0.0004291089 2 2
38 # 35 -2.25904694 -2.38665713 0.45390358 -1.5388375243 1 1
39 # 36 0.57969707 1.16245728 -0.49066005 0.2161494958 2 2
40 # 37 6.54926775 -0.85233974 -0.65126136 -0.5432549595 1 1
41 # 38 -0.20946857 0.10522716 -0.85099673 -0.1746455657 2 2
42 # 39 10.60043329 3.42886874 -1.79542595 0.1781065049 1 2
43 # 40 -1.94169162 0.29873687 -0.28092767 0.2306770583 2 2
44 # 41 0.49793287 0.28683151 0.22468619 -0.0320178444 1 2
45 # 42 -4.46935315 -1.52239963 0.08821432 0.0919547753 2 1
46 # 43 -0.60901414 -0.68953709 0.29990342 0.1532348059 2 2
47 # 44 -2.45916379 -0.25229754 0.73334359 0.5115293323 1 1
48 # 45 7.26535100 -0.26118585 -1.44742477 -0.0306652547 1 1
49 # 46 -0.06722902 -0.87859319 0.32957677 0.3941140621 2 1
50 # 47 -7.33820273 0.16212537 -0.07375616 0.4007972706 2 2
51 # 48 2.75095788 1.34811394 -1.20172796 0.1842977175 1 1
52 # 49 -1.15593706 -0.22943344 0.22087330 0.3226180181 2 1
53 # 50 -5.55110713 -0.05309603 0.12620830 0.3247528537 1 1
54 # 51 -7.76498051 5.08222285 0.60466263 -0.6800473383 1 1
55 # 52 -2.94481935 -3.11891796 -0.30079753 0.2087315651 2 2
56 # 53 2.68934422 -0.39712580 0.28358072 0.6982456065 2 2
57 # 54 -0.77943675 0.31030355 0.20140456 -0.1650230688 2 2
58 # 55 -3.04331382 -1.41437885 0.68660096 0.3761065706 2 2
59 # 56 -3.24165385 -0.98385207 0.77079435 -0.1201361602 2 2

80

60 # 57 -5.51617063 2.37496568 0.85732250 -0.2795976327 1 2
61 # 58 -3.34314290 0.20821657 0.22220675 -0.6538244202 2 2
62 # 59 7.38891157 0.87070713 -0.46719630 -0.3439174239 1 2
63 # 60 -0.21380694 -0.01004160 0.13514484 -0.2992193274 2 1
64 # 61 3.58346325 -1.67302440 0.04802486 -0.7840907452 1 1
65 # 62 -7.84523730 3.67775280 1.17175017 -0.1388942199 1 1
66 # 63 8.21311731 0.87658532 0.17089723 -0.3466530444 1 1
67 # 64 -6.12191243 5.14007895 -0.27409998 -0.1103667265 1 1
68 # 65 -0.88648342 -1.61459559 0.12378871 -0.1347167381 2 1
69

70 dim(aneurysm)
71 # [1] 65 6

We prepare the values. So we store the raw values in a geometry variable, and
we store what position this data refers to. We also want to assign a red value
if the position is 1, otherwise blue. So we use the ifelse function:

• ifelse returns a value with the same shape as test which is filled with
elements selected from either yes or no depending on whether the element
of test is TRUE or FALSE. Arguments:

– test an object which can be coerced to logical mode.
– yes return values for true elements of test.
– no return values for false elements of test.

1 aneurysm.geometry <- aneurysm[, 1:4]
2 aneurysm.position <- factor(aneurysm[, 5])
3

4 head(aneurysm.geometry)
5 # R1 R2 C1 C2
6 # 1 4.6123692 1.8189348 -0.7113495 -0.8126038
7 # 2 3.0635290 0.5358821 -0.2321406 0.2195964
8 # 3 -2.5073081 -1.8296361 -0.1477957 1.0275683
9 # 4 -0.4831741 -1.3670522 -0.1344654 0.7809211

10 # 5 8.6775054 -0.7214820 -0.8779464 -0.8643967
11 # 6 -1.4005311 0.3016918 0.3694719 0.8115340
12

13 color.position <- ifelse(aneurysm.position == ’1’, ’red’, ’blue’)
14

15 head(aneurysm.position)
16 # [1] 1 1 2 2 1 2
17 # Levels: 1 2
18

19 head(color.position)
20 # [1] "red" "red" "blue" "blue" "red" "blue"

Now we want to plot the data using the colors:
1 attach(aneurysm.geometry)
2

3 layout(cbind(c(1, 1), c(2, 3)), widths=c(2, 1), heights=c(1, 1))
4 plot(R1, R2, asp=1, col=color.position , pch =16)
5 hist(R1, prob=T, xlim=c(-10, 15))
6 hist(R2, prob=T, xlim=c(-10, 15))
7

8 layout(cbind(c(1, 1), c(2, 3)), widths=c(2, 1), heights=c(1, 1))
9 plot(C1, C2, asp=1, col=color.position , pch =16)

10 hist(C1, prob=T, xlim=c(-5, 5))
11 hist(C2, prob=T, xlim=c(-5, 5))
12

13 detach(aneurysm.geometry)

81

−5 0 5 10

−
5

0
5

10

R1

R
2

Histogram of R1

R1

D
en

si
ty

−10 −5 0 5 10 15

0.
00

0.
04

0.
08

0.
12

Histogram of R2

R2

D
en

si
ty

−10 −5 0 5 10 15

0.
00

0.
10

0.
20

Compare R1 and R2.

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

C1

C
2

Histogram of C1

C1

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

Histogram of C2

C2

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

Compare C1 and C2.

82

We calculate the mean, the standard deviation, the covariance and the cor-
relation. Using the round function, we get an approximation of the values.
This can be useful to understand the data better. However, be careful when
approximating numbers that are already less than 1.

• round function rounds the values in its first argument to the specified
number of decimal places (default 0). Arguments:

– x a numeric/complex vector.

– digits integer indicating the number of decimal places.

1 # some statistical indices
2 sapply(aneurysm.geometry , mean)
3 # R1 R2 C1 C2
4 # 1.181730e-16 1.798174e-16 1.490403e-16 6.452879e-17
5

6 sapply(aneurysm.geometry , sd)
7 # R1 R2 C1 C2
8 # 4.1859403 1.8563342 0.5871577 0.4940132
9

10 cov(aneurysm.geometry)
11 # R1 R2 C1 C2
12 # R1 1.752210e+01 -9.654685e-16 -1.305303e+00 -4.165673e-01
13 # R2 -9.654685e-16 3.445977e+00 -5.419870e-02 -1.502647e-01
14 # C1 -1.305303e+00 -5.419870e-02 3.447541e-01 2.946215e-16
15 # C2 -4.165673e-01 -1.502647e-01 2.946215e-16 2.440490e-01
16

17 cor(aneurysm.geometry)
18 # R1 R2 C1 C2
19 # R1 1.000000e+00 -1.242479e-16 -5.310843e-01 -2.014436e-01
20 # R2 -1.242479e-16 1.000000e+00 -4.972537e-02 -1.638560e-01
21 # C1 -5.310843e-01 -4.972537e-02 1.000000e+00 1.015713e-15
22 # C2 -2.014436e-01 -1.638560e-01 1.015713e-15 1.000000e+00
23

24 # Attention: rounded zeros!
25 round(sapply(aneurysm.geometry , mean), 1)
26 # R1 R2 C1 C2
27 # 0 0 0 0
28

29 round(cov(aneurysm.geometry), 1)
30 # R1 R2 C1 C2
31 # R1 17.5 0.0 -1.3 -0.4
32 # R2 0.0 3.4 -0.1 -0.2
33 # C1 -1.3 -0.1 0.3 0.0
34 # C2 -0.4 -0.2 0.0 0.2
35

36 round(cor(aneurysm.geometry), 1)
37 # R1 R2 C1 C2
38 # R1 1.0 0.0 -0.5 -0.2
39 # R2 0.0 1.0 0.0 -0.2
40 # C1 -0.5 0.0 1.0 0.0
41 # C2 -0.2 -0.2 0.0 1.0

83

It’s always useful to create scatter plots to understand the location and vari-
ability of the points. We also print the box plot to see the distribution of the
data, the outliers, etc. We have also used the same scale to understand if the
median is approximately the same.

1 # Scatter plot
2 pairs(aneurysm.geometry , col=color.position , pch =16)
3

4 # Boxplot
5 par(mfrow=c(1, 1))
6 boxplot(aneurysm.geometry , col=’gold’)
7

8 # Stratified boxplots
9 par(mfrow=c(1, 4))

10 boxplot(aneurysm.geometry$R1 ∼ aneurysm.position ,
11 col=c(’red’, ’blue’), main=’R1’)
12 boxplot(aneurysm.geometry$R2 ∼ aneurysm.position ,
13 col=c(’red’, ’blue’), main=’R2’)
14 boxplot(aneurysm.geometry$C1 ∼ aneurysm.position ,
15 col=c(’red’, ’blue’), main=’C1’)
16 boxplot(aneurysm.geometry$C2 ∼ aneurysm.position ,
17 col=c(’red’, ’blue’), main=’C2’)
18

19 # Stratified boxplots (same scale)
20 par(mfrow=c(1, 4))
21 boxplot(aneurysm.geometry$R1 ∼ aneurysm.position ,
22 col=c(’red’, ’blue’), main=’R1’,
23 ylim=range(aneurysm.geometry))
24 boxplot(aneurysm.geometry$R2 ∼ aneurysm.position ,
25 col=c(’red’, ’blue’), main=’R2’,
26 ylim=range(aneurysm.geometry))
27 boxplot(aneurysm.geometry$C1 ∼ aneurysm.position ,
28 col=c(’red’, ’blue’), main=’C1’,
29 ylim=range(aneurysm.geometry))
30 boxplot(aneurysm.geometry$C2 ∼ aneurysm.position ,
31 col=c(’red’, ’blue’), main=’C2’,
32 ylim=range(aneurysm.geometry))

84

R1

−
2

0
2

4
6

−5 0 5 10

−
1.

5
−

0.
5

0.
5

−2 0 2 4 6

R2

C1

−1.5 −0.5 0.0 0.5 1.0

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
5

0
5

10
−

1.
5

−
0.

5
0.

5

C2

Scatter plot.

R1 R2 C1 C2

−
5

0
5

10

Box plot.

85

1 2

−
5

0
5

10

R1

aneurysm.position

an
eu

ry
sm

.g
eo

m
et

ry
$R

1

1 2

−
2

0
2

4
6

R2

aneurysm.position

an
eu

ry
sm

.g
eo

m
et

ry
$R

2

1 2

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

C1

aneurysm.position

an
eu

ry
sm

.g
eo

m
et

ry
$C

1

1 2

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

C2

aneurysm.position

an
eu

ry
sm

.g
eo

m
et

ry
$C

2
Stratified box plots.

1 2

−
5

0
5

10

R1

aneurysm.position

an
eu

ry
sm

.g
eo

m
et

ry
$R

1

1 2

−
5

0
5

10

R2

aneurysm.position

an
eu

ry
sm

.g
eo

m
et

ry
$R

2

1 2

−
5

0
5

10

C1

aneurysm.position

an
eu

ry
sm

.g
eo

m
et

ry
$C

1

1 2

−
5

0
5

10

C2

aneurysm.position

an
eu

ry
sm

.g
eo

m
et

ry
$C

2

Stratified box plots (same scale).

86

Finally, we plot the Chernoff faces to easily detect small changes and we use the
matplot function to plot the columns of the transposed aneurysm.geometry
matrix.

1 # Chernoff faces
2 source(’faces.R’)
3 faces(aneurysm.geometry)
4

5 # matplot
6 par(mfrow=c(1,1))
7 matplot(t(aneurysm.geometry), type=’l’)
8 matplot(t(aneurysm.geometry), type=’l’, col=color.position)

Index

1

Index

2

Index

3

Index

4

Index

5

Index

6

Index

7

Index

8

Index

9

Index

10

Index

11

Index

12

Index

13

Index

14

Index

15

Index

16

Index

17

Index

18

Index

19

Index

20

Index

21

Index

22

Index

23

Index

24

Index

25

Index

26

Index

27

Index

28

Index

29

Index

30

Index

31

Index

32

Index

33

Index

34

Index

35

Index

36

Index

37

Index

38

Index

39

Index

40

Index

41

Index

42

Index

43

Index

44

Index

45

Index

46

Index

47

Index

48

Index

49

Index

50

Index

51

Index

52

Index

53

Index

54

Index

55

Index

56

Index

57

Index

58

Index

59

Index

60

Index

61

Index

62

Index

63

Index

64

Index

65

Chernoff faces.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
5

0
5

10

t(
an

eu
ry

sm
.g

eo
m

et
ry

)

Result of the matplot function.

87

3.1.10 Visualization of Categorical Data

It may be useful to plot a pie chart to see the categorical data. We then use the
pie function, which draws a pie chart.

1 district <- c(’MI’, ’MI’, ’VA’, ’BG’, ’LO’, ’LO’, ’CR’, ’Alt’, ’CR’
, ’MI’,

2 ’Alt’, ’CR’, ’LO’, ’VA’, ’MI’, ’Alt’, ’LO’, ’MI’)
3 district <- factor(district , levels=c(’MI’, ’LO’, ’BG’, ’CR’, ’VA’,

’Alt’))
4 district
5 # [1] MI MI VA BG LO LO CR Alt CR MI Alt CR LO VA MI

Alt LO MI
6 # Levels: MI LO BG CR VA Alt
7

8 # Pie chart (no ordering of levels)
9 pie(table(district), col=rainbow(length(levels(district))))

MI
LO

BG

CR

VA

Alt

Pie chart.

Also pay attention between the data inserted as argument in the plot function,
because the behavior would be different (it depends on the object as input
parameter).

1 # Barplot (levels are ordered)
2 barplot(table(district) / length(district))
3

4 # or
5 plot(district) # barplot of absolute frequences
6

7 # Remark: Some functions (e.g., the function plot()) may behave
differently

8 # depending on the object it takes as input
9

10 is(district)[1] # check the type using is function
11 # [1] "factor"
12 plot(district)
13

14 # record is a data frame
15 is(record)[1] # check the type using is function
16 # [1] "data.frame"
17 plot(record) # scatterplot

88

MI LO BG CR VA Alt

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Bar plot (levels are ordered).

MI LO BG CR VA Alt

0
1

2
3

4
5

Bar plot of absolute frequencies (factor object).

89

m100

22
25

11
5

13
0

50
0

65
0

11.0 12.0

22 24 26

m200

m400

48 52 56 60

115 125 135

m800

m1500

240 280 320

500 600 700

m3000

11
.0

12
.5

48
54

60
24

0
30

0

10000 16000

10
00

0
18

00
0

Marathon

Plot of the data.frame object.

Finally, be careful to the scale of representation.
1 # Remark 2: be careful to the scale of representation
2 par(mfrow=c(1, 3))
3 barplot(table(district) / length(district), ylim=c(0, 1)); box()
4 barplot(table(district)/length(district),ylim=c(0, 10)); box()
5 barplot(table(district)/length(district),ylim=c(0, 0.47)); box()

MI LO BG CR VA Alt

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MI LO BG CR VA Alt

0
2

4
6

8
10

MI LO BG CR VA Alt

0.
0

0.
1

0.
2

0.
3

0.
4

Different scales of the same data.

90

3.1.11 3D plots, functions, for loop and install new libraries

To create a function in R, the syntax is as follows:
1 # For instance , let ’s plot a bivariate Gaussian density
2 x <- seq(-4, 4, 0.15)
3 y <- seq(-4, 4, 0.15)
4

5 # To build a function in R
6 gaussian <- function(x, y) {
7 exp(-(x^2 + y^2 + x * y))
8 }

A for loop can be created using the for keyword or the outer function.

• The outer product of the arrays X and Y is the array A with dimension
c(dim(X), dim(Y)) where element:

A[c(arrayindex.x, arrayindex.y)] = FUN(X[arrayindex.x],
Y[arrayindex.y], ...)

The arguments:

– X, Y: First and second arguments for function FUN. Typically a vector
or array.

– FUN: a function to use on the outer products.

1 w <- matrix(NA , nrow = length(x), ncol=length(y))
2

3 # for
4 for(i in 1: length(x)) {
5 for(j in 1: length(y)) {
6 w[i, j] <- gaussian(x[i], y[j])
7 }
8 }
9

10 # or
11 w <- outer(x, y, gaussian)

It’s possible to create a grid of coloured or grey scale rectangles whose colors
correspond to the values in the input argument (image function).

1 par(mfrow=c(1, 1))
2 image(x, y, w)
3 # Create a contour plot , or add contour lines to an existing plot.
4 contour(x, y, w, add=T)

91

−4 −2 0 2 4

−
4

−
2

0
2

4

x

y

Image created with image function.

−4 −2 0 2 4

−
4

−
2

0
2

4

x

y

Image created after applying the contour function.

92

It’s also possible to print a perspective plot using the persp function.
1 persp(x, y, w, col=’red’)
2 # change perspective
3 persp(x, y, w, col=’red’, theta=30, phi=30, shade =.05, zlab=’

density ’)

x

y

w

Image created with persp function.

x y

density

Image created after changing the perspective.

93

To get the same result but with a 3D plot, it’s recommended to use the rgl
library.

1 # To download a package:
2 # from RStudio: Tools -> Install Packages -> type PACKAGENAME
3 # and click install
4 # from R: Packages -> Install Packages -> Choose a CRAN mirror
5 # (e.g., Italy (Milano)) -> Choose the package and click OK
6 # or install.packages(’PACKAGENAME ’) in a R console
7

8 library(rgl)
9 options(rgl.printRglwidget = TRUE)

10 persp3d(x, y, w, col=’red’, alpha =1)
11 lines3d(x,x, gaussian(x,x), col=’blue’, lty =1)
12 lines3d(x,x, 0, col=’blue’, lty =2)
13

14

15 # More on graphical representation in R
16 # https://ggplot2.tidyverse.org/
17 # https://www.rawgraphs.io/
18 # http://www.ggobi.org

3D plot.

94

https://cran.r-project.org/web/packages/rgl/index.html
https://cran.r-project.org/web/packages/rgl/index.html

References
[1] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to

Statistical Learning: with Applications in R. Springer Texts in Statistics.
Springer New York, 2013.

[2] R.A. Johnson and D.W. Wichern. Applied Multivariate Statistical Analysis.
Applied Multivariate Statistical Analysis. Pearson Prentice Hall, 2007.

[3] Christopher J Morris, David S Ebert, and Penny L Rheingans. Experimental
analysis of the effectiveness of features in chernoff faces. In 28th AIPR
Workshop: 3D Visualization for Data Exploration and Decision Making,
volume 3905, pages 12–17. SPIE, 2000.

[4] M. B. WILK and R. GNANADESIKAN. Probability plotting methods for
the analysis for the analysis of data. Biometrika, 55(1):1–17, 03 1968.

95

Index

Symbols
p-dimensional scatter plot 4
(Unbiased) Sample

Variance-Covariance
Matrix 19

A
angle 6

B
bias 37, 38
bias-variance trade-off 40
biased 18

D
data frame 4
degrees of freedom 34
density function 13
deviation 8

E
eigenvalues 10
error term 21, 33
expected test MSE 37
exprected value 23

F
fit the model 28
flexible models 28

G
generalized sample variance 9
geometrical representation 5

I
inference 22, 24
inner product 6
irreducible error 22

K
K-nearest neighbors (KNN) 41

L
least squares 28
length 5
linear model 28

M
Mahalanobis distance 20
mean corrected 8
mean squared error (MSE) 31
multivariate observation 4

mutually statistically independent
14

N
noise 28
non-parametric 27, 29

O
overfitting 28, 34

P
parametric 27
parametric methods 28
population correlation coefficient

15
population correlation matrix 16
population mean 15
population variance-covariance 15
prediction 22
projection 7

R
random matrix 12
random vector 12
reducible error 22

S
sample correlation coefficient 8
sample covariance 8
sample variance 9
sample variance-covariance matrix

9, 19
spectral decomposition 10
standard deviation matrix 16
statistically independent 14
supervised learning 30
systematic information 21, 22

T
test mean squared error (MSE) 32
total variance 9
train the model 28
training data 27

U
unbiased 18
unsupervised learning 30

V
variance 23, 37, 38
variance-covariance matrix 14, 15

96

	Sample Geometry
	The Geometry of the Sample
	Scatter plot
	Geometrical representation
	Geometrical interpretation of the process of finding a sample mean

	Generalized Variance
	Random Vectors and Matrices
	Mean Vectors and Covariance Matrices
	The Mean Vector and Covariance Matrix for Linear Combinations of Random Variables

	(Unbiased) Sample Variance-Covariance Matrix
	Mahalanobis distance

	Statistical Learning
	Introduction
	Why Estimate f (systematic information provided by a predictor about a quantitative response)?
	Prediction
	Inference
	Difference between prediction and inference

	How do we estimate f?
	Parametric Methods
	Non-Parametric Methods

	Supervised and Unsupervised Learning
	Assessing Model Accuracy
	Measuring the Quality of Fit (MSE)
	The Bias-Variance Trade-Off

	Algorithm: K-Nearest Neighbors (KNN)

	R language programming
	Introduction to R
	Scalars, vectors and matrices
	Access elements
	Algebraic operations
	Categorical data
	Lists
	Data Frames
	Reading and writing data
	Example: analysis of quantitative data
	Visualization of multivariate data
	Visualization of Categorical Data
	3D plots, functions, for loop and install new libraries

	Index

