
Artificial Neural Networks and Deep Learning -
Notes - v0.3.0

260236

November 2025

1

Preface
Every theory section in these notes has been taken from two sources:

• Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning,
MIT Press. [2]

• Course slides. [6]

About:

§ GitHub repository

These notes are an unofficial resource and shouldn’t replace the course material
or any other book on artificial neural networks and deep learning. It is not made
for commercial purposes. I’ve made the following notes to help me improve my
knowledge and maybe it can be helpful for everyone.

As I have highlighted, a student should choose the teacher’s material or a
book on the topic. These notes can only be a helpful material.

2

https://www.deeplearningbook.org/
https://github.com/PoliMI-HPC-E-notes-projects-AndreVale69/HPC-E-PoliMI-university-notes
https://github.com/PoliMI-HPC-E-notes-projects-AndreVale69/HPC-E-PoliMI-university-notes

Contents
1 Introduction to Deep Learning 5

1.1 Machine Learning Foundations 5
1.1.1 Machine Learning Paradigms 8

1.1.1.1 Supervised Learning 9
1.1.1.2 Unsupervised Learning 12
1.1.1.3 Reinforcement Learning 17

1.2 Towards Deep Learning . 20
1.3 Modern Pattern Recognition (Pre-DL) 22
1.4 What is Deep Learning after all? 24
1.5 What’s Behind Deep Learning? 29
1.6 Summary . 31

2 From Perceptrons to FNNs 32
2.1 Historical Context . 32
2.2 The Perceptron . 38

2.2.1 Who Invented It? . 38
2.2.2 Mathematical Model & Logical Operations 40
2.2.3 Hebbian Learning Rule 44
2.2.4 Perceptron as Linear Classifier 48
2.2.5 Boolean Operators & Linear Separability 51

2.3 Feed-Forward Neural Networks (FNNs) 54
2.3.1 Architecture . 54
2.3.2 Activation Functions . 57

2.3.2.1 Linear . 59
2.3.2.2 Sigmoid . 61
2.3.2.3 Hyperbolic Tangent (tanh) 64

2.3.3 Output Layer . 67
2.3.3.1 Regression . 68
2.3.3.2 Binary Classification 72
2.3.3.3 Multi-Class Classification 76

2.3.4 Neural Networks as Universal Approximators 80
2.4 Learning and Optimization . 82

2.4.1 Supervised Learning and Training Dataset 83
2.4.2 Error Minimization and Loss Function (SSE) 86
2.4.3 Gradient Descent Basics 90
2.4.4 Backpropagation (Conceptual Introduction) 96

2.5 Maximum Likelihood Estimation (MLE) 103
2.6 Perceptron Learning Algorithm 110
2.7 Summary . 117

3 Neural Networks and Overfitting 118
3.1 Universal Approximation Theorem 118
3.2 Model Complexity . 123
3.3 Measuring Generalization . 126
3.4 Terminology Clarifications . 128
3.5 Cross-Validation Techniques . 130

3.5.1 Hold-Out Validation . 131
3.5.2 Leave-One-Out Cross-Validation (LOOCV) 133

3

3.5.3 K-Fold Cross-Validation 135
3.5.4 Nested Cross-Validation 137

3.6 Preventing Overfitting . 140
3.6.1 Early Stopping . 142
3.6.2 Hyperparameter Tuning 145
3.6.3 Weight Decay (L2 Regularization) 151
3.6.4 Dropout (Stochastic Regularization) 160

3.7 Tips & Tricks . 162
3.7.1 Activation Function Saturation 163
3.7.2 ReLU and Variants . 166
3.7.3 Weight Initialization . 170
3.7.4 Batch Normalization . 174
3.7.5 Mini-Batch Training . 179
3.7.6 Learning Rate Scheduling 182

Index 186

4

1 Introduction to Deep Learning

1 Introduction to Deep Learning

1.1 Machine Learning Foundations
Humans and animals learn from experience. Computers, too, can improve per-
formance when exposed to more data or feedback. But how do we formally
define “learning” in a way that’s precise enough for a engineering course? Tom
Mitchell1, in 1997, proposed a now-classic definition:

Definition 1: Task, Experience, Performance

A computer program is said to learn from experience E with respect to
some class of tasks T and a performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E.

• Task (T): what the program is supposed to do. For example, classification
(spam vs not spam), regression (predict house prices) or game playing
(chess).

• Experience (E): the data the algorithm is exposed to. For example,
training set of labeled emails (spam vs ham), past games played by an
agent, sensor data from a robot.

• Performance measure (P): the metric used to evaluate progress. For
example, classification accuracy (F1 score), mean square error for regres-
sion, total reward in reinforcement learning.

A system “learns” if, after seeing more data or interacting more with the envi-
ronment, its measured performance improves.

Example 1: Definition in Action

Some scenarios:

1. Email Spam Classifier

• T (task): Classify emails as spam.
• E (experience): Training dataset of emails labeled as spam.
• P (performance measure): Accuracy on unseen emails.

If accuracy improves as the classifier sees more labeled data, then
computer program learning.

2. Self-Driving Car

• T: Driving from A to B safely.
• E: Millions of hours of driving footage + sensor readings.
• P: Fewer accidents per mile, shorter trip times.

If the car improves after more data, it has learned.

1Tom Mitchell is a pioneer of machine learning, both as a scientist and as an educator.
His 1997 textbook, and especially that concise definition, shaped how an entire generation of
students and researches understand Machine Learning (ML).

5

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

3. Chess Playing Agent

• T: Win games.

• E: Past games played against itself or others.

• P: Win rate.

More games, better play, computer program learning.

This definition matters because is broad and general (covers supervised, un-
supervised, and reinforcement learning), it stresses measurable improvement
(no improvement, no learning), and highlights the central role of data (E)
and evaluation (P).

® Why Mitchell’s definition doesn’t mentions “Machine Learning”
explicitly

1. It’s meant to be general. Mitchell wasn’t defining what ML is as a field,
but rather what it means for a program to learn. He avoided vague terms
like “machine learning” or “artificial intelligence” and instead described the
process:

• A program improves at a Task (T);

• Thanks to Experience (E);

• As measured by Performance (P).

2. Machine Learning = building such programs. So instead of saying
“Machine Learning is when...”, he framed it as: “a computer program
is said to learn if...”. That’s why his definition became the canonical
operational definition of Machine Learning.

3. It links directly to practice. The definition is testable: we can check
if a system improves with experience. This is much stronger than a philo-
sophical definition like “machine learning is making computers intelligent”.

Example 2: Analogy

Think of physics. Newton didn’t define “physics”. He defined laws of
motion and gravity. From those definitions, physics as a discipline could
build itself consistently.
Similarly, Mitchell didn’t define “Machine Learning” as a whole disci-
pline. He defined what it means for a program to learn. The field
then said: “Machine Learning is the study of programs that satisfy this
definition”.

Mitchell’s definition tells us ML is not about hardcoding solutions, but
about improving performance with data-driven experience, measurable
by a task-specific metric.

6

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

® Why we start with Tom Mitchell’s definition

1. Machine Learning is broad and fuzzy. People use “learning”, “AI”,
“intelligence” loosely. By giving a formal, authoritative definition
at the beginning, the course sets a clear baseline: what do we mean by
learning? How do we recognize it in a program?

2. It frames the whole course. Everything we explain later, supervised
learning, neural networks, deep learning, must fit inside this triplet (Task,
Experience, Performance). For example:

• Neural Network training? It’s about improving P on T given more
E.

• Reinforcement learning? Same template, different E and P.

3. It’s rigorous but simple. Unlike philosophical definitions of intelligente,
Mitchell’s version is operational: it tells us how to test if learning is
happening. It works as a scientific foundation, “if we can’t measure
performance improvement, we can’t claim the program learned ”.

4. It avoids confusion later. If we started with supervised learning or deep
learning right away, we’d lack the general umbrella. With this definition
first, we can always check: “what is our T? what is our E? what is our
P? ”.

[Mathematical View

Formally, suppose we have:

• Dataset D = {(xi, ti)}Ni=1 (inputs + targets).

• A model fθ(x) with parameters θ.

• A loss function L(fθ(x), t) that measures errors (P).

Learning means finding θ∗ that minimizes the expected loss:

θ∗ = argmin
θ

E(x,t)∼E [L (fθ(x), t)]

This equation will be explained more thoroughly in the following sections.

7

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

1.1.1 Machine Learning Paradigms

When Tom Mitchell gave us the triplet (T, E, P), he provided a general
definition of learning. But in practice, machine learning problems usually fall
into a few big paradigms; categories defined by what kind of data (experience)
we provide and what kind of task we want solved. These paradigms are like
different ways of framing the learning problem:

1. Supervised Learning: we give the algorithm examples of input and
desired output. The goal is learn to map new inputs to outputs.

2. Unsupervised Learning: we only give input data, no labels. The goal
is discover hidden structures or representations.

3. Reinforcement Learning: we don’t provide explicit labels. The system
interacts with an environment, receives rewards or penalties, and learns
a strategy (policy) to maximize reward over time.

These paradigms are important because are the building blocks of the field.
Almost any ML problem can be described belonging to (or combining) these
three. They differ mainly in the nature of the data (E) and the type of
feedback (P) available. Understanding them helps in choosing the right algo-
rithms and models for a problem.

Example 3: Analogy

Imagine teaching three kinds of students:

• Supervised Learning student: we show them math problems
with answers, and they learn how to solve similar ones.

• Unsupervised Learning student: we give them a pile of prob-
lems without answers, and they try to find patterns (like grouping
similar problems together).

• Reinforcement Learning student: we give them a puzzle game.
They don’t know the rules, but they learn through trial and error
because we give them rewards when they succeed.

8

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

1.1.1.1 Supervised Learning

Supervised Learning is like learning with a teacher :

• The algorithm is given examples of inputs and their correct outputs
(labels).

• The goal is to learn a mapping function that predicts the correct output
for new, unseen inputs.

Formally:

• Training dataset:

D = {(x1, t1) , (x2, t2) , . . . , (xN , tN)}

Where xi are inputs and ti are targets.

• Model: fθ(x) ≈ t.

• Learning: choose parameters θ that minimize a loss function measuring
error.

In other words, Supervised Learning is a type of machine learning where
the algorithm is trained on a labeled dataset, meaning each training example
includes both the input data and the correct output. And the goal is to learn
a function that maps inputs to outputs, in order to make predictions on new,
unseen data.

® Types of Supervised Learning

In supervised learning we always have:

• Inputs x (features).

• Outputs t (labels/targets).

• A model fθ(x) that learns a mapping from inputs to outputs.

The distinction between classification and regression depends on the nature
of the output.

• Classification: Predict a discrete class label. The output space is a
finite set of categories. For example:

– Binary: {0, 1}, e.g. spam vs not spam.

– Multi-class: {1, . . . ,K}, e.g. digits 0-9.

From a mathematical point of view:

fθ(x) : X → {1, 2, . . . ,K}

9

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

Example 4: Cars vs Motorcycles

Use the classic triplet:

– Task (T): distinguish between two categories (binary classi-
fication).

– Experience (E): dataset of images labeled “car” or “motor-
cycle”.

– Performance (P): accuracy (percentage of correct predic-
tions).

Pipeline (how supervised learning was traditionally done before
deep learning):

– Feature Extraction (Hand-Crafted Features). Raw
data (like an image, sound, or text) is often too complex
to give directly to a simple model. Traditionally, humans de-
signed rules or functions to extract features from raw data.

∗ Example (images): count edges, corners, textures, or
wheel shapes.

∗ Example (text): word frequencies, presence of certain
keywords.

∗ Example (audio): pitch, energy, Mel-frequency coeffi-
cients (MFCCs).

These features are manually engineered to capture the
most important aspects of the problem. The output is a vec-
tor of numbers (feature vector) that represents each example.
This step is about “what information to feed into the model ”.

In this example, hand-crafted features are:

∗ Extract “number of circular shapes” (wheels);

∗ Extract “dominant color”;

∗ Extract “edge orientation histograms”.

The photo is now a vector like [2, 0.6, 0.8]

– Learning a Model (Classifier). Once we have feature
vectors, we train a machine learning model that learns
to map those features to outputs (labels or numbers). The
model learns decision boundaries (for classification) or
functions (for regression) that separate categories or fit nu-
meric values. This is the actual learning step: the algo-
rithm adjusts its parameters from the data.

In this example, the classifier could be a Support Vector Ma-
chine (SVM) model, which learns as follows: if “number of
wheels ≈ 2” then is a motorcycle; if “number of wheels ≈ 4”
then is a car.

10

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

• Regression: Predict a continuous value. The output space is the set
of real numbers (R). From a mathematical point of view:

fθ(x) : X → R

Example 5: Price Prediction

Use the classic triplet:

– Task (T): predict a continuous value instead of a discrete
label.

– Experience (E): dataset of houses (features: size, location,
rooms) with their selling prices.

– Performance (P): Mean Squared Error (MSE), Mean Ab-
solute Error (MAE), or R2 score.

Pipeline:

– Hand-crafted features: e.g., number of rooms, square me-
ters, distance to city center.

– Learned regressor: a model that predicts a continuous out-
put.

In simple terms, if our labels are:

• Categories, it’s classification.

• Numbers, it’s regression.

® Why Deep Learning Changed This

In deep learning, feature extraction and learning are not separated any-
more. Neural networks learn features automatically from raw data (pix-
els, sound waves, text). So the pipeline becomes one end-to-end step: input
raw data → neural network → prediction.

More resources about Supervised Learning can be found in the notes for the
Applied Statistics course:

11

https://polimi-hpc-e-notes-projects-andrevale69.github.io/HPC-E-PoliMI-university-notes/applied-statistics/notes/applied-statistics.pdf

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

1.1.1.2 Unsupervised Learning

Unsupervised Learning is like learning without a teacher :

• We only provide the algorithm with inputs x1, x2, . . . , xN .

• There are no labels/targets telling the algorithm the “correct answer”.

• The goal is to discover hidden structures or representations in the
data.

Formally:

• Dataset:
D = {x1, x2, . . . , xN} , xi ∈ Rd

• Task: find structure in D, e.g., groups, manifolds, lower-dimension em-
beddings.

• Performance measure: less obvious (since no labels). It can be inter-
nal measures (compact clusters, variance explained) or extrinsic measures
(utility in downstream tasks).

[The most intuitive unsupervised task: Clustering

In supervised learning, we had “car vs motorcycle”, categories are known. In
unsupervised, no labels are given. The simplest question becomes: “can we
group the data into natural categories, even if we don’t know their names? ”.
That’s exactly what clustering does. Clustering is the process of grouping
data points into clusters such that:

• Points in the same cluster are similar to each other.

• Points in different clusters are dissimilar.

Clustering uses a similarity measure, such as Euclidean distance. The al-
gorithm groups data into clusters that minimize within-cluster distance and
maximize between-cluster distance. Some common algorithms include:

• Hierarchical Clustering. Build a tree of clusters by progressively merg-
ing or splitting. Exists two approach: Agglomerative Clustering (Bottom-
Up) or Divisive Clustering (Top-Down).

12

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

8 6 4 2 0 2 4 6
Feature 1

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Fe
at

ur
e

2

Agglomerative Clustering (3 clusters)

(9) 3 (6) (8) (4) (5) 0 (9) (2) (5)
Cluster size

0

10

20

30

40

50

60

70

Di
st

an
ce

Hierarchical Clustering Dendrogram (truncated)

(9) 3 (6) (8) (4) (5) 0 (9) (2) (5)
Cluster size

0

10

20

30

40

50

60

70

Di
st

an
ce

Hierarchical Clustering Dendrogram with Cut
Cut at 3 clusters

Figure 1: Agglomerative Clustering (top plot), Dendogram (mid plot) and Den-
dogram with cut (bottom plot).

13

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

About Figure 1, page 13. In the Agglomerative Clustering result, each dot
is a data point (here we generated 50 synthetic points). The algorithm
grouped them into 3 clusters. We can see points within each cluster are
close together in space. Also, the clusters are well separated, this is
why hierarchical clustering works well here. The Dendogram shows the
hierarchical merging process:

– At the bottom, each point starts as its own cluster.
– Going upwards, clusters that are close together are merged.
– The height of each merge (y-axis = distance) indicates how far

apart the clusters were when merged.
– At the top, all points are eventually merged into a single cluster.

In the last figure, we “cut” the dendogram horizontally at a certain height
(distance threshold), and we obtain a chosen number of clusters (here,
3). Everything below the line remains as separate clusters. Everything
above the line (higher merges) is ignored. In the Dendogram, cutting
at ≈ 15 gives 3 vertical “branches” crossing the red line. Each
branch corresponds to one cluster. These branches include all 3 groups
of points.

• K-Means. Choose k clusters; assign points to the nearest cluster centroid;
and update centroids until convergence.

Example 6: K-Means, taken from the Applied Statistics
course

Below is a simple run of the K-means algorithm on a random
dataset.

– Iteration 0 - Initialization

3 2 1 0 1 2 3
Feature 1

1

0

1

2

3

4

5

Fe
at

ur
e

2

K-Means Iteration 0
Centroids

This is the starting point of the K-Means algorithm. Three
centroids are randomly placed in the feature space.

14

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

At this point, no data points are assigned to clusters yet, or
all are assumed to be uncolored/unclustered. The positions
of the centroids will strongly influence how the algorithm
proceeds.

The goal here is to start with some guesses. The next step
will use these centroids to form the initial clusters.

– Iteration 1 - First Assignment and Update

3 2 1 0 1 2 3
Feature 1

1

0

1

2

3

4

5

Fe
at

ur
e

2

K-Means Iteration 1
Centroids

Each data point is assigned to the closest centroid, forming
the first version of the clusters. New centroids are computed
by taking the average of the points in each cluster. We can
already see structure forming in the data, as points begin
grouping around centroids.

This step is the first real clustering, and centroids begin to
move toward dense regions of data.

– Iteration 2 - Re-Assignment and Refinement

3 2 1 0 1 2 3
Feature 1

1

0

1

2

3

4

5

Fe
at

ur
e

2

K-Means Iteration 2
Centroids

15

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

Clusters are recomputed based on updated centroids. Many
points remain in the same clusters, but some may shift to
a new cluster if a centroid has moved. Centroids continue
moving closer to the center of their respective groups.

The algorithm is now refining the clusters and reducing the
total distance from points to centroids.

– Iteration 3 - Further Convergence

3 2 1 0 1 2 3
Feature 1

1

0

1

2

3

4

5

Fe
at

ur
e

2

K-Means Iteration 3
Centroids

At iteration 3, the K-Means algorithm reached convergence.
The centroids no longer moved, and no points changed clus-
ter.This means:

∗ The algorithm has found a locally optimal solution.

∗ Further iterations would not improve or change the clus-
tering.

∗ The final configuration is considered the result of the
algorithm.

In practice, this is how K-Means stops: it checks whether the
centroids remain unchanged, and if so, it terminates auto-
matically.

More resources about Unsupervised Learning and Clustering can be found in
the notes for the Applied Statistics course:

16

https://polimi-hpc-e-notes-projects-andrevale69.github.io/HPC-E-PoliMI-university-notes/applied-statistics/notes/applied-statistics.pdf

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

1.1.1.3 Reinforcement Learning

Reinforcement Learning (RL) is like learning by trial and error. An agent
interacts with an environment by taking actions and receiving rewards or
punishments. The goal of the agent is to learn a policy that maximizes the
cumulative reward over time.

At each step, the agent:

1. Observes a state st from the environment.

2. Selects an action at based on its current policy π (at | st).

3. Receives a reward rt and a new state st+1.

The agent’s goal is to learn a policy π (a | s) that maximizes the expected cu-
mulative reward. Unlike supervised learning, no teacher gives the right answer;
the agent learns from the consequences of its actions.

® What is an Agent?

An agent is an entity that makes decisions and takes actions in an en-
vironment to achieve a specific goal. In reinforcement learning, the agent
learns to optimize its behavior based on feedback from the environment.

With entity , we mean anything that can perceive its environment through
sensors and act upon that environment through actuators.

Example 7: Robot Navigation

For example, consider a robot navigating a maze. The robot (agent)
perceives its surroundings (state), decides to move left or right (action),
and receives feedback (reward) based on whether it gets closer to the
exit or hits a wall. The robot’s goal is to learn a strategy (policy) that
maximizes its chances of reaching the exit while avoiding obstacles.

In simple terms, the robot through cameras and sensors perceives the
maze (environment), decides its next move (action), and learns from the
outcomes (rewards) to improve its navigation strategy (policy).

In summary:

• Agent: The robot.

• Environment: The maze.

• State: The robot’s current position in the maze.

• Action: Moving left, right, forward, or backward.

• Reward: Positive reward for reaching the exit, negative reward
for hitting a wall.

• Policy: The strategy the robot uses to decide its next move based
on its current state.

17

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

The agent’s primary objective is to learn a policy that maximizes the
cumulative reward it receives over time by interacting with the environment.

[Formalization of Reinforcement Learning

Reinforcement learning problems are often modeled using Markov Decision
Processes (MDPs). An MDP is defined by:

• Task (T): learn a policy π (a | s) mapping states to actions. In other
words, the task is to find the best action to take in each state to maximize
cumulative reward.

• Experience (E): consists of sequences of states, actions, and rewards
obtained by interacting with the environment.

• Performance Measure (P): expected return (sum of discounted re-
wards):

P = E

[∞∑
t=0

γtrt

]
Where γ ∈ [0, 1] is the discount factor that determines the importance of
future rewards.

Ô Key Concepts in Reinforcement Learning

The goal of this section is to introduce the Reinforcement Learning paradigm
and its key concepts. These concepts will be covered in more detail in later
sections. However, here are some of those concepts:

• Exploration vs. Exploitation: The dilemma of choosing between ex-
ploring new actions to discover their effects (exploration) and exploiting
known actions that yield high rewards (exploitation).

® Why a dilemma? Because if the agent only exploits known actions, it
may miss out on potentially better actions. Conversely, if it only explores,
it may not accumulate enough reward.

• Reward Signal: The feedback received from the environment after taking
an action, used to evaluate the action’s effectiveness. It could be sparse
or dense:

– Sparse Reward: Rewards are infrequent, making it challenging for
the agent to learn. For example, in a game, the agent might only
receive a reward upon winning or losing.

– Dense Reward: Rewards are given frequently, providing more im-
mediate feedback. For example, in a driving simulation, the agent
might receive small rewards for staying on the road and penalties for
going off-road.

18

1 Introduction to Deep Learning 1.1 Machine Learning Foundations

• Delayed reward: The reward for an action may not be immediate, mak-
ing it challenging to associate actions with their long-term consequences.
For example, in a chess game, a move may not yield an immediate reward
but could lead to a win several moves later. The agent must learn to
evaluate actions based on their long-term impact rather than immediate
outcomes. This requires the agent to consider future rewards when making
decisions.

8 RL vs. Supervised Learning

Reinforcement learning differs from supervised learning in several key ways:

Aspect Supervised Learning Reinforcement Learning

Data Fixed labeled dataset (in-out
pairs)

No labels; agent generates
data by acting

Feedback Correct answer for each ex-
ample

Rewards (possibly delayed,
sparse)

Goal Minimize error (classifica-
tion/regression)

Maximize cumulative reward

Typical
methods

Regression, SVM, Neural
Nets

Q-learning, Policy Gradients,
Actor-Critic

. Challenges of Reinforcement Learning

Reinforcement learning presents several challenges:

• Exploration: need to try enough actions to discover good strategies.

• Delayed Feedback: rewards may not be immediate, complicating reward
assignment.

• Sample inefficiency: often requires millions of trials to learn effective
policies.

• Stability: training can be unstable with neural nets.

Despite these challenges, RL has achieved remarkable success in various do-
mains, including game playing, robotics, and autonomous systems.

In summary, reinforcement learning is a powerful paradigm for training agents to
make decisions in complex environments by learning from the conse-
quences of their actions. RL is distinct from supervised learning in its approach
to data, feedback, and goals, making it suitable for a wide range of applications
where direct supervision is not feasible.

19

1 Introduction to Deep Learning 1.2 Towards Deep Learning

1.2 Towards Deep Learning
This course, and this notes, focuses mostly on Supervised Learning, with
some unsupervised learning concepts and techniques. Why?

• Supervised Learning is the most widely used paradigm in practice (e.g.,
image classification, speech recognition, etc.);

• Many deep learning application (image recognition, NLP, etc.) are super-
vised tasks;

• Unsupervised learning will be touched when needed (e.g., representation
learning, generative models, etc.);

Deep Learning is not a new paradigm, it’s a new approach with supervised/un-
supervised learning.

® What about Deep Learning? Iris Flower Example

The Iris flower dataset is a classic dataset in machine learning, often used for
classification tasks. It consists of 150 samples of iris flowers, each with four
features: sepal length, sepal width, petal length, and petal width. The goal
is to classify the flowers into three species: Iris setosa, Iris versicolor, and Iris
virginica.

• Traditional Machine Learning Approach:

– Extract “good features” from the raw data (e.g., petal length and
width);

– Train a classifier (e.g., decision tree) on these features;

• Deep Learning Approach:

– Learn both features and classifier simultaneously from the raw
data;

For example:

1. If features are simple (e.g., petal length and sepal width), then the
classification task is easy, and a simple model (e.g., decision tree) can
achieve high accuracy;

2. If features are complex (e.g., raw pixel values of flower images), then
the classification task is hard, and the traditional approach struggles to
extract meaningful features;

3. If impossible to know which features matter, then handcrafted features
are not enough, and we need a model that can learn features from the
data itself (e.g., a deep neural network).

4. Deep Learning learns features directly from raw data, making it suit-
able for complex tasks where feature engineering is challenging or infeasible
(hierarchical representations).

20

1 Introduction to Deep Learning 1.2 Towards Deep Learning

8 Feature Engineering vs. Learned Features

• Feature Engineering (Traditional ML):

– Feature Engineering is the process of using domain knowledge
to extract features from raw data that make machine learning
algorithms work. It needs human experts to design and select features
that are relevant to the task.

– Problem: requires domain expertise, time-consuming, and may not
capture all relevant information. It is often brittle and not transfer-
able to new tasks or domains.

• Learned Features (Deep Learning):

– Learned Features are features that are automatically learned by
the model from the raw data during training.

– Layers learn progressively:

∗ Lower layers learn simple patterns (e.g., edges, corners);
∗ Middle layers learn more complex patterns (e.g., eyes, wheels);
∗ Higher layers learn high-level concepts (e.g., faces, cars).

– Advantage: optimized for the task at hand, can capture complex
patterns, and are transferable to new tasks or domains. It requires
less manual effort and often generalizes better to unseen data.

21

1 Introduction to Deep Learning 1.3 Modern Pattern Recognition (Pre-DL)

1.3 Modern Pattern Recognition (Pre-DL)
Before the rise of deep learning, modern pattern recognition techniques were pri-
marily based on traditional machine learning algorithms and statistical methods.
These techniques focused on feature extraction, dimensionality reduction, and
classification using various algorithms.

[Speech Recognition (early 1990s-2011)

Speech recognition systems used a multi-stage pipeline approach, which in-
cluded:

• Low-level features: extracted from the raw audio waveform, such as
MFCCs (Mel-Frequency Cepstral Coefficients), a compact representation
of the spectral properties of the audio signal.

• Mid-level features: built by grouping/encoding low-level features over
short time windows, capturing temporal dynamics. For example Mixture
of Gaussians (MoG) used to model acoustic units (phonemes).

• Classifier (high-level features): used to map mid-level features to
words or phrases. Common classifiers included Hidden Markov Models
(HMMs) combined with Gaussian Mixture Models (GMMs) to decode se-
quences of acoustic units into words.

This pipeline worked decently but was very hand-crafted and success depended
heavily on the quality of feature engineering.

[Object Recognition (2006-2012)

Computer vision systems followed a similar multi-stage pipeline approach:

• Low-level features: detect edges, corners, gradients using methods like
SIFT (Scale-Invariant Feature Transform) or HOG (Histogram of Oriented
Gradients).

• Mid-level features: combine low-level descriptors into higher-level “vi-
sual words”. For example, clustering with k-means to create a codebook
of visual words, and Sparse Coding to represent images as sparse combi-
nations of these words.

• Classifier (high-level features): train SVMs (Support Vector Ma-
chines) or Random Forests to classify images based on mid-level features.

Again, this approach was heavily reliant on hand-crafted features and required
significant domain expertise to design effective features. However, before 2012,
these methods were the state-of-the-art in many computer vision tasks.

[General Pipeline (Pre-DL Pattern Recognition)

The general pattern recognition pipeline before deep learning can be summarized
as follows:

1. Low-level features: raw signal transformation (e.g., edges, frequencies).

22

1 Introduction to Deep Learning 1.3 Modern Pattern Recognition (Pre-DL)

2. Mid-level features: encode or cluster low-level descriptors (e.g., visual
words, acoustic units).

3. Classifier (high-level features): learns categories from hand-designed
representations.

. Limitations

• Domain expertise required: Designing MFCCs, SIFT, HOG, etc. re-
quired significant knowledge of the specific domain (speech, vision).

• task specific: features built for one task often did not generalize well to
others (e.g., MFCCs don’t work well for images).

• Brittleness: sensitive to noise, illumination, scaling, speaker accents, etc.

• Limited expressiveness: as dataset grew, hand-crafted pipelines satu-
rated in accuracy.

Before deep learning, pattern recognition was a multi-stage pipeline heavily
reliant on hand-crafted features and domain expertise. While effec-
tive for its time, it had significant limitations in scalability, generalization, and
robustness that deep learning would later address.

23

1 Introduction to Deep Learning 1.4 What is Deep Learning after all?

1.4 What is Deep Learning after all?
After showing the historical context, what Machine Learning is, the three
paradigms and how pre-DL pattern recognition worked, we can finally answer
the question:

Now that we know what ML does, what makes Deep Learning
different from classic ML?

We will take our time answering this question. First, we need to understand
the meanings of “features” and “classifiers”.

® What are “features”?

Features are numerical representations of the raw data that capture some-
thing meaningful for the task.

Type of Data Raw data example Example of features

Images Pixels (RGB values) Edges, corners, textures
Audio Waveform (amplitude over

time)
Pitch, frequency spec-
trum, MFCCs

Text Words or sentences Word counts, syntactic
structure

In classical ML, these features were manually designed by humans; engi-
neers decided what was important and how to compute it. For example:

Input image→ extract edges manually→ feed into SVM classifier

So we had:
Handcrafted Features→ Learned Classifier

Where “handcrafted” means “coded by humans”. So, before Deep Learning,
the feature extraction and the classifier were two separate stages in the
pipeline, and humans designed the first stage. This approach worked, but only
if the human correctly guessed what features matter for the task.

® What does “Learned Features” mean?

Deep Learning says: “Stop handcrafting features; let the machine learn them
automatically, layer by layer, together with the final classifier ”.

In Deep Learning, the model itself learns how to transform raw data into
useful internal representations. Each layer of a neural network acts as a feature
extractor that learns automatically what patterns matter :

• First layers: detect edges, colors, or simple shapes.

• Intermediate layers: detect object parts (e.g., eyes, wheels, leaves).

• Deep layers: detect abstract categories (e.g., “face”, “car”, “flower”).

24

1 Introduction to Deep Learning 1.4 What is Deep Learning after all?

So instead of telling the machine what to look for, we let it discover patterns
directly from data. This is the “learned features” part.

® What does “Learned Classifier” mean?

After features are extracted (automatically or manually), the model still needs
to make a decision: classify, predict, or generate.

• In traditional ML, this is the final classifier stage (e.g., SVM, logistic
regression, random forest).

• In Deep Learning, the last few layers of the network act as that classifier,
they map high-level learned features to output labels.

So, both parts, the feature extractor and the decision function, are learned
jointly through backpropagation.

Raw Data Feature Extractor−−−−−−−−−−−→
learned weights

Representations Classifier−−−−−−−−−−→
learned weights

Predictions

So DL uses a single model to learn both features and classifier together:
Learned Features + Learned Classifier. The model not only learns how to decide
but also how to see the world, both are learned from data.

® So, “What is Deep Learning after all?”

Deep Learning is not just a new algorithm, it’s a new way of approaching
representation learning. If we had to answer in one line: “Deep Learning is the
automatic learning of hierarchical data representations and decision functions
directly from raw data”. That’s why it’s so powerful: it adapts to the data and
the task, without relying on human intuition about features.

Deepening: Why Not Everything Is Deep Learning

Deep Learning is powerful, but it’s not a silver bullet, it’s not free. It’s the
best tool when we have: large amounts of diverse data, high compute, a
task based on perception or pattern recognition. Otherwise, traditional
ML or statistical models can be simpler, faster, and just as effective.

• Deep Learning needs a lot of data. Deep models have mil-
lions (sometimes billions) of parameters. They only generalize
well when trained on massive labeled datasets (e.g., ImageNet:
14M images). If we have small data, like 300 samples from an
industrial machine, a deep model will likely overfit and perform
worse than simpler methods. In other words, Deep Learning shines
when there is data abundance, but struggles in data scarcity.

• Deep Learning needs a lot of computation. Training is com-
putationally heavy, requiring specialized hardware: GPUs, TPUs,
clusters, or cloud computing. Classic ML (SVMs, Decision Trees,
Random Forests) can run on a laptop. Deep nets require weeks of
GPU training, hyperparameter tuning, and energy cost. So, if the

25

1 Introduction to Deep Learning 1.4 What is Deep Learning after all?

task doesn’t justify the cost, simpler ML is more efficient.

• Deep models are black boxes. We can rarely explain why a
deep network made a decision. For critical systems (healthcare,
law, finance, safety) we need interpretability and traceability.
Simpler models like linear regression or decision trees are trans-
parent, easy to justify in front of regulators or domain experts.
For example, a hospital won’t risk a deep net saying “tumor” with-
out being able to explain which features caused that prediction.

• Deep models are hard to train and tune. Choosing archi-
tecture (layers, neurons, learning rate, dropout, etc.) is an art.
Training can diverge or get stuck (vanishing gradients, overfit-
ting, exploding losses). We often need extensive experimentation
and deep knowledge of optimization tricks. So, not every team or
project can afford the expertise and trial cycles DL requires.

• Deep Learning doesn’t always fit the problem. Some tasks
simply:

1. Have structured or tabular data (e.g., bank records, tab-
ular logs). Here, traditional ML (XGBoost, Random Forests)
often outperforms DL.

2. Require symbolic reasoning or logic, not pattern recogni-
tion. Here, DL struggles to capture rules and relationships
that classical AI or rule-based systems handle better.

3. Need causal inference, not just correlations. DL finds pat-
terns but doesn’t understand cause-effect relationships, which
are crucial in many scientific and policy domains. Let’s think
about a real-world example: predicting disease spread based
on interventions (lockdowns, vaccinations) requires under-
standing causality, not just correlations in data (not just “if
X happens, Y follows”, but “if we do X, Y will change”).

• Deep Learning needs good data. DL is extremely sensitive
to: label noise (wrong annotations ruin learning); biases in the
dataset (can reproduce or amplify them); distribution shifts (fails
badly if test data differ from training). Traditional methods often
handle noise and small variations more robustly. So, “Garbage in
→ garbage out” is even more true with DL.

• Deep Learning doesn’t mean understanding. DL recog-
nizes patterns, not meaning. It can detect a cat, but it doesn’t
know what a cat is. It can predict outcomes, but not always
why they happen. That’s why current research explores hybrid
systems combining DL with: symbolic reasoning (neuro-symbolic
AI), knowledge graphs, logic and interpretability layers.

26

1 Introduction to Deep Learning 1.4 What is Deep Learning after all?

Deepening: ChatGPT, LLaMA & Modern AI Models - What
Are They?

ChatGPT, LLaMA, Gemini, Claude, etc. are all based on a specific kind
of Deep Neural Network called a Transformer, introduced in 2017
by Vaswani et al. (“Attention is All You Need”). So, fundamentally:

ChatGPT, LLaMA, Gemini, etc. ∈ Deep Learning

They are not “beyond” DL, they are its current frontier.

® What kind of Deep Learning model? They belong to the family
of Large Language Models (LLMs).

• Architecture: Transformer (a type of deep neural network spe-
cialized for sequences and attention).

• Learning paradigm: mainly self-supervised learning, a subform
of unsupervised learning.

• Objective: predict the next word (token) given the previous ones.

Mathematically:
P (wt |w1, w2, . . . , wt−1)

“Given this context, what’s the next most probable word?”. That’s the
only thing it learns. Everything else (reasoning, style, facts) emerges
from learning this next-token distribution on vast text corpora.

® Why are they still called “Deep Learning”? They perfectly fit
the definition we discussed earlier: “Deep Learning is the learning data
representation and decision functions directly from data”.

• They learn representations of words, sentences, and even con-
cepts automatically.

• They have layers upon layers (up to 100+ in GPT-4).

• They don’t rely on hand-crafted linguistic features (no hu-
man tells them grammar rules).

• They learn everything directly from raw text data (syntax,
semantics, even reasoning patterns).

So they exemplify:

Learned Features (embeddings)+
Learned Classifier (next word predictor)

But at massive scale, with billions of parameters and trained on
terabytes of text. This scale is what enables their surprising capabili-
ties.

27

1 Introduction to Deep Learning 1.4 What is Deep Learning after all?

® What makes them different from earlier Deep Learning.
Traditional DL (e.g., CNNs, RNNs) had strong task specialization:
CNNs for vision, RNNs for sequences, LSTMs for time series. Instead,
Transformers with LLMs changed the game because they are general-
purpose learners:

• They can handle language, code, images, audio, even multimodal
data.

• Their attention mechanism learns relationships between all
parts of the input simultaneously.

They are sometimes called: “Foundation Models”, because they can
be fine-tuned for many downstream tasks (translation, summarization,
question answering, etc.).

® Why do they feel intelligent? When we train on massive data
(trillions of words) and huge models (hundreds of billions of parameters),
the model starts showing emergent behaviors:

• Understanding context, humor, and nuance.

• Performing reasoning and arithmetic.

• Generating coherent, creative text.

• Translating languages fluently.

• Writing code snippets.

But still, it’s pattern prediction. There is no explicit symbolic rea-
soning or understanding; it’s just learned statistical structure at enor-
mous scale. So we say: “They are Deep Learning models, trained on
massive dataset, showing emergent intelligence”.

28

1 Introduction to Deep Learning 1.5 What’s Behind Deep Learning?

1.5 What’s Behind Deep Learning?
If the concept of neural networks exists since the 1950s, why did Deep Learn-
ing explode only after 2012? This is a natural question that comes after
we’ve seen what Deep Learning is. To answer this question, we show two per-
spectives: the MIT view and The Economist view.

� The MIT view: Computational Power

According to MIT and many early researchers, Deep Learning became possible
only when computational resources caught up with the theory. It means that
the mathematics and algorithms (backpropagation, perceptrons, convolutional
nets) existed for decades, but training deep networks requires enormous
computation:

• Millions of matrix multiplications.

• Thousands of gradient updates per sample.

• Gigantic datasets.

Before 2010, this was impractical. Around 2011-2012, GPUs (Graphics Pro-
cessing Units) changed everything:

• They made large-scale matrix computations thousands of times faster.

• Deep learning frameworks (Theano, TensorFlow, PyTorch) made GPU
computing accessible.

• Hardware parallelism allowed training networks with hundreds of layers
instead of 3-4.

So from the MIT perspective: Deep Learning rose because we finally had the
computational power to train deep models.

� The Economist view: Big Data

In 2012, The Economist (yes, the famous magazine) proposed a different, and
equally valid, explanation: “Deep Learning exploded because the world finally
generated enough data to feed it”. It means that the Internet, social media,
smartphones, sensors, and cloud storage created massive labeled datasets:

• ImageNet (over 14 million labeled images).

• YouTube (millions of labeled videos).

• Text from web, Wikipedia, books, perfect for LLM pretraining.

Deep neural networks thrive on data volume: they don’t generalize well with few
examples. The more data, the better they learn hierarchical representations.
So from the Economist perspective: “Deep Learning rose because we finally
had Big Data, the fuel it needs to work”.

29

1 Introduction to Deep Learning 1.5 What’s Behind Deep Learning?

� The Real View: Both Matter

In reality, both perspectives are correct and complementary. Deep Learning’s
success is due to the synergy of computational power and big data:

• Before 2010, algorithms existed but computing was too slow and data too
scarce. Then neural networks were limited to shallow architectures and
small datasets.

• Around 2012, hardware (GPUs, TPUs, distributed training) made com-
putation feasible. Simultaneously, the explosion of digital data provided
the massive labeled datasets needed.

This combination triggered the Deep Learning revolution. The turning point
was ImageNet 2012, where Krizhevsky, Sutskever, and Hinton demonstrated
that a deep convolutional network (AlexNet) could drastically outperform tradi-
tional methods on image classification. This success was possible only because:

• They used two NVIDIA GPUs to train a deep network with millions of
parameters.

• They trained on the large ImageNet dataset with 1.2M labeled images.

The result was an error rate of 15%, compared to 26% for the best traditional
method. This landmark event showcased the power of deep learning when
both computational resources and big data are available.

30

1 Introduction to Deep Learning 1.6 Summary

1.6 Summary
Everything we’ve seen, supervised, unsupervised, or reinforcement learning, ul-
timately depends on how we represent data. In traditional ML, features are
hand-crafted. In Deep Learning, features are learned automatically through hi-
erarchical representations. The revolution of Deep Learning wasn’t new math,
it was learning what matters in the data instead of coding it by hand.

Success of ML⇒ Success of its feature representation

Deep networks just made the representation learning automatic and scalable.

[Deep Learning = Learning Data Representation from Data

Deep Learning is not a specific architecture (like CNN, RNN, or Transformers)
or algorithm. It’s the paradigm where:

1. Input → raw data (e.g., pixels, text, audio)

2. Model → multiple non-linear layers learning internal representations.

3. Output → desired prediction/task.

4. Learning → end-to-end optimization of all layers together.

So instead of:

Human designs features→ Model learns mapping

We now have:

Model learns both features and mapping→ directly from data

This is the essence of Deep Learning: learning hierarchical representations
directly from raw data.

j “Which data?” - The key question of the course

This is the transition line to the rest of the course (notes). Now that we know
what Deep Learning is, the next question is what data we use and how. Different
data types define the upcoming sections:

Data Type Upcoming Section

Tabular / numerical Perceptrons & Feed-Forward NNs
Images Convolutional Neural Networks (CNNs)
Sequential (text, time series) Recurrent Neural Networks (RNNs) &

Transformers
Unlabeled data Autoencoders & Word Embeddings

So this question of “which data?” becomes the roadmap for the rest of the
course (notes).

31

2 From Perceptrons to FNNs

2 From Perceptrons to FNNs

2.1 Historical Context
When Artificial Intelligence first emerged as a field in the 1940s and 1950s,
researchers were fascinated by the idea of creating machines that could think,
adapt, and learn as the human brain does. At that time, traditional computers
were already capable of executing precise, deterministic instructions with incred-
ible speed. However, these early machines lacked flexibility: they could not
interpret noisy or ambiguous input, nor could they modify their behavior from
experience.

This limitation led scientists to look beyond the rigid Von Neumann archi-
tecture2 and toward the brain as an alternative computational paradigm. The
human brain, with its billions of interconnected neurons, represented a radically
different kind of machine: massively parallel, distributed, redundant, and
fault-tolerant. Each neuron is simple, yet together they form a system capable
of extraordinary complexity and adaptability.

From this inspiration arose the idea of neural networks: mathematical models
built from simple interconnected units that imitate, in a highly abstract way,
the behavior of biological neurons. Interestingly, neural networks are not a
recent invention of the deep learning era: they have existed since the birth of
AI itself. In fact, the phrase “Deep Learning is not AI, nor Machine Learning”
emphasizes that deep learning is a later evolution within this larger
historical continuum. Neural networks have been a foundational approach
to artificial intelligence from its inception, long before modern computational
power and data made them successful.

In summary, the reason researchers in the 1940s and 1950s looked “beyond Von
Neumann” was that they sought to create machines that could learn from
experience and adapt to new situations, capabilities that traditional com-
puters lacked:

• 1940s motivation: classic computers excelled at precise, fast arithmetic
but researches wanted systems that could interact with noisy data, be
parallel and fault-tolerant, and adapt.

• Brain as a computational model: the brain offers a radically differ-
ent architecture that is massively parallel, distributed, redundant system.
These properties are an appealing template for computation, which in-
spired artificial neurons and later full neural networks.

[The inception of AI

In the years immediately following the Second World War, a new scientific
dream began to take shape: the idea that intelligence could be recreated in a
machine. Early pioneers such as Alan Turing, John von Neumann, War-
ren McCulloch, and Walter Pitts laid the foundations of what would soon

2The sequential model where computation and memory are separated

32

2 From Perceptrons to FNNs 2.1 Historical Context

be called Artificial Intelligence. Computers had just proven they could follow
precise instructions and perform huge calculations at incredible speed, yet these
machines were nothing more than rigid automata: they obeyed every command
literally, unable to perceive, reason, or learn.

The emerging field of AI was born from the desire to bridge that gap, to make
machines that could adapt, generalize from experience, and interact in-
telligently with the world. The 1940s and 1950s were therefore an era of con-
ceptual excitement: could the brain’s mechanisms be modeled mathematically
and implemented in hardware or software? The earliest experiments sought to
replicate the nervous system’s structure, creating computational units that mim-
icked neurons and synapses. These units could, in principle, activate or remain
silent depending on the inputs they received, a primitive form of reasoning.

At this stage, AI and neural networks were inseparable: to build an intelli-
gent machine meant to build an artificial brain. Over the next decades,
this vision would split into two main traditions. One emphasized symbolic rea-
soning (manipulating explicit rules and logic) while the other, the connectionist
approach, pursued learning from examples through networks of simple compu-
tational nodes. The second line, though overshadowed for many years, would
eventually resurface as what we now call Deep Learning.

j From Von Neumann Machines to Brain-Inspired Models

In the 1940s, the Von Neumann architecture defined what we still call a
classical computer : a machine with a central processor (CPU) that executes
instructions stored in memory, step by step, following a deterministic sequence.
This design is extremely powerful for arithmetic and logic, but it has key limi-
tations when the goal is to emulate intelligence.

A Von Neumann computer is serial, rigid, and exact: it does exactly what
it’s told, line by line. Intelligence, however, requires something different, the
ability to handle noisy or incomplete data, recover from errors, adapt
to change, and operate in parallel on many signals at once. The human
brain, in contrast, is a massively parallel and distributed system made of
roughly 1011 neurons, each connected to thousands of others through 1014 to
1015 synapses.

This comparison motivated the idea of a computational model inspired by
the brain. Instead of a single central processor, the brain uses huge numbers
of simple processing units (neurons) working together. Each neuron performs a
small, nonlinear operation, but their collective behavior gives rise to perception,
reasoning, and learning.

Researchers realized that if intelligence in humans comes from these interactions,
perhaps machines could become intelligent by simulating networks of artifi-
cial neurons, each following simple rules, but collectively capable of complex,
adaptive computation.

33

2 From Perceptrons to FNNs 2.1 Historical Context

In short:

• Von Neumann: deterministic, sequential, rigid.

• Brain-inspired: parallel, adaptive, fault-tolerant.

This shift marks the conceptual birth of neural networks as a new computa-
tional paradigm.

Î Neural Networks in the Early AI Era

The idea of taking the human brain as a model for computation stems from its
extraordinary complexity and efficiency. A typical adult brain contains around
100 billion neurons (1011), and each neuron is connected to roughly 7’000
others, forming an estimated 1014 - 5× 1014 synapses, even reaching 1015 in a
three-year-old child.

Despite being slow compared to digital processors (neurons fire in milliseconds,
not nanoseconds), the brain’s power lies in its massive parallelism and re-
dundancy. Each neuron is a simple processing element, but together they
create a distributed, nonlinear, and fault-tolerant system capable of perception,
reasoning, adaptation, and learning; functions that no single algorithmic ma-
chine of the 1940s could perform.

From a computational viewpoint, this means:

• Processing is distributed: no central control; intelligence arises from
interactions.

• Information is encoded collectively: a concept survives even if some
neurons fail.

• Parallelism ensures speed and robustness: thousands of operations
occur simultaneously.

• Adaptivity: synaptic strengths (connections) change with experience,
enabling learning.

These characteristics inspired the first attempts to formalize “neurons”
mathematically, giving rise to the perceptron and to the field of artificial
neural networks. The perceptron is, in essence, a simplified abstraction of how a
biological neuron integrates inputs, applies a threshold, and produces an output.
An idea that we’ll explore in the following section.

34

2 From Perceptrons to FNNs 2.1 Historical Context

8What about the computation of biological versus artificial
neurons?

j In a biological neuron, information is transmitted through electrochem-
ical signals:

• The dendrites receive inputs from other neurons through synapses.

• Each input can be excitatory (it increases activation) or inhibitory (it
decreases activation).

• The neuron integrates all these signals in the cell body (soma).

• When the total accumulated signal exceeds a threshold, the neuron fires,
sending an output through its axon to other neurons.

Although this process is complex and involves various biochemical mechanisms,
it can be summarized as:

collect inputs→ integrate→ compare with threshold→ fire

Ô But how to model this computationally? In the artificial version, we
simplify this biological process into a mathematical model:

hj (x,w, b) = f

(
I∑

i=1

wixi − b

)
= f

(
wTx

)
Where:

• xi are the input values (analogous to signals received by dendrites). They
are like the neurotransmitter signals that a biological neuron receives from
other neurons.

• wi are the weights (analogous to synaptic strengths). They represent how
strongly each input influences the neuron’s activation.

• b is the bias (analogous to the threshold). It determines the level of input
required for the neuron to activate.

• f (·) is the activation function (analogous to the firing mechanism). It
decides whether the neuron fires based on the integrated input.

Each artificial neuron thus performs three main steps:

1. Weighted sum of its inputs (integration):
I∑

i=1

wixi.

2. Subtracts the bias (thresholding):
I∑

i=1

wixi − b.

3. Applies the activation function (firing decision): f

(
I∑

i=1

wixi − b

)
.

35

2 From Perceptrons to FNNs 2.1 Historical Context

Definition 1: Artificial Neuron

An Artificial Neuron is a mathematical model inspired by the way
a biological neuron works. It’s the basic computation unit of a neural
network.

While a real neuron collects electrical signals from thousands of con-
nections (synapses) and “fires” if the total signal passes a threshold, an
artificial neuron does the same thing, but with numbers.

Formally, it takes several inputs (x1, x2, . . . , xI), multiplies each by a
weight wi, sums them, adds a bias b, and passes the result through an
activation function f(·):

hj (x,w, b) = f

(
I∑

i=1

wixi − b

)
= f

(
wTx

)
(1)

Where:

• Inputs (xi): the signals coming from other neurons or from data
(e.g., pixel values).

• Weights (wi): how strong each input connection is (analogous to
synaptic strength).

• Bias (b): shifts the activation threshold up or down.

• Activation function (f): decides whether the neuron “fires” (out-
puts a strong signal) or stays quiet.

In essence, the pipeline of an artificial neuron is:

Weighted sum→ Threshold/Bias→ Nonlinear activation→ Output

Definition 2: Bias

The Bias is an additional parameter in an artificial neuron that allows
the activation function f to be shifted horizontally, providing the model
with the ability to represent patterns that do not pass through the origin.

Mathematically, it appears as the constant term b in the neuron’s acti-
vation equation (see page 36):

a = wTx+ b

The bias represents the intrinsic tendency of a neuron to activate,
even in the absence of input. It acts like a tunable threshold that controls
when the neuron fires.

Think of the bias as the neuron’s default tendency to fire, it decides
how easy or hard it is for the neuron to activate:

36

2 From Perceptrons to FNNs 2.1 Historical Context

• A large positive bias → neuron tends to fire even with small
input.

• A large negative bias → neuron needs strong evidence (large
input sum) to fire.

In other words, the bias shifts the activation threshold left or right along
the input axis, allowing the neuron to learn more complex decision
boundaries.

Imagine a simple rule: “if the weighted sum of our inputs is greater than
0, we output 1 ”. Now suppose all our inputs are zero (x1 = x2 = 0). If
we want the neuron to still fire in that case, we need a bias to “push” it
over the threshold. Bias gives the neuron a baseline activity, like saying:
“even if there’s not input, we are slightly inclined to fire”.

So, an artificial neuron mimics the logical essence of a biological one: a small
computing unit that combines multiple inputs into one output, depending on the
learned connection strengths (weights) and a bias term. This is the foundation
of the perceptron, the first neural network model, the topic of the next section.

37

2 From Perceptrons to FNNs 2.2 The Perceptron

2.2 The Perceptron
2.2.1 Who Invented It?

Once researchers realized that the brain could be viewed as a network of simple
processing units, the next natural step was to formalize this idea into an actual
computational model, what we now call a neural network.

Definition 3: Neural Network

A Neural Network is simply a collection of artificial neurons (page
36) connected by weighted links. Each neuron:

• Receives inputs,

• Computes a weighted sum,

• Applies an activation function,

• And produces an output that becomes the input for the next neu-
ron.

Through these connections, the network forms a structure capable of
transforming input data into meaningful outputs, a function ap-
proximator that learns by adjusting its weights.

The very first implementations appeared in the 1940s-1960s, with three major
milestones:

« McCulloch & Pitts (1943). They proposed the Threshold Logic
Unit (TLU), the first mathematical model of a neuron. Each unit:

– Received multiple binary inputs,

– Multiplied them by fixed weights,

– Summed them up,

– Compared the sum to a threshold,

– Output 1 if the threshold was exceeded, 0 otherwise.

They proved that a network of such units could represent any logical
function, meaning it could, in theory, “compute” anything if properly
wired.

T Frank Rosenblatt (1957). He built the first trainable model, the
Perceptron. Rosenblatt’s perceptron could automatically learn the cor-
rect weights from examples using an update rule based on errors. His
prototype was implemented in hardware:

– The weights were stored as adjustable electrical components (poten-
tiometers),

– Electric motors updated them during learning. This was the first
step from theoretical neuroscience to machine learning.

38

2 From Perceptrons to FNNs 2.2 The Perceptron

{ Bernard Widrow (1960). He developed the ADALINE (Adaptive
Linear Neuron) and later the MADALINE (Multiple ADALINE
network). Widrow’s key idea was to express the threshold as a bias
term, simplifying the equations and making it easier to train models using
gradient-based optimization, a cornerstone of modern networks.

Together, these models represent the first generation of neural networks:
simple, linear systems inspired by the brain but operating with mathematics
and electricity. They laid the groundwork for the more complex architectures
that would follow, leading to the deep learning revolution we see today.

39

2 From Perceptrons to FNNs 2.2 The Perceptron

2.2.2 Mathematical Model & Logical Operations

The Perceptron is the simplest neural network, a single neuron that trans-
forms multiple input signals into one output through a weighted sum and a
thresholding function.

Formally, given inputs:
x = [x1, x2, . . . , xI]

And weights:
w = [w1, w2, . . . , wI]

The perceptron computes the quantity:

a =

I∑
i=1

wixi + b = wTx+ b (2)

Where:

• xi are the input features,

• wi are the learnable connection weights,

• b is the bias (representing the firing threshold).

Then, this activation a passes through a step function (also called threshold
or activation function) to produce the final output y:

y =

{
1 if a > 0

0 otherwise
(3)

In some conventions, the output can also be −1 or +1 instead of 0 and 1,
depending on how the data is encoded.

Sometimes, we include the bias directly as a weight w0 associated with a fixed
input x0 = 1, rewriting the equations as:

y = f (w0x0 + w1x1 + . . .+ wIxI) = f
(
wTx

)
(4)

This makes formulas simpler and more uniform for training algorithms (compact
vector notation).

® Interpretation of the Perceptron math

The perceptron divides the input space into two regions separated by a decision
boundary (a hyperplane3). If the weighted sum of inputs exceeds the threshold,
the neuron “fires” (outputs 1); otherwise, it stays silent (outputs 0). Thus,

3A hyperplane is a generalization of a line or a plane to any number of dimensions.
It’s the mathematical way to describe a flat surface that separates space into two parts. In
1D, a hyperplane is just a point that splits the line into two halves; in 2D, it’s a line that
divides the plane into two regions, one where the perceptron outputs 1 and the other where
it outputs 0; in 3D, it’s a plane that separates space into two halves. In higher dimensions, it
remains a flat subspace that partitions the input space.

40

2 From Perceptrons to FNNs 2.2 The Perceptron

the perceptron acts as a linear classifier: it determines which side of the
hyperplane the input vector lies on.

We can express the exact set of points where the neuron is undecided
(the Decision Boundary Equation) by setting the activation a to zero:

wTx+ b = 0 (decision boundary equation) (5)

jWhat it can actually do: Logical Operations

Now, if the perceptron is a computational unit, what kind of computations can
it perform? To answer that, we need simple, well-defined functions to test
it on. The most basic functions are the logical operations used in Boolean
algebra. Logical operations (like AND, OR, NOT) are perfect because:

• They have binary inputs (0 or 1), exactly like neuron activations.

• They produce binary outputs (true or false), like the perceptron’s step
function.

• They let us see immediately whether the neuron can separate input cases
correctly.

Logical operations are the first experiments that show the perceptron’s power
as a linear classifier.

When the perceptron can reproduce logic operations like AND or OR, it proves
that:

1. A single neuron can implement decision-making.

2. The model is capable of classification (separating inputs into categories).

3. We can assign geometric meaning (a hyperplane dividing true/false
examples).

Example 1: Logical OR (∨)

x1 x2 y = x1 ∨ x2

0 0 0
0 1 1
1 0 1
1 1 1

We want the perceptron to output 1 if any input is 1. A possible set of
parameters is:

w1 = 1, w2 = 1, b = −0.5
This gives us the activation function:

a = w1x1 + w2x2 + b = x1 + x2 − 0.5

41

2 From Perceptrons to FNNs 2.2 The Perceptron

Or equivalently:

y =

{
1 if x1 + x2 − 0.5 > 0

0 otherwise

So each neuron computes:

y = f (w1x1 + w2x2 + b) = f (1 · x1 + 1 · x2 − 0.5)

Checking all input combinations:

• For (0, 0): a = 0 + 0− 0.5 = −0.5 ⇒ y = 0

• For (0, 1): a = 0 + 1− 0.5 = 0.5 ⇒ y = 1

• For (1, 0): a = 1 + 0− 0.5 = 0.5 ⇒ y = 1

• For (1, 1): a = 1 + 1− 0.5 = 1.5 ⇒ y = 1

Thus, the perceptron correctly implements the OR function.

Example 2: Logical AND (∧)

x1 x2 y = x1 ∧ x2

0 0 0
0 1 0
1 0 0
1 1 1

We want the perceptron to output 1 only if both inputs are 1. A possible
set of parameters is:

w1 = 1, w2 = 1, b = −1.5

This gives us the activation function:

a = w1x1 + w2x2 + b = x1 + x2 − 1.5

Or equivalently:

y =

{
1 if x1 + x2 − 1.5 > 0

0 otherwise

So each neuron computes:

y = f (w1x1 + w2x2 + b) = f (1 · x1 + 1 · x2 − 1.5)

Checking all input combinations:

• For (0, 0): a = 0 + 0− 1.5 = −1.5 ⇒ y = 0

• For (0, 1): a = 0 + 1− 1.5 = −0.5 ⇒ y = 0

• For (1, 0): a = 1 + 0− 1.5 = −0.5 ⇒ y = 0

42

2 From Perceptrons to FNNs 2.2 The Perceptron

• For (1, 1): a = 1 + 1− 1.5 = 0.5 ⇒ y = 1

Thus, the perceptron correctly implements the AND function. However,
we can see that other weight/bias combinations could achieve the same
result. For example:

w1 = 1.5, w2 = 1.5, b = −2.0

In both examples, the perceptron defines a line (in 2D) that separates input
combinations giving output 1 from those giving output 0. For OR, the line
lies closer to the origin, since only (0, 0) should give 0; for AND, the line lies
further away, since only (1, 1) should give 1. So, by adjusting weights and
bias, the perceptron can learn to classify inputs according to these logical rules.
However, it’s clear that manually setting weights and biases for complex
tasks is impractical. This brings us to the next important topic: how can it
learn those weights automatically instead of us setting them by hand?

43

2 From Perceptrons to FNNs 2.2 The Perceptron

2.2.3 Hebbian Learning Rule

Now that we understand what the Perceptron does and who invented it, let’s ex-
plore how it learns from data. When the first artificial neurons were proposed,
researchers wanted them not just to compute, but to learn from experience,
as biological neurons do. The earliest and most influential idea for this was the
Hebbian Learning Rule, introduced by psychologist Donald Hebb in 1949.

j The biological intuition

Donald Hebb was a psychologist, not a mathematician. In 1949, he was trying
to explain how the brain learns from experience, without having explicit
“teachers” or formulas. He observed that, in biological brains, learning seems to
happen through association. That’s the origin of his famous sentence:

“Cells that fire together, wire together.”

This means that if two neurons are active at the same time (one sending
a signal and the other firing) then the connection (synapse) between them
should become stronger. Over time, the brain reinforces useful associations
automatically.

In other words, if neuron A consistently helps activate neuron B , the connec-
tion from A to B should be strengthened. This principle is thought to underlie
learning and memory formation in the brain.

) The Artificial Version: Mathematical Formulation

Now, we translate this biological intuition into a mathematical rule that can be
applied to the Perceptron. In artificial neurons, “firing” means output is active
(e.g., output is 1). So if both input and output are active at the same time,
that’s equivalent to “they fired together”. The Hebbian learning rule says:

• Increase the weight of connections that are active when the neuron fires.

• Decrease or leave unchanged the connections that are inactive or mis-
aligned.

To translate this into a mathematical rule for a Perceptron, we express the
weight update as follows:

∆wi = η · xi · t (6)

• If xi > 0 (input is active) and t > 0 (target output is active), both are
active, then ∆wi is positive, so the weight wi increases, the connection
strengthens.

• If xi > 0 (input is active) but t ≤ 0 (target output is inactive), mismatch,
then ∆wi is zero or negative, so the weight wi decreases or remains the
same, the connection weakens.

• If xi ≤ 0 (input is inactive), regardless of t, then no update occurs since
∆wi is zero, the connection remains unchanged.

44

2 From Perceptrons to FNNs 2.2 The Perceptron

Where:

• η is the learning rate, a small positive constant that controls how much
the weights are adjusted during each update. It ensures that learning is
gradual and stable. To make an analogy, think of η as the speed limit on
a road: it prevents the learning process from speeding ahead too quickly
and potentially crashing (i.e., diverging).

• xi is the ith input value to the Perceptron.

• t is the target output (desired response) for the given input.

• ∆wi is the change in weight for the ith input. This change is added to
the current weight wi to get the new weight.

The full update rule becomes:

w
(k+1)
i = w

(k)
i +∆wi = w

(k)
i + η · xi · t (7)

This is the Weight Update Rule. It tells us how to modify each connection
wi after seeing one training example. Conceptually, at each learning step (each
training example):

1. Take the current weights w
(k)
i .

2. Compute how much they should change ∆wi = η · xi · t.

3. Add that change to get the new weights w
(k+1)
i .

{ How it works

1. Initialize all weights wi to small random values (or zeros).

2. Set the learning rate η to a small positive value (e.g., 0.01).

3. For each training example (x, t):

• Compute the Perceptron’s output y using the current weights:

y = f
(
wTx

)
• Compare with the target t.
¥ If y = t, the output y matches the target t, the neuron is already

correct, so no weight update is needed since the association
is already learned.

q If y ̸= t, the output y does not match the target t, the neuron
is incorrect, and we need to update the weights to strengthen
the association. This is done using the Hebbian learning rule:

w
(k+1)
i = w

(k)
i + η · xi · t

This can be explained in informal steps:
∗ For each weight wi, compute the change ∆wi = η · xi · t
∗ Update the weight: wi ← wi +∆wi

4. Repeat until all examples are correctly classified or a stopping criterion is
met (e.g., a maximum number of iterations).

45

2 From Perceptrons to FNNs 2.2 The Perceptron

Example 3: Hebbian Learning Rule

Let’s say we’re learning a simple OR function with two inputs x1 and
x2. The target outputs t for the four possible input combinations are:

• x = [0, 0]→ t = 0

• x = [0, 1]→ t = 1

• x = [1, 0]→ t = 1

• x = [1, 1]→ t = 1

We do not include a bias term in this example for simplicity. We’ll use
a step activation function:

f(z) =

{
1 if z ≥ 0

0 if z < 0

The algorithm proceeds as follows:

1. Initialize weights w1 = 0.0, w2 = 0.0 and learning rate η = 0.1.

2. First training example x = [0, 0], t = 0:

Ô Compute output: y = f(0.0 · 0 + 0.0 · 0) = f(0) = 0

¥ Output matches target, so no weight update needed.

3. Second training example x = [0, 1], t = 1:

Ô Compute output: y = f(0.0 · 0 + 0.0 · 1) = f(0) = 0

q Output does not match target, so we update weights:

∆w1 = 0.1 · 0 · 1 = 0.0

∆w2 = 0.1 · 1 · 1 = 0.1

w1 ← 0.0 + 0.0 = 0.0

w2 ← 0.0 + 0.1 = 0.1

4. Third training example x = [1, 0], t = 1:

Ô Compute output: y = f(0.0 · 1 + 0.1 · 0) = f(0) = 0

q Output does not match target, so we update weights:

∆w1 = 0.1 · 1 · 1 = 0.1

∆w2 = 0.1 · 0 · 1 = 0.0

w1 ← 0.0 + 0.1 = 0.1

w2 ← 0.1 + 0.0 = 0.1

5. Fourth training example x = [1, 1], t = 1:

Ô Compute output: y = f(0.1 · 1 + 0.1 · 1) = f(0.2) = 1

¥ Output matches target, so no weight update needed.

After one pass through the training data, the weights are w1 = 0.1 and
w2 = 0.1. Repeating this process over multiple epochs will further refine
the weights until the Perceptron correctly models the OR function.

46

2 From Perceptrons to FNNs 2.2 The Perceptron

® Should the bias be updated if the output doesn’t match the
target?

In the Hebbian learning rule, the bias term can also be updated similarly
to the weights. The bias can be treated as a weight connected to an input
that is always 1. Therefore, if the output does not match the target, the bias
should also be updated to help correct the output. The update rule for the bias
b would be:

∆b = η · x0 · t = η · 1 · t = η · t x0 = 1 (8)

So, if the output is incorrect, the bias would be adjusted by adding ∆b to the
current bias value:

b(k+1) = b(k) +∆b = b(k) + η · t (9)

This adjustment helps shift the activation threshold of the Perceptron, making
it more likely to produce the correct output in future iterations.

In other words, we can think of the bias as a special weight w0 that connects
to a constant input x0 = 1. This trick lets us treat the bias exactly the same
as all the other weights in the update rule. Therefore, the neuron computes:

y = f (w0 · 1 + w1x1 + w2x2 + . . .)

And the update rule applies uniformly to every wi, including w0 (the bias):

w
(k+1)
i = w

(k)
i + η · xi · t for i = 0, 1, 2, . . .

Thus, at every iteration:

• The normal weights (w1, w2, . . .) adapt based on the input features and
target output.

• The bias b (also considered a weight, like w0) is updated to help the
Perceptron better fit the data. It adapts based on the target output t
alone, since its associated input is always 1 (i.e., x0 = 1).

The bias learns to adjust the overall tendency of the neuron to fire. If the
network often needs to output 1 (positive target), the bias weight increases,
making it easier for the neuron to activate. Conversely, if the network often
needs to output 0 (negative target), the bias weight decreases, making it harder
for the neuron to activate. This dynamic adjustment of the bias is crucial for
the Perceptron to learn effectively from data.

47

2 From Perceptrons to FNNs 2.2 The Perceptron

2.2.4 Perceptron as Linear Classifier

A classifier is a model that assigns input data points to one of several classes.
In the case of the perceptron, it classifies input vectors into two classes based
on a linear decision boundary.

A linear classifier is a type of classifier that makes its decisions based on a
linear combination of the input features. In poor words, it makes a decision by
checking on which side of a line (in 2D), plane (in 3D), or hyperplane (in higher
dimensions) the input data point lies.

The perceptron computes:
a = wTx+ b

where w is the weight vector, x is the input vector, and b is the bias term, and
decides:

y =

{
1 if a > 0

0 if a ≤ 0
(10)

So the decision happens depending on the sign of a: positive values lead to
class 1, while zero or negative values lead to class 0.

The Decision Boundary is the exact set of points where the model is unde-
cided, where it switches from one class to the other. That happens precisely
when the condition changes sign from negative to positive. The “border” be-
tween those two cases is when the activation a equals zero. Formally, this
occurs when:

wTx+ b = 0

That’s where the perceptron’s decision flips, and therefore it’s the boundary
line (or hyperplane). This boundary divides the input space into two halves:

• Points where wTx+ b > 0 are classified as class 1.

• Points where wTx+ b < 0 are classified as class 0.

• Points where wTx+ b = 0 lie exactly on the decision boundary.

® Wait, why is zero special? In the above equation (10), the percep-
tron outputs 0 when a = 0. Why is it called the decision boundary?
In theory, the boundary:

wTx+ b = 0

Is not assigned to any class, it’s the limit between them. Exactly on the
boundary (a = 0), the model is indifferent, because geometrically that point is
the separator, not really part of any region (see Figure 2, page 49, to visualize
this concept). However, in practice, the ≤ sign in the perceptron decision rule
is just a tie-breaking rule, otherwise we wouldn’t know what to output when
a = 0. But for geometry and theory, we’re interested in where the switch
happens, so we call the exact set of points the decision boundary.

48

2 From Perceptrons to FNNs 2.2 The Perceptron

0.00 0.25 0.50 0.75 1.00 1.25 1.50
x1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
x 2

w (normal)

Perceptron as Linear Classifier - Geometric Interpretation
decision boundary: wTx + b = 0
class 0 (w^T x + b < 0)
class 1 (w^T x + b > 0)

Figure 2: A 2D example of a perceptron as a linear classifier. The line represents
the decision boundary where wTx + b = 0. Points on one side of the line
are classified as class 1 (green area, orange triangles, everything that satisfies
wTx + b > 0), while points on the other side are classified as class 0 (blue,
wTx+b < 0). The arrow indicates the normal vector w⃗, which is perpendicular
to the decision boundary and points towards the class-1 side. The normal vector
w⃗ points in the direction where the perceptron output increases.

Concept Meaning

w Defines the direction of the separating hyperplane.
b Shifts the hyperplane from the origin.
wTx+ b = 0 Equation of the decision boundary (hyperplane).
wTx+ b > 0 Region classified as class 1.
wTx+ b < 0 Region classified as class 0.
w⃗ Normal vector to the decision boundary, indicating

the direction of increasing output.
Limitation Can only classify linearly separable data.

49

2 From Perceptrons to FNNs 2.2 The Perceptron

0.00 0.25 0.50 0.75 1.00 1.25 1.50
x1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
x 2

x2 = b
w2

w (normal)

Effect of Bias on the Perceptron Decision Boundary
decision boundary: wTx + b = 0
Boundary with b = 0

Figure 3: Geometric interpretation of the bias in a perceptron. The solid black
line shows the decision boundary wTx+b = 0 for b = −1.2, while the dashed gray
line represents the case b = 0. The red dotted segment highlights the vertical
shift of the intercept caused by the bias. The normal vector w⃗ is perpendicular
to the boundary and points toward the region where the neuron output is 1
(wTx+ b > 0).
® If the bias is negative, why does the boundary shift upwards?
Imagine w = [1, 1]. Then wTx + b = x1 + x2 + b. Without bias (b = 0), the
boundary is:

x1 + x2 = 0

Is the line through the origin at a 45-degree angle. Now, if we add b = −1.2,
the boundary becomes:

x1 + x2 − 1.2 = 0 ⇒ x1 + x2 = 1.2

This line is shifted upwards because for any given x1, x2 must be larger
to satisfy the equation. Thus, a negative bias shifts the decision boundary
upwards, while a positive bias would shift it downwards. In this case, for
x2 direction, the bias effectively increases the threshold that x2 must reach to
cross the boundary:

x2 = −x1 + 1.2

50

2 From Perceptrons to FNNs 2.2 The Perceptron

2.2.5 Boolean Operators & Linear Separability

Once we’ve seen that a perceptron can learn logical functions (like AND, OR),
the next natural question is:

“Can it learn all possible logical operators? ”

Short answer: No. And understanding why leads to the crucial idea of linear
separability: the key limitation of the perceptron model.

Let’s summarize the four fundamental binary logical functions (i.e., functions
with two binary inputs and one binary output):

Operator Output = 1 when... Linearly separable?

AND both inputs are 1 ✓ Yes
OR at least one input is 1 ✓ Yes

NAND at least one input is 0 ✓ Yes
NOR both inputs are 0 ✓ Yes
XOR exactly one input is 1 p No

XNOR both inputs are the same p No

Note that the first four operators (AND, OR, NAND, NOR) are all linearly
separable, while the last two (XOR, XNOR) are not. But what does “linearly
separable” mean in this context?

[The game changer: Linear Separability

Definition 4: Linearly Separable

A dataset is Linearly Separable if there exists a straight line (in 2D),
plane (in 3D), or hyperplane (in higher dimensions) that perfectly
divides the two classes of data points. That is, all points of one
class lie on one side, and all points of the other class lies on the opposite
side.

Formally, given a dataset with two classes, it is linearly separable if there
exist weights w1, w2, . . . , wn and a bias b such that for every data point
(x1, x2, . . . , xn):{

w1x1 + w2x2 + . . .+ wnxn + b > 0 if the point belongs to Class 1
w1x1 + w2x2 + . . .+ wnxn + b < 0 if the point belongs to Class 2

If such weights and bias exist, the dataset is linearly separable. Other-
wise, no single perceptron can solve it (i.e., classify it correctly).

51

2 From Perceptrons to FNNs 2.2 The Perceptron

. The XOR problem - The classic example of non-linear
separability

Until now, we’ve seen that perceptrons can learn linearly separable functions
like AND and OR. However, the linear separability limitation becomes evident
when we consider some logical functions, such as XOR (exclusive OR). A little
reminder of the XOR truth table:

x1 x2 XOR(x1, x2)

0 0 0
0 1 1
1 0 1
1 1 0

The XOR function outputs 1 only when exactly one of its inputs is 1. If we plot
the input-output pairs of the XOR function on a 2D plane, we get the following
points:

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x 2

XOR Problem - Not Linearly Separable
Class 0 (output = 0)
Class 1 (output = 1)

Here, the points are arranged in an “X” pattern:

• Class 1 points are at (0, 1) and (1, 0) (opposite corners).

• Class 0 points are at (0, 0) and (1, 1) (remaining corners).

No single straight line can separate the Class 1 points from the Class 0 points.
We’d need two lines forming a region (a non-linear boundary). Hence, the XOR
function is not linearly separable, and a single-layer perceptron cannot learn
it.

52

2 From Perceptrons to FNNs 2.2 The Perceptron

In summary, the perceptron can only create linear decision boundaries, so:

¥ It perfectly models linearly separable problems (like AND, OR, simple
threshold rules).

q If fails for non-linearly separable problems (like XOR, parity, circle-vs-
ring, etc.).

This realization in the 1960s led to what’s often called the “AI winter,” as
researchers recognized the limitations of single-layer perceptrons. However, this
challenge also paved the way for the development of multi-layer neural net-
works (and backpropagation), which can overcome these limitations by creating
complex, non-linear decision boundaries, combining multiple perceptrons in lay-
ers.

53

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

2.3 Feed-Forward Neural Networks (FNNs)
2.3.1 Architecture

After discovering that a single perceptron can only draw one straight bound-
ary, researchers realized that we need multiple layers of neurons to build
non-linear decision surfaces. That’s how Feed-Forward Neural Net-
works (FNNs) were born.

Definition 5: Feed-Forward Neural Networks (FNNs)

A Feed-Forward Neural Network (FNN) is an artificial neural net-
work where information flows in one direction only, from the input
layer, through any hidden layers, to the output layer. There are no cycles
or loops in the network.

x → Layer 1 → Layer 2 → . . . → Output Layer

Each layer receives signals from the previous layer, processes them using
weighted connections and activation functions, and passes the output to
the next layer.

{ Structure of a Feed-Forward Network

An FNN is composed of:

1. Input Layer: one neuron per input feature (e.g., pixel value, sensor
reading). Does not perform computation, it simply distributes inputs to
the next layer.

2. Hidden Layer(s): Contain neurons that each compute:

aj = f
(
wT

j x+ bj
)

where wj are the weights, bj is the bias, x is the input vector from the
previous layer, and f is the nonlinear activation function (sigmoid, tanh,
ReLu, etc.). The index j identifies the specific neuron in the hidden layer.
Each neuron learns different intermediate features of the data.

3. Output Layer: Produces the network’s final result. Activation depends
on the task, we mean for classification we often use softmax or sigmoid,
while for regression we use a linear activation.

The connections between neurons are weighted:

• Each neuron in layer l is connected to all neurons in the previous layer
l − 1. This is called a fully connected or dense layer.

• Every connection has its own weight, which is learned during training.
Every neuron also has a own bias term.

• During training, all these weights and biases are adjusted to minimize the
difference between the predicted output and the actual target values.

54

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

Input
Layer

Hidden Layer

Output
Layer

Feed-Forward Neural Network Architecture

Figure 4: Architecture of a simple feed-forward neural network. Each layer is
fully connected to the next one. Signals flow in one direction (input → hidden
→ output) without feedback connections.

FNNs can be represented as graphs based on this architecture:

• Nodes represent neurons.

• Edges represent weighted connections between neurons.

This graph representation helps visualize the network’s structure and under-
stand how information propagates through it.

Mathematically, for a layer l:{
a(l) = f

(
W (l)a(l−1) + b(l)

)
for hidden layers

x(l) = f
(
a(l)
)

for output layer

where:

• a(l) is the activation vector of layer l.

• W (l) is the weight matrix connecting layer l − 1 to layer l.

• b(l) is the bias vector for layer l.

• f is the activation function.

• x(l) is the final output of the network.

This formalism allows us to compute the output of the network given an
input vector by sequentially applying these transformations layer by
layer.

55

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

® How FNNs learn hierarchical features

Adding layers lets the network learn hierarchical representations:

• The first layers capture simple patterns (e.g., edges in images).

• Deeper layers combine these simple patterns into more complex fea-
tures (e.g., shapes, objects).

This ability to build abstractions through depth is the essence of Deep Learn-
ing.

56

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

2.3.2 Activation Functions

Every neuron computes a weighted sum of its inputs and bias, called Net
Input or Activation Potential:

a = wTx+ b (11)

Up to this point, everything is linear. If we stopped here and used y = a
as the output, the neuron would just perform a linear transformation. So,
we need to add some non-linearity to the neuron’s output (a sort of magic
ingredient) to allow the network to learn complex patterns. Without it, the
entire neural network would collapse into a single linear operation: a big matrix
multiplication. Remember that we come from the perceptron, which used a step
function as activation and complex patterns, like XOR, could not be learned
without non-linearity.

So we introduce the concept of Activation Function. A neuron takes the
net input a computed above, and then applies an activation function f(a) to
produce its final output:

y = f(a)

The Activation Function defines how the neuron “fires” , i.e., how it trans-
forms the raw input signal into an output that will be passed to the next layer.

® Why do we really need activation functions?

Activation functions are what give neural networks their power and flexibility.
Three main reasons why they are essential:

1. To break linearity . Without it, the entire neural network would collapse
into a single linear operation. Mathematically:

If g(a) = a, then g(W (2)g(W (1)x)) = W (2)W (1)x

This is still linear, no matter how many layers we stack. We’d just have
one big matrix multiplication. So, without g (·), the network couldn’t
model curves, XOR, images, language, or anything nonlinear.

2. To allow complex decision boundaries. Think of a perceptron. With
only linear operations, it can only separate data using a straight line (or
plane, or hyperplane). By inserting a nonlinear g(a), hidden neurons can
bend the space (combine multiple lines to form curved boundaries). For
example, a simple linear neuron can only separate classes with a single
line, while nonlinear activations (like sigmoid or ReLU) allow the network
to create complex, curved, multi-region separations.

3. To control output range . Activation functions can also squash values:

57

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

Function Formula Output Range Typical Use

Sigmoid
1

1 + e−a
(0, 1) Binary classification output layers.

Tanh
ea − e−a

ea + e−a
(−1, 1) Hidden layers in some networks.

Linear a (−∞,+∞) Regression output layers.

That’s why we use sigmoid/tanh in hidden layers or output layers for
classification (to get probabilities between 0 and 1), while linear activations
are used in regression tasks (to allow any real-valued output).

Exist many different activation functions, each with its own characteristics and
use cases. The choice of activation function can significantly impact the per-
formance and capabilities of a neural network. In the following, we will explore
some of the most commonly used activation functions in neural networks.

In the next sections, we will mention the derivative result and the range of each
activation function:

• During training, neural networks learn by minimizing a loss function,
and this requires backpropagation, which is based entirely on deriva-
tives. We will explain backpropagation later, but for now, here is a brief
overview of how it works: (1) each neuron has parameters wi (weights)
and b (bias); (2) to adjust them, we compute how the loss changes if we
slightly change each parameter; (3) mathematically, that’s done through
gradients, the derivatives of the loss with respect to the weights. When
we apply the chain rule to compute these gradients, we get something
like:

∂L

∂wi
=

∂L

∂y
· ∂y
∂a
· ∂a

∂wi

Where ∂y
∂a is the derivative of the activation function f(a). Therefore,

having an activation function: too small (= 0), means gradients vanish
and the learning stops; too large gradients can cause instability. Hence,
the derivative of the activation function is crucial for effective learning.

• The range of an activation determines what kind of outputs each neuron
can produce, and this affects: (1) how the next layer receives data,
and how easy it is to train the network. For example, if an activation
function outputs values in a limited range (like between 0 and 1), it can
help keep the network’s outputs stable and prevent extreme values that
could lead to numerical issues during training.

58

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

2.3.2.1 Linear

The Linear Activation Function is the simplest activation function, defined
as:

f(a) = a (12)

That means the neuron’s output equals its input; there’s no distortion or thresh-
olding. So the neuron is just a weighted sum followed by nothing.

� Intuitive interpretation

If all neurons in a network use f(a) = a, then every layer just performs a linear
transformation of the input. Stacking multiple linear layers doesn’t add
any expressive power; the entire network can be reduced to a single lin-
ear transformation. In general, for a network with n layers, each represented
by a weight matrix Wi, the overall transformation is:

f (Wn (Wn−1 (. . .W2 (W1x) . . .))) = (WnWn−1 . . .W2W1)x

However, if the network only uses linear activation functions, then it simplifies
to:

f (W2 (W1x)) = (W2W1)x

Therefore, linear activation functions are rarely used in practice for hidden lay-
ers, as they cannot capture complex patterns in data. In other words, a purely
linear network cannot learn anything more complex than a straight boundary;
it is basically a big matrix multiplication because all the layers collapse into
one.

Property Description

Formula f(a) = a

Derivative f ′(a) = 1

Range (−∞,+∞)

Nonlinear? p

Typical use Regression output layers (not hidden neurons)

® When to use it

Even though a linear activation is useless inside hidden layers (because it
doesn’t add nonlinearity), it’s still important at the output layer of certain
models:

• Regression problems: when we want a real-valued output (like predict-
ing house prices), a linear activation allows the network to produce any
value in the range (−∞,+∞). However, the linear activation is applied
only at the output layer, while hidden layers use nonlinear activations to
capture complex patterns.

• Autoencoders or embedding layers: sometimes the linear activation
helps maintain continuous representations of data.

59

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

In summary, the linear activation keeps the output proportional to the input.
It’s mathematically simple and differentiable, but does not allow the network
to model nonlinear relationships. Hence, not used in hidden layers.

4 2 0 2 4
Input (a)

4

2

0

2

4

Ou
tp

ut
 (f

(a
))

Linear Activation Function
f(a) = a

4 2 0 2 4
Input (a)

0.96

0.98

1.00

1.02

1.04

De
riv

at
iv

e

Derivative of Linear Activation
f ′(a) = 1

Figure 5: Linear activation f(a) = a and its derivative. The function is the iden-
tity (a straight line, showing that the neuron outputs exactly what it receives),
and its constant derivative f ′(a) = 1 allows perfect gradient flow. However,
being linear, it adds no expressive power to the network.

60

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

2.3.2.2 Sigmoid

The Sigmoid Activation Function (or Logistic Activation Function) is
defined as:

f(a) =
1

1 + e−a
(13)

It “squashes” any real-valued input a into a range between 0 and 1.

The Sigmoid converts its input into something that looks like a smooth thresh-
old:

⇈⇈⇈ Large positive inputs a produce outputs close to 1;

⇊⇊⇊ Large negative inputs a produce outputs close to 0;

≈ Inputs a close to 0 produce outputs close to 0.5

It’s often described as giving a “firing probability” to a neuron, mimicking
how biological neurons activate gradually rather than with a hard step.

Graphically, the Sigmoid function is a smooth S-shaped curve (sigmoidal). It’s
continuous and differentiable everywhere. It has a gentle slope around 0
and saturates near the extremes (0 or 1).

7.5 5.0 2.5 0.0 2.5 5.0 7.5
Input (a)

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut
 (f

(a
))

Sigmoid Activation Function
f(a) = 1

1 + e a

7.5 5.0 2.5 0.0 2.5 5.0 7.5
Input (a)

0.00

0.05

0.10

0.15

0.20

0.25

De
riv

at
iv

e

Derivative of Sigmoid

f ′(a) = f(a) 2f(a)

Figure 6: Sigmoid Activation Function and its derivative. The sigmoid intro-
duces smooth nonlinearity and maps inputs into (0, 1), but its derivative van-
ishes for large inputs, causing slow learning in deep networks.

The derivative tells us how sensitive the neuron’s output is to changes in its
input. For the Sigmoid function, the derivative is given by:

f ′(a) = f(a)− 2f(a) = f(a) · [1− f(a)] (14)

This means:

T When f(a) ≈ 0.5, the derivative is maximized at 0.25, allowing for signif-
icant weight updates during training (neuron is responsive).

. When f(a) ≈ 0 or f(a) ≈ 1, the derivative approaches 0, leading to very
small weight updates (neuron is saturated and gradients vanish).
This vanish gradient problem makes deep networks with Sigmoid ac-
tivations hard to train, as gradients become very small in earlier layers

61

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

during backpropagation. In other words, the Sigmoid function can cause
slow learning in deep networks due to its saturating behavior at extreme
input values.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.05

0.10

0.15

0.20

0.25

De
riv

at
iv

e

Sigmoid Activation and Saturation Regions
Derivative f'(a)

Figure 7: Sigmoid activation and saturation regions.

In figure 7 we can see the vanish gradient problem in action: when neurons
saturate, their gradients vanish, making it hard for the network to learn from
data during training.

• The blue curve shows the sigmoid activation f(a). That smooth S-
shaped curve (in blue) represents:

f(a) =
1

1 + e−a

In the center (around a = 0), the output is about 0.5, and the curve is
steepest; for large positive a > 5, the curve flattens near 1; for large
negative a < −5, it flattens near 0. Those flat tails are the satura-
tion regions (highlighted in orange). These regions mean that when the
neuron receives very strong positive or negative inputs, its output doesn’t
change much anymore; it has reached its “max” or “min” activation.

• The orange curve are the parts of the curve where the output is almost
constant:

– On the left (for large negative a), the output is very close to 0 (sat-
urated low);

– On the right (for large positive a), the output is very close to 1
(saturated high).

In those regions:
∂f

∂a
= f ′(a) ≈ 0

62

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

So the neuron has stopped responding, even big changes in a cause
almost no change in the output f(a).

• The red curve shows the derivative f ′(a):

f ′(a) = f(a) · (1− f(a))

The derivative is only significant in a small central region (roughly be-
tween −3 and 3). Outside this range, the derivative drops to near zero,
indicating that the neuron is saturated and not learning effectively.

Property Value / Meaning

Formula f(a) =
1

1 + e−a

Range (0, 1)

Derivative f ′(a) = f(a) · (1− f(a))

Output interpretation Probability or “firing strength”.

Pros Smooth, differentiable, bounded output, prob-
abilistic interpretation.

Cons Vanishing gradients for large a, outputs not
zero-centered, computationally expensive.

® When to use it

• Output layer of binary classification networks, where outputs repre-
sent probabilities:

P (y = 1 | x) = f(wTx+ b)

• Historically used in hidden layers (in early networks), but now often re-
placed by ReLU or its variants due to vanishing gradient issues.

In summary, the Sigmoid activation function is essentially a soft version of the
perceptron’s step function:

step: f(a) =

{
1 if a ≥ 0

0 if a < 0
−→ sigmoid: f(a) =

1

1 + e−a

So the sigmoid allowed neural networks to become differentiable, which made
gradient-based learning (backpropagation) possible. However, its ten-
dency to saturate and cause vanishing gradients has led to the adoption of
alternative activation functions (like ReLU) in modern deep learning architec-
tures.

63

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

2.3.2.3 Hyperbolic Tangent (tanh)

The Hyperbolic Tangent (tanh) Activation Function, commonly known
as tanh, is defined as:

f(a) = tanh(a) =
ea − e−a

ea + e−a
(15)

And its derivative is:

f ′(a) = 1− tanh2(a) = 1− f2(a) (16)

The tanh function maps input values to an output range between -1 and 1. It
is a scaled version of the sigmoid function, centered around zero.

The tanh activation function looks very similar to the sigmoid, but it is
symmetric around zero: outputs range from −1 to 1, which helps in centering
the data and can lead to faster convergence during training. This makes it zero-
centered, which is a big advantage.

• When the input is zero (a = 0), the output is also zero (f(0) = 0).

• For large positive inputs, the output approaches 1 (f(a)→ 1 as a→ +∞).

• For large negative inputs, the output approaches -1 (f(a) → −1 as a →
−∞).

That means hidden neurons can have both positive and negative activations,
which helps later layers learn faster because the data stays balanced around
zero.

® Why it’s better than sigmoid

• Range: The tanh function outputs values between -1 and 1, while the
sigmoid function outputs values between 0 and 1. This means that tanh
is zero-centered, which can help with convergence during training.

• Gradient around zero: The derivative of the tanh function is ≈ 1
around zero, while the derivative of the sigmoid function is ≈ 0.25 around
zero. This means that the tanh function has a steeper gradient4 around
zero, which can help with learning.

• Saturates? Both functions can saturate for large positive or negative
inputs, leading to the vanishing gradient problem. However, because tanh
is zero-centered, it can help mitigate this issue to some extent.

• Training speed: In practice, models using the tanh activation function
often converge faster than those using the sigmoid function, especially in
deep networks.

4A “steeper gradient” means that small changes in the input lead to larger changes in the
output, which can help the model learn more effectively.

64

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

6 4 2 0 2 4 6
Input (a)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ou
tp

ut
 f(

a)

Sigmoid vs tanh Activation Functions
Sigmoid
tanh

6 4 2 0 2 4 6
Input (a)

0.0

0.2

0.4

0.6

0.8

1.0

De
riv

at
iv

e
f'(

a)

Derivatives of Sigmoid and tanh
Sigmoid derivative
tanh derivative

Figure 8: Hyperbolic Tangent (tanh) Activation Function and its Derivative.

65

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

The zero-centered output means activations can cancel each other out more
easily, so the network doesn’t get a constant “positive bias” in its gradient (a
problem with sigmoid). This often leads to faster convergence during train-
ing.

® When to use tanh

The tanh activation function is often preferred over the sigmoid function in
hidden layers of neural networks, especially when the data is centered around
zero. It is particularly useful in scenarios where:

• The input data is normalized to have a mean of zero.

• The model requires faster convergence during training.

• The network is deep, and the benefits of zero-centered activations help
mitigate issues like vanishing gradients.

However, it’s important to note that while tanh can be advantageous in many
situations, it still suffers from the vanishing gradient problem for very
large or very small input values. Therefore, in very deep networks, other
activation functions like ReLU (Rectified Linear Unit) are often preferred.

66

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

2.3.3 Output Layer

The output layer is the last layer of the network, the one that produces the
model’s final prediction. Up to this point, the hidden layers have been
learning to extract useful features (patterns, relationships, hierarchies). But
the output layer translates all of that internal representation into the final,
human-meaningful result. For example:

• A continuous number (e.g., house price) in regression tasks (e.g.,
predicting a numerical value).

• Or a class label (e.g., cat vs. dog) in classification tasks (e.g., catego-
rizing images).

So, the choice of activation function in the output layer depends on the
type of output we want. Exist several options:

• For regression tasks, where we want to predict a continuous value, we
often use a linear activation function (or no activation function at all)
in the output layer. This allows the network to produce a wide range of
values.

• For binary classification tasks, where we want to classify inputs into
two classes, we typically use the sigmoid activation function in the
output layer. This squashes the output to a value between 0 and 1, which
can be interpreted as a probability.

• For multi-class classification tasks, where we want to classify inputs
into more than two classes, we often use the softmax activation func-
tion in the output layer. This produces a probability distribution over
the classes, ensuring that the sum of the outputs equals 1.

The design of the output layer is crucial because it directly affects how
well the network can perform its intended task. Choosing the appropriate ac-
tivation function and structure for the output layer ensures that the network’s
predictions are meaningful and useful for the specific problem at hand.

67

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

2.3.3.1 Regression

In regression problems, we want the network to predict a real-valued quan-
tity, something that can take any number, positive or negative. For example,
predicting the price of a house based on its features (size, location, number of
rooms, etc.) is a regression task. In this case, the output layer of the neu-
ral network typically consists of a single neuron that produces a continuous
output, not categorical labels (we want a number, not a class like “expensive”
or “cheap”).

[The output function

For regression tasks, we don’t want to limit or distort the network’s output.
Therefore, the last layer simply uses a linear activation (page 59):

f(a) = a or equivalently y = wTx+ b

This means the output neuron just returns the raw weighted sum of its inputs,
no squashing or thresholding.

If we used a sigmoid or tanh activation in the output layer, the output would
be forced into (0, 1) or (−1, 1) ranges, respectively. This would be problematic
for regression tasks where the target variable can take on a wide range of values.
For example, if we’re predicting house prices, we want the output to be able to
represent any price, not just values between 0 and 1 (e.g., a house could cost
$250, 000, which is far outside the range of a sigmoid output, or a temperature
could be −10 degrees Celsius, which is outside the range of tanh). The linear
activation allows any real number to be output, making it suitable for regression
tasks.

{ Typical network setup for regression

A typical neural network for regression tasks has the following structure:

Component Example

Hidden layers Several, with nonlinear activations (e.g., ReLU, tanh).
Output layer One neuron (for single output) with linear activation.
Loss function Mean Squared Error (MSE) or Mean Absolute

Error (MAE).

Deepening: Mean Squared Error (MSE)

When our network predicts continuous values (like prices, temperatures,
voltages, etc.), we need a way to measure how far the predictions are
from the real targets. That’s what a loss function does: it quantifies
the prediction error. The Mean Squared Error (MSE) is the most

68

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

common one for regression tasks:

MSE =
1

N
·

N∑
i=1

(yi − ti)
2 (17)

Where:

• N is the number of data points (samples).

• yi is the predicted value for the i-th sample.

• ti is the true (target) value for the i-th sample.

The term (yi − ti)
2 is the error (difference between prediction and

truth), and we square it to make all errors positive (avoid cancella-
tion) and to penalize larger mistakes more strongly (e.g., an error
of 10 counts 100 times more than an error of 1). Then we average over
all samples to get the mean error per prediction.

So MSE measures how “spread out” our predictions are around the true
values. A lower MSE means our model is doing a better job at predict-
ing the continuous target variable.

Example 4: Example of MSE calculation

Suppose we have the following regression model:

Sample ti yi yi − ti Squared Error

1 2 3 +1 1
2 5 4 −1 1
3 6 8 +2 4
4 3 2 −1 1

To compute the MSE:

MSE =
1

4
· (1 + 1 + 4 + 1) =

1

4
· 7 = 1.75

So the Mean Squared Error for this model is 1.75, indicating the
average squared difference between the predicted and true values.

About derivations, it is important to note that MSE is differentiable,
which is crucial for training neural networks using gradient-based opti-
mization methods (we will cover this in detail later). The derivative of
MSE with respect to the predictions yi is:

∂ MSE
∂ yi

=
2

N
· (yi − ti) (18)

So, the weight updates are proportional to how wrong each prediction
is. It means, large errors produce larger gradients, leading to bigger

69

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

adjustments in the weights during training, which helps the model learn
more effectively.

In summary, MSE tells us how far off our predictions are on av-
erage. It’s like saying “how wrong am I, squared and averaged? ” The
squaring heavily punishes big mistakes, making MSE ideal when we care
about precision in regression tasks.

Deepening: Mean Absolute Error (MAE)

The Mean Absolute Error measures the average absolute distance
between predicted and true values:

MAE =
1

N
·

N∑
i=1

|yi − ti| (19)

Where:

• N is the number of data points (samples).

• yi is the predicted value for the i-th sample.

• ti is the true (target) value for the i-th sample.

Unlike MSE, which squares the difference, MAE simply takes the abso-
lute value of the error. That means:

• Every error contributes proportionally to its magnitude (no squar-
ing).

• Large errors don’t explode quadratically, they contribute linearly.

So MAE measures the average size of the mistakes, regardless of
direction.

Example 5: Example of MAE calculation

Using the same predictions as before (from Example on page 69),
to compute the MAE:

MAE =
1

4
· (1 + 1 + 2 + 1) =

1

4
· 5 = 1.25

So the Mean Absolute Error for this model is 1.25, indicating
the average absolute difference between the predicted and true
values. Compared to MSE, MAE gives a more direct sense of the
average error magnitude without squaring.

Regarding derivations, the MAE is not differentiable at points where
the prediction equals the target (i.e., yi = ti) because of the absolute

70

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

value function. However, we can use the subgradient for optimization:

∂ |x|
∂x

=


+1 if x > 0

−1 if x < 0

undefined (but taken as 0) if x = 0

(20)

So gradient updates from MAE are constant in magnitude. They
don’t depend on how far the prediction is from the truth. That’s why
MAE can converge slower but more robustly, especially in the presence
of outliers (which can heavily skew MSE).

In summary, MAE tells us how many units off my predictions are
on average, while MSE punishes larger errors more severely:

• MSE tries to minimize variance, forces the model to avoid large
mistakes aggressively.

• MAE tries to minimize average error, focuses on overall ro-
bustness.

If our data has outliers (e.g., occasional very wrong samples), MAE is
less distorted by them because it doesn’t exaggerate their impact.

71

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

2.3.3.2 Binary Classification

In binary classification, the task is to decide two possible outcomes, for
example spam vs not spam in email filtering, or disease vs no disease in medical
diagnosis. The output of the network is typically a single neuron that produces
a value between 0 and 1, representing the probability of one of the classes:

P (y = 1 | x) ∈ [0, 1]

That is, “how likely is this input to belong to class 1? ” The other class’s prob-
ability can be derived as:

P (y = 0 | x) = 1− P (y = 1 | x)

[The output function

At the output layer, we typically have:

• 1 neuron, because we only need one value (the probability of class 1).

• The activation function is usually the sigmoid function (or sometimes
the tanh function), which maps any real-valued number into the range
(0, 1), making it suitable for probability estimation.

The sigmoid function is defined as:

σ(z) =
1

1 + e−z

Or the tanh function:

tanh(z) =
ez − e−z

ez + e−z

Despite tanh outputting values in the range (−1, 1), it can be scaled to (0, 1)
for probability interpretation:

• f(a) > 0⇒ class 1

• f(a) < 0⇒ class 0

It’s sometimes preferred due to its zero-centered output, which can help with
optimization. However, the sigmoid function is more commonly used in
binary classification tasks.

{ Typical network setup for binary classification

Component Example

Hidden layers Several, with nonlinear activations (e.g., ReLU, tanh).
Output layer One neuron (for single output) with sigmoid activation.
Loss function Binary Cross-Entropy (log loss).

72

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

Deepening: Binary Cross-Entropy (BCE, Log Loss)

The goal in binary classification is to predict the probability that an
input belongs to class 1, given by our network’s sigmoid output:

ŷ = f(a) =
1

1 + e−a
∈ (0, 1)

The true label t is:

• 1 if the sample belongs to class 1,

• 0 if it belongs to class 0.

The Binary Cross-Entropy (BCE, Log Loss) loss function measures
the difference between the predicted probabilities ŷ and the true labels
t. It is defined as:

BCE (t, ŷ) = L = − 1

N
·

N∑
i=1

[ti · ln (ŷi) + (1− ti) · ln (1− ŷi)] (21)

Let’s understand each term:

• N is the number of samples in the dataset.

• ti is the true label for sample i (0 or 1, since it’s binary classifica-
tion).

• ŷi is the predicted probability for sample i (output of the sigmoid).

• ln (ŷi) penalizes the model when it predicts a low probability
for the true class (when ti = 1).

• ln (1− ŷi) penalizes the model when it predicts a high proba-
bility for the false class (when ti = 0).

• If the true label is 1 (ti = 1), the loss simplifies to − ln (ŷi). The
model is penalized when it predicts a small probability for class
1.

• If the true label is 0 (ti = 0), the loss simplifies to − ln (1− ŷi).
The model is penalized when it predicts a large probability for
class 1.

So, the closer the prediction is to the truth, the smaller the loss.

73

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

Example 6: BCE Calculation Example

Let’s consider a simple example with 4 samples:

Sample True Label (t) Predicted Probability (ŷ)

1 1 0.9
2 0 0.2
3 1 0.4
4 0 0.6

Now, we calculate the BCE loss for each sample:

• Sample 1: [1 · ln(0.9) + (1− 1) · ln(1− 0.9)] = ln(0.9) ≈
−0.105

• Sample 2: [0 · ln(0.2) + (1− 0) · ln(1− 0.2)] = ln(0.8) ≈
−0.223

• Sample 3: [1 · ln(0.4) + (1− 1) · ln(1− 0.4)] = ln(0.4) ≈
−0.916

• Sample 4: [0 · ln(0.6) + (1− 0) · ln(1− 0.6)] = ln(0.4) ≈
−0.916

Finally, we compute the average BCE loss over all samples:

L = −1

4
(−0.105− 0.223− 0.916− 0.916) = −−2.16

4
= 0.54

So, the BCE loss for this example is approximately 0.54. This
indicates that the model’s predictions are not very accurate, as a
lower loss value indicates better performance.

Cross-Entropy comes from information theory. It measures the dif-
ference between two probability distributions:

• The true distributions of the labels (0 or 1).

• The predicted distributions from the model (probabilities between
0 and 1).

Minimizing BCE is equivalent to maximizing the likelihood of our
data under the model’s predictions. So we’are training the network to
output probabilities that match the true labels as closely as possible.

74

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

0.0 0.2 0.4 0.6 0.8 1.0
Predicted probability y

0

1

2

3

4

5

6
Lo

ss
 L

Binary Cross-Entropy (Log Loss)
t = 1: L = log(y)
t = 0: L = log(1 y)

The loss is asymmetric: wrong confident predictions get punished ex-
ponentially.

• Red curve (t = 1): Loss is low when predicted probability ŷ is
close to 1 (correct and confident), and high when ŷ is close to 0
(incorrect).

• Blue curve (t = 0): Loss is low when predicted probability ŷ is
close to 0 (correct and confident), and high when ŷ is close to 1
(incorrect).

Finally, BCE is differentiable, which is essential for training neural
networks using gradient-based optimization methods. Its derivative with
respect to a (the input to the sigmoid) is:

∂L

∂a
= ŷ − t = f(a)− t (22)

This derivative is used in backpropagation to update the network’s
weights during training.

In summary, Binary Cross-Entropy is the standard loss function for
binary classification tasks in neural networks, effectively measuring the
discrepancy between predicted probabilities and true binary labels, and
guiding the training process to improve model performance. In simple
words, it asks: “how surprise would I be if the model’s predicted proba-
bility were true? ” The less surprised (closer to 1 for correct class), the
smaller the loss; the more surprised (model confident but wrong), the
larger the penalty.

75

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

2.3.3.3 Multi-Class Classification

When we want the network to choose one label among many, for example
to classify images of handwritten digits (0, 1, 2, . . . , 9), we need the model to
output a vector of probabilities, one for each possible class. For example, if
the model is 70% sure that the image is a 3, 20% sure it is an 8, and 10% sure
it is a 5, the output vector should be:

ŷ =



0
0
0
0.7
0
0.1
0
0.2
0
0


Where each entry corresponds to the predicted probability of each class (from 0
to 9). To achieve this, exists two main techniques: one-hot encoding for the
labels and the softmax activation function for the output layer.

® How we represent targets: One-Hot Encoding

One-Hot Encoding is a simple way to represent categorical variables
(things that take one of several discrete values, like color, day of week, or class
label) in a numerical format that a neural network can understand.

¥ The problem it solves. Neural networks work only with numbers, not
words or symbols. So if our categories are, for example, cat, dog, and bird, we
can’t feed them directly into the network. We must convert each category into
a numeric vector.

{ How it works. The naïve approach would be to assign each category a
unique integer (e.g., cat = 0, dog = 1, bird = 2). But this is misleading,
because the network would think that bird (2) is somehow “bigger” or “twice” a
“dog” (1). That numerical relationship is meaningless and these categories have
no inherent order. Instead, we create a binary vector for each class (category),
where:

• The position corresponding to that class is set to 1 (“hot”).

• All other positions are set to 0 (“cold”).

So for our example with three categories, the one-hot encoded vectors would be:

• cat → [1, 0, 0] • dog → [0, 1, 0] • bird → [0, 0, 1]

Each vector is called one-hot vector because exactly one element is “hot”
(1) and all others are “cold” (0).

76

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

® How we get probabilities: Softmax Activation Function

The Softmax Activation Function takes a vector of arbitrary real numbers
(called logits) and turns it into a probability distribution, i.e. a vector of
positive numbers that sum to 1:

softmax(ai) =
eai

K∑
j=1

eaj

(23)

Where:

• ai is the i-th element of the input vector (logits).

• K is the total number of classes.

• e is the base of the natural logarithm (neperian constant).

� Intuition. Each neuron in the output layer produces a score: a real number
that can be positive, negative, or large. Softmax converts these scores into
relative probabilities that express how confident the network is about each
class:

• Large ai → large eai → high probability.

• Small ai → small eai → low probability.

The exponential function eai magnifies differences between scores, so the biggest
score gets much more weight, but every class still receives a small share.

Example 7

Suppose the output layer of a neural network produces the following
logits for a 3-class classification problem:

a =

2.01.0
0.1


To convert these logits into probabilities using the softmax function, we
first compute the exponentials:

ea =

e2.0e1.0

e0.1

 ≈
7.3892.718
1.105


Next, we sum these exponentials:

S = 7.389 + 2.718 + 1.105 ≈ 11.212

77

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

Finally, we compute the softmax probabilities:

softmax(a) =



7.389

11.212

2.718

11.212

1.105

11.212


≈

0.6590.242
0.099



Thus, the output probabilities for the three classes are approximately
65.9%, 24.2%, and 9.9%, respectively. The network is most confident
that the input belongs to class 1.

Softmax acts like a “competition” between neurons:

• Each output neuron tries to “win” by having the highest score.

• The exponentials amplify the differences, making the highest score domi-
nate.

• The normalization (dividing by the sum) ensures all probabilities add up
to 1.

This is why it’s called “softmax”: it produces a soft version of the maximum
function, where the highest score gets the most weight, but all classes still receive
some probability (unlike a hard max which would assign 100% to the highest
and 0% to all others).

{ Putting it all together

In a K-class classification problem, the network’s final layer has:

• K output neurons, one for each class.

• Each neuron produces a logit (ai) an unnormalized score.

• The softmax function converts these logits into a probability distri-
bution over the K classes:

ŷi = softmax(ai) =
eai

K∑
j=1

eaj

So the network outputs a probability distribution over classes, all yi are between
0 and 1, and they sum to 1. However, to train the network effectively, we also
need a suitable loss function that works well with this setup (about training, we
will discuss it later, but for now, let’s focus on the loss function). This is where
Categorical Cross-Entropy (CCE) comes into play.

78

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

The Categorical Cross-Entropy (CCE) loss function measures how close
the predicted probability distribution ŷ is to the true one-hot distribution t:

CCE(t, ŷ) = −
K∑
i=1

ti · log(ŷi) (24)

Because only the true class has ti = 1 (all others are 0), this simplifies to:

CCE(t, ŷ) = − log(ŷc) (25)

Where:

• c is the index of the true class.

• yc is the predicted probability for the true class.

This means CCE penalizes the model when it assigns a low probability to the
true class, encouraging it to predict higher probabilities for the correct class
during training.

® Why Softmax and CCE work well together? The combination of
Softmax and CCE is powerful because:

✓ Softmax produces a valid probability distribution, which is exactly
what CCE needs to compute the loss.

✓ CCE focuses the learning on maximizing the probability of the true
class, which aligns perfectly with the goal of classification tasks.

✓ The gradients computed from CCE with respect to the logits are well-
behaved, making training more stable and efficient. The drivative of CCE
combined with Softmax is the following:

∂ (CCE)
∂ ai

= ŷi − ti (26)

This means the gradient is simply the difference between the predicted
probability and the true label, which is easy to compute and inter-
pret.

This synergy makes Softmax + CCE the standard choice for multi-class
classification problems in neural networks. It is a generalization of the
Sigmoid + BCE setup used for binary classification, extending the same princi-
ples to handle multiple classes effectively.

79

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

2.3.4 Neural Networks as Universal Approximators

In 1989, Kurt Hornik, Maxwell Stinchcombe, and Halbert White published a
seminal paper titled “Multilayer Feedforward Networks are Universal Approxi-
mators” [4]. This groundbreaking work established that Feed-Forward Neural
Networks (FNNs) with at least one hidden layer and non-linear activation func-
tions can approximate any continuous function on compact subsets of Rn to any
desired degree of accuracy, given sufficient neurons in the hidden layer:

“A single hidden layer feed-forward neural network with S-shaped activation
functions can approximate any measurable function to any desired degree of

accuracy on a compact set.”

This theorem establishes the theoretical power of neural networks: given enough
hidden neurons, an FNN can approximate any continuous function f(x) over
a bounded input domain. Let’s define this more formally.

Theorem 1 (Universal Approximation Theorem). Let:

f : Rn → R (27)

By any continuous function on a compact subset of Rn (K ⊂ Rn).
Then, for any ε > 0, there exists:

• A single-hidden-layer neural network

• With finite number of neurons J

• And non-linear activation σ(·) (e.g., sigmoid, tanh, ReLU, etc.)

Such that for all x ∈ K:∣∣∣∣∣∣f(x)−
J∑

j=1

w
(2)
j · σ ·

n∑
i=1

(
w

(1)
ji xi + bj

)∣∣∣∣∣∣ < ε (28)

Where:

• w
(1)
ji are the weights from input layer to hidden layer.

• bj are the biases of the hidden layer neurons.

•
n∑

i=1

(
w

(1)
ji xi + bj

)
is the input to the hidden layer neuron j.

• σ(·) is the non-linear activation function applied at hidden layer
neurons.

• w
(2)
j are the weights from hidden layer to output layer.

• The output is the result of the neural network for input x.

In simpler terms, any continuous can be represented by a neural network with
just one hidden layer, if that layer has enough neurons and uses a non-linear
activation function.

80

2 From Perceptrons to FNNs 2.3 Feed-Forward Neural Networks (FNNs)

® Why it works (intuition)

Each hidden neuron with non-linear activation acts like a basis function (sim-
ilar to how sine and cosine functions can approximate any waveform in Fourier
series). By combining enough of these basis functions (hidden neurons), the
neural network can approximate complex functions by adjusting the weights
and biases.

Imagine we have an unknown function f(x) = sin(x). And we want our neural
network to learn this function. So, in other words, we want our neural network
to approximate f(x) as closely as possible (f̂(x) ≈ f(x)). Let’s take a single
neuron with a non-linear activation function (e.g., sigmoid):

σ(a) =
1

1 + e−a

If we plot this, it looks like an S-shaped curve (page 61):

• Almost 0 for large negative inputs.

• Almost 1 for large positive inputs.

• Smoothly transitions between 0 and 1 around input 0.

When we apply this neuron to a linear combination of x:

σ(w · x+ b)

We get a shifted and stretched S-curve along the x-axis. Now imagine we have
many hidden neurons, each with their own weights and biases:

f̂(x) =

J∑
j=1

w
(2)
j · σ(w

(1)
j · x+ bj)

Each neuron produces its own “bump” or “S-step” at a different location. When
we add them together, those bumps stack up and blend, creating any
curve shape we want. And that’s the whole trick! Just like adding sinusoids can
approximate any periodic signal (Fourier series), adding non-linear S-shaped
functions can approximate any continuous curve. Note that non-linearity is
crucial. If we used only linear activations and stacked them, the result would
still be a linear function. This would collapse the network’s expressive power.

. Important note

The Universal Approximation Theorem guarantees that a neural network can
approximate any continuous function, but it does not tell us how to find the
right weights and biases to do so. In practice, training a neural network to
approximate a specific function requires effective optimization algorithms (like
gradient descent) and sufficient training data. Additionally, while a single hid-
den layer is theoretically sufficient, deeper networks (with more hidden layers)
often learn more efficiently and generalize better in practice.

81

2 From Perceptrons to FNNs 2.4 Learning and Optimization

2.4 Learning and Optimization
Let’s retrace what we’ve built so far step by step:

1. We started with the historical context, understanding why we want
machines to “learn” like brains, transitioning from symbolic AI to data-
driven learning.

2. Next, we explored the Perceptron, the simplest computational neuron,
which introduced us to linear decision boundaries and Hebbian learning.

3. However, we also learned about the limitations of the Perceptron,
particularly its inability to solve non-linear problems like XOR.

4. To overcome these limitations, we delved into Feed-Forward Neural
Networks (FNNs), discovering how multi-layer networks with hidden
layers and nonlinear activations can model complex functions.

5. Finally, we touched on the Universal Approximation Theorem, which
assures us that even a single hidden layer is theoretically sufficient to ap-
proximate any function (though in practice, deeper networks often perform
better).

Now we know what the architecture can represent. But we haven’t yet learned
how to find the right weights that make it represent what we want. And that’s
exactly why this section begins.

After defining the structure of a neural network, we must teach it to perform
a task, such as classifying images or predicting values. This teaching process is
called learning or training (or simply learning by optimization). Think of the
journey like this:

Architecture → Function Space → Optimization → Learning

We’ve defined the function space (what kinds of functions the network can
represent), and now, we must search inside that space for the specific function
that matches our data. This search is done through optimization algorithms
that adjust the network’s weights based on the data we provide. So, in this
section, we’ll answer three big questions:

1. How does a neural networks learn? (page 83) By comparing predic-
tions with known targets (supervised learning).

2. How do we measure “how wrong” it is? (page 86) Through loss
functions (some of which we have already encountered in the output layer
design).

3. How do we improve it? (page 90) Through optimization algorithms
like gradient descent and (later) backpropagation.

82

2 From Perceptrons to FNNs 2.4 Learning and Optimization

2.4.1 Supervised Learning and Training Dataset

This section introduces the formal setup of Supervised Learning in the context
of neural networks. It defines what data to use, what we want the network
to learn, and how we measure learning success. It’s the conceptual skeleton
that the later mathematical tools (loss, gradient descent, backpropagation) will
stand on.

® What is Supervised Learning?

Supervised Learning is a machine learning paradigm where the algorithm
learns from examples that include both the input and the correct out-
put. In other words, it learns under supervision from labeled data.

The basic idea is simple. We give the model a set of training examples:

D = {(x1, t1) , (x2, t2) , . . . , (xN , tN)}

Formally, a dataset is:

D =

{
(xi, ti)

}N

i=1

(29)

Where:

• xi is the input data (e.g., an image, temperature readings, pixels, sensor
values, etc.).

• ti is the target output (the label or ground truth we want the model to
predict).

• N is the total number of training examples.

The model (in our case, a neural network) tries to learn a function f(·) such
that:

f (xi) ≈ ti for all i = 1, 2, . . . , N

For all examples in the training set. In other words, to find a function f(x) that
not only fits the training data but also generalizes well to unseen data (i.e., it
can correctly predict outputs for new inputs not in the training set). Formally,
a model is a function:

g(x;w) with parameters w (30)

Where:

• g(·;w) is the model (neural network) with parameters w (weights and
biases).

• The goal is to find the optimal parameters w∗ such that:

w∗ = argmin
w

E (w) (31)

Where E(w) is a loss function that measures how far predictions g(xi;w)
are from the true targets ti across the training set.

83

2 From Perceptrons to FNNs 2.4 Learning and Optimization

The method is called supervised because the learning process is guided: each
input x comes with the correct answer t. The network uses it to know whether
it was right or wrong, and to adjust its weights accordingly.

Independently by the paradigm used (supervised, unsupervised, reinforcement
learning), with Training we mean the process of adjusting weights w so
that the network reproduces the mapping between inputs and outputs
seen in the data. This is done by minimizing a loss function that quantifies
the difference between the network’s predictions and the true targets in the
training dataset.

[Neural Networks as a Parametric Model

In general, a neural network can be written as a parametric function:

y (x;w) = g (x,w) (32)

Where:

• x is the input features (data).

• w is the set of parameters (weights and biases in all layers) of the network.

• y (x;w) is the output of the network (the prediction for input x given
parameters w).

• ; indicates that y depends on both x and w.

• g(·, ·) represents the entire computation performed by the neural network
(all layers, activations, etc.). See above equation 30.

We want y (xn;w) to be as close as possible to the target tn for each training
example (xn, tn) in the dataset D. This is achieved by optimizing the param-
eters w to minimize a loss function that measures the discrepancy between
predictions and targets across all training examples. Formally, find parameters
w∗ that minimize a loss function E(w):

w∗ = argmin
w

E (w) (33)

Where E(w) quantifies the error between y (xn;w) and tn for all training ex-
amples. The loss function measures how wrong the model is across all training
examples:

E (w) =

N∑
n=1

ℓ (tn, y (xn;w)) (34)

Where ℓ(·, ·) is a loss function that quantifies the error for a single example (e.g.,
Mean Squared Error for regression, Cross-Entropy Loss for classification).

84

2 From Perceptrons to FNNs 2.4 Learning and Optimization

� The power of this setup

This framework allows us to covers a wide range of tasks:

• Regression: Predicting continuous values (e.g., house prices, tempera-
ture).

• Classification: Assigning inputs to discrete categories (e.g., spam vs. not
spam, image recognition).

• Function Approximation: Learning complex mappings from inputs to
outputs.

By defining the problem in terms of inputs, targets, and a loss function, we can
apply various optimization algorithms (like gradient descent) to train the neural
network effectively. So, we must care only about:

• The structure of the network (layers, activation functions).

• The choice of loss function (depends on the task).

• The optimization algorithm to minimize the loss.

This abstraction makes neural networks a versatile tool for many machine learn-
ing problems.

Example 8: Analogy

Imagine a student (the network) learning to solve math exercises.

• Inputs xn are the exercises given to the student by the teacher.

• Targets tn are the correct answers provided by the solution book.

• Network g(x,w) is the student’s method of solving the exercises,
which depends on their current knowledge (parameters w).

• Loss function E(w) measures how many answers the student got
wrong compared to the solution book.

• Optimization (training) is the process of the student studying
and adjusting their methods (updating w) to minimize mistakes
on future exercises.

Over time, with enough practice (training examples), the student im-
proves their ability to solve new exercises correctly (generalization). So
training means making fewer mistakes over time by adjusting reasoning
(weights).

85

2 From Perceptrons to FNNs 2.4 Learning and Optimization

2.4.2 Error Minimization and Loss Function (SSE)

To teach a neural network, we need a way to measure how wrong it is. That
measure is the error (loss) function. Once defined. we can minimize it by
adjusting the weights, and the process is the essence of learning.

Definition 6: Error Function

Given a training set:

D =

{
(xn, tn)

}N

n=1

(35)

And the network’s predictions:

yn = g (xn;w) (36)

The Error Function E(w) measures the total discrepancy between all
predictions and their true targets:

E(w) =

N∑
n=1

Loss(tn, yn) (37)

Where Loss (·) is the per-sample difference between the predicted and
actual value.

Definition 7: Loss Function

A Loss Function (sometimes called error or Cost Function) is a
mathematical function that quantifies how wrong a model’s
predictions are compared to the true (target) values. In other words:

Loss(t, y) = scalar measure of discrepancy between t and y (38)

Where t is the true target value, and y is the model’s prediction. The
loss function outputs a single number representing how bad the
prediction is; lower values indicate better predictions. During train-
ing/learning, the network tries to minimize this loss by adjusting its
weights, to reduce its mistakes.

It is strictly related to the Error Function E(w), which aggregates the
loss over the entire training set to give a total measure of how well the
model is performing. Indeed, for a single training example (xn, tn), we
have:

Ln = Loss (tn, g (xn;w)) (39)

Where Ln is the loss for sample n, tn is the true target, and g (xn;w) is
the model’s prediction for input xn with weights w. And the total error

86

2 From Perceptrons to FNNs 2.4 Learning and Optimization

function over all N samples is:

E(w) =

N∑
n=1

Ln =

N∑
n=1

Loss (tn, g (xn;w))

So, the loss function measures the error for one sample, while the
Error Function sums these losses over the entire dataset to give
a total error measure.

¥ The simplest and most classic choice: SSE

Exists many choices for the loss function. The simplest and most classic is the
Sum of Squared Errors (SSE). In early neural networks (and still often in
regression problems), the Sum of Squared Errors (SSE) was the standard
loss function:

E(w) =

N∑
n=1

Loss(tn, yn) =
N∑

n=1

[tn − g (xn;w)]
2 (40)

• tn is the true target for sample n.

• g (xn;w) is the network’s prediction for input xn.

Similar to the Mean Squared Error (MSE, page 69), the SSE squares the differ-
ences to makes all errors positive (so under- and over-predictions both count)
and emphasizes large errors (penalizes them more heavily). Also, squar-
ing makes the error function differentiable, which is crucial for optimization
algorithms like gradient descent.

Minimizing the SSE means finding the weights w that make the network’s pre-
dictions as close as possible to the true targets across the entire training set.
Formally, learning becomes finding the set of weights w∗ that minimize the total
error:

w∗ = argmin
w

E(w)

Each weight wi acts like a small knob controlling part of the network’s behavior.
We tweak these knobs slightly so that the network’s predictions move closer to
the true outputs. When all knobs are adjusted such that E(w) is as small as
possible, the network has learned the function.

® Geometric Interpretation

Minimizing the error means finding a point in parameter space w where
the error surface E(w) reaches its minimum. We can visualize E(w) as a
landscape: valleys represent low error (good predictions), and hills represent
high error (bad predictions). The learning process is like navigating this land-
scape to find the lowest valley, which corresponds to the optimal weights w∗

that minimize the error.

87

2 From Perceptrons to FNNs 2.4 Learning and Optimization

4 2 0 2 4
w1

4

2

0

2

4

w2

SSE Error Landscape and Gradient Descent Path

6

12

18

24

30
36

36
42

48

54

54

60

60

66

66

72

7278

78

84

90
96102

108
114

Gradient Descent Path
Global Minimum (2, -1)

Figure 9: How the Sum of Squared Errors (SSE) behaves as a function of
the model parameters (weights), and how gradient descent moves step by
step toward the minimum error point. The x-axis w1 and y-axis w2 represent two
weights (parameters) of the model/ Each contour line shows all combinations
of weights (w1, w2) that produce the same total error E(w1, w2). The loss
function we use:

E (w1, w2) = (w1 − 2)
2
+ 2 (w2 + 1)

2

Those small points connected by a line represent the path that gradient
descent follows over time. Starting from an initial guess, each step moves
downhill toward lower error, reaching the minimum point where the error is
lowest (point (2,−1) in this case). In a real network, the number of weights
isn’t just two but can be thousands or millions, making the error surface a high-
dimensional landscape. We can’t visualize that directly, but this contour map
is an analogy to help understand how optimization algorithms like gradient
descent navigate the error surface to find the best weights.

88

2 From Perceptrons to FNNs 2.4 Learning and Optimization

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Prediction y

0

1

2

3

4

5
Er

ro
r E

(y
)

1D Geometric View of SSE for a Single Prediction
E(y) = (t y)2 with t = 1.2
Minimum at y = t

Figure 10: The error function for a single training example using the Sum
of Squared Errors (SSE) loss: E(y) = (t− y)

2, where t is the true target
and y is the model’s prediction. The x-axis represents the model’s prediction y
(all possible output values the model could predict for this input sample), and
the y-axis shows the corresponding error E(y) (how wrong the model would be
for each possible prediction). This graph shows how the error changes as the
model output moves away from the correct answer. It is a parabola, because
the error grows quadratically as we move away from the correct value. At y = t,
the error is zero (the model predicts perfectly) because E(t) = (t − t)2 = 0.
As y moves away from t, the difference grows, and squaring makes it positive
and larger. The dashed vertical line marks the minimum point where the
prediction perfectly matches the target (y = t, zero error).

¡ Relation to Statistical Foundations

The squared error has a nice probabilistic interpretation. If we assume that
the target values tn are generated by a model with Gaussian noise:

tn = g(xn;w) + ϵn, ϵn ∼ N (0, σ2)

Then minimizing the sum of squared errors (SSE) is equivalent to Maximum
Likelihood Estimation (MLE) of the weights w. In other words, by minimiz-
ing SSE, we are finding the weights that make the observed data most probable
under the assumed Gaussian noise model. So the SSE is not arbitrary choice;
it has a solid statistical basis when the noise in the data is Gaussian. In the
section Maximum Likelihood Estimation (MLE) (page 103), we will explore this
connection in more detail.

89

2 From Perceptrons to FNNs 2.4 Learning and Optimization

2.4.3 Gradient Descent Basics

We’ve defined the learning goal:

w∗ = argmin
w

E (w)

Where E(w) is our error (or loss) function, for instance:

E(w) =

N∑
i=1

(tn − g(xn;w))
2

The idea of gradient descent is to find this minimum iteratively, by moving
the parameters w step by step in the direction that reduces the error.

[The Concept of the Gradient and the Key Idea of Gradient
Descent

Let’s start simple. For a function of one variable E(w), the derivative
∂ E

∂ w
at

a point w tells us the slope of the function:

• If positive → E(w) increases as w increases.

• If negative → E(w) decreases as w increases.

• If zero → E(w) is flat (local minimum or maximum).

In higher dimensions (e.g., multiple weights w1, w2, . . . , wd), we generalize the
derivative to a vector of partial derivatives:

∇E(w) =



∂ E

∂ w1

∂ E

∂ w2

...
∂ E

∂ wd


This vector, the gradient of E at w, points in the direction of steepest ascent
of the function (the direction in which E(w) increases the most rapidly).

� So, if we want to minimize E(w), we should move in the direction of steep-
est descent, which is the opposite direction of the gradient, i.e., −∇E(w).
That’s why it’s called gradient descent!

Definition 8: Gradient Descent

Gradient Descent is an iterative optimization algorithm used to
find the set of parameters (weights) that minimize a loss function.
In simple words, it is the process by which a neural network learns by
repeatedly adjusting its weights in the direction that reduces

90

2 From Perceptrons to FNNs 2.4 Learning and Optimization

the loss the most.

Formally, let w be the vector of weights, and E(w) be the loss function.
The gradient with respect to the weights is given by ∇E(w):

∇E(w) =



∂ E

∂ w1

∂ E

∂ w2

...
∂ E

∂ wk


(41)

This vector points in the direction of steepest increase of E(w). To
minimize the loss, we go in the opposite direction of the gradient.
That gives the update rule for the weights, known as Core Learning
Rule:

wk+1 = wk − η∇E(wk) (42)

Where:

• wk is the weight vector at iteration k.

• ∇E(wk) is the gradient (slope) of the error function at wk.

• η is the learning rate (step size), a small positive scalar that
controls the step size.

• wk+1 is the updated weight vector after taking a step in the direc-
tion of steepest descent.

It is called Core Learning Rule because it is the fundamental principle
underlying how neural networks learn from data by adjusting
their weights to minimize error. Everything that comes next (like
backpropagation) are all variants or extensions of this exact rule. They
all keep this same pattern:

new param = old param−(some learning rate)×(some form of gradient)

The only difference is how the gradient or learning rate is computed or
adjusted. It is a sort of DNA of learning in neural networks.

j The Neural Network Case

The previous definition is general, and it doesn’t care whether w is
one number, a list or a tensor of weights inside a neural network. How-
ever, sice we are in the context of neural networks, let’s introduce some
notation specific to them.

91

2 From Perceptrons to FNNs 2.4 Learning and Optimization

In a neural network, w isn’t just one parameter vector (one weight vec-
tor), but rather a collection of all weights and biases across all
layers:

w =
{
w

(l+1)
ij , w

(l+2)
ij , . . . , w

(L)
ij , b

(l+1)
i , b

(l+2)
i , . . . , b

(L)
i

}
(43)

Where:

• L is the total number of layers in the network.

• Each w
(l)
ij is the weight connecting neuron j in layer l−1 to neuron

i in layer l:

a
(l−1)
1

a
(l−1)
2

...

a
(l−1)
j

...

a
(l−1)
n

a
(l)
1

...

a
(l)
i

...

a
(l)
m

w (l)
11

w
(l)
12

w
(l
)

1n

w (l)1m

w (l)2m

w
(l)
nm

w
(l)
ij

• Each b
(l)
i is the bias for neuron i in layer l.

The gradient ∇E(w) then contains the partial derivatives of the loss
function with respect to each individual weight and bias in the net-
work:

∇E(w) =

{
∂ E

∂ w
(l)
ij

,
∂ E

∂ b
(l)
i

}
(44)

The core learning rule still applies, but now we update each weight
and bias individually:

w
(l)
ij ← w

(l)
ij − η

∂ E

∂ w
(l)
ij

and b
(l)
i ← b

(l)
i − η

∂ E

∂ b
(l)
i

(45)

This is how gradient descent is applied in the context of training neural
networks.

92

2 From Perceptrons to FNNs 2.4 Learning and Optimization

{ How it works (intuitively)

Intuitively, gradient descent works as follows:

1. Start from an initial guess for the weights w0 (often random).

2. Compute the gradient∇E(w0) of the loss function at the current weights:

∇E(w0) =



∂ E

∂ w1

∂ E

∂ w2

...
∂ E

∂ wd


w=w0

3. Do a step against that gradient to update the weights using the core
learning rule:

wk+1 = wk − η∇E(wk) ⇒ w1 = w0 − η∇E(w0)

Then, the new weights w1 should yield a lower loss E(w1) < E(w0). If
we were on a neural network, we would update all weights and biases
similarly:

w
(l)
ij ← w

(l)
ij − η

∂ E

∂ w
(l)
ij

, b
(l)
i ← b

(l)
i − η

∂ E

∂ b
(l)
i

4. Repeat until: the gradient becomes small (close to zero), or we reach a
maximum number of iterations.

T Convergence Speed and . False Positives. The speed at which gradi-
ent descent converges to the minimum depends on:

• The shape of the loss function (e.g., steepness, curvature). It strongly
affects how gradient descent behaves:

– Convex surface (like a bowl): Gradient descent always converges
there (since there is a single global minimum). However, if η is
too large, it may oscillate around the minimum.

– Non-convex surface (like many hills and valleys): There may be
multiple local minima and saddle points. Gradient descent
might:
. Get stuck in a local minimum (the derivative is zero, but it is

not the global optimum).
∗ Oscillate in flat regions.
∗ Move very slowly along narrow valleys.

• The learning rate η.

� The learning rate η is crucial: it controls how big a step we take
each iteration.

93

2 From Perceptrons to FNNs 2.4 Learning and Optimization

– η too small → Learning is very slow because we take tiny steps
(many iterations needed).

– η too large → May overshoot the minimum and even diverge
(loss increases instead of decreasing).

– Choosing a good η is often done via experimentation or using tech-
niques. However, if η is chosen well, gradient descent can efficiently
find a good set of weights that minimize the loss function.

Don’t worry if this seems abstract now; we’ll later learn that adaptive
optimizers (like momentum, Adam, etc.) are more robust ways to
handle this.

• The initial weights w0. In convex functions (like a parabola), there
is a global minimum, and gradient descent will converge to it. In non-
convex functions (like many neural network loss landscapes), there may
be multiple local minima, and gradient descent may converge to one of
them depending on the starting point. So in practice, we often run gra-
dient descent multiple times with different initial weights to find a good
solution.

4 2 0 2 4 6
w1

5

4

3

2

1

0

1

2

3

w
2

Convex Bowl: E(w1, w2) = (w1 2)2 + 2(w2 + 1)2

3

6

9

12
15

18

21

24

27

30

33

33

33

36

36

36

39
39

39 39

42

42

42 42

45
45

45 45

48

48

51

51

54

54

57

57

60

60

63

63

Figure 11: Example of a convex quadratic surface (bowl-shaped). The con-
tour lines (ellipses) represent levels of constant error E (w1, w2). There is a
single global minimum at the center of the bowl (w∗

1 = 2, w∗
2 = −1), and

outer ellipses represent higher error values. This is the ideal scenario for gradi-
ent descent, as it will always converge to the global minimum regardless of the
starting point (similar to Figure 9, page 88).

94

2 From Perceptrons to FNNs 2.4 Learning and Optimization

3 2 1 0 1 2 3
w1

3

2

1

0

1

2

3

w
2

Non-Convex Wavy Surface: E = (w1 1)2 + (w2 + 0.5)2 + 0.6sin(3w1)sin(3w2)

0

1

2

3

4

5

6

7

7

8

8

9

9

10

11

12

13

13

14

14

15

15

16

17

17

18

18

19

19

20

20

21

21

22

23
24

25
26

Figure 12: Example of a non-convex surface with multiple local minima
and saddle points. The loss function E (w1, w2) has two components: (1) the
quadratic bowl that pushes weights toward the global minimum, and (2) the
sinusoidal term that introduces oscillations in the surface. Those oscillations
create small waves (bumps and dips). Each dip (a small valley) is a local
minimum, and each bump is a local maximum or ridge. This is what happens in
non-linear models like deep neural networks, where the composition of many
layers and activations makes the error surface very complex (and non-convex).
There are thousands or millions of such local minima, making optimization
challenging. Gradient descent may get trapped in one of these local minima
instead of finding the global minimum. However, in practice, many local minima
have similar performance, so this isn’t always bad.

95

2 From Perceptrons to FNNs 2.4 Learning and Optimization

2.4.4 Backpropagation (Conceptual Introduction)

® Why Backpropagation exists?

The problem we face is computational:

• Gradient descent (page 90) at each iteration requires the computation of
all partial derivatives of the loss function E with respect to all weights
and biases in the network. Formally, we need to compute (introduced in
section 2.4.3, page 92):

∇E(w) =

{
∂ E

∂ w
(l)
ij

,
∂ E

∂ b
(l)
i

}

• In a network with thousands of weights, each weight influences the output
indirectly through multiple layers.

Computing those derivatives by brute force (finite differences or manual applica-
tion of the chain rule) would be computationally expensive and inefficient.
We need a more efficient way to compute these gradients.

� Backpropagation Concept

Backpropagation (or backward propagation of errors) is an efficient al-
gorithm used to compute the gradients of the loss function with respect
to all weights and biases in a neural network. It leverages the chain rule
of calculus in a systematic, efficient way to reuse computations and propagate
errors backward through the network. It is analogous to hashmaps in pro-
gramming, where intermediate results are stored and reused to avoid redundant
calculations.

Remark: The Chain Rule

The Chain Rule is a fundamental rule in calculus used to compute the
derivative of a composite function.
Suppose we have a function inside another function:

y = f (g(x))

We want to know how y changes when we slightly change x. In other

words, we want to find the derivative
∂y

∂x
. The chain rule tells us that

we can break this down into two parts:
∂y

∂x
=

∂y

∂g
· ∂g
∂x

(46)

This means that to find out how y changes with respect to x, we first
find out how y changes with respect to g (the inner function), and then
multiply that by how g changes with respect to x. It’s literally “follow
the chain” of dependencies.
Let’s see a quick example. Let’s say:

y = f (g(x)) = (2x+ 3)
2

96

2 From Perceptrons to FNNs 2.4 Learning and Optimization

We can identify:

• Inner function: g(x) = 2x+ 3

• Outer function: f(g) = g2

Now, we compute the derivatives:

•
∂f

∂g

(
g2
)
= 2g

•
∂g

∂x
(2x+ 3) = 2

Now, applying the chain rule:

∂y

∂x
=

∂f

∂g
· ∂g
∂x

= 2g · 2 = 4g

Finally, substituting back g(x):

∂y

∂x
= 4(2x+ 3) = 8x+ 12

Conceptually, Backpropagation works during the training phase of a neural
network. During training phase, there are two complementary flows of
information:

• Forward Pass (Input → Output): The purpose is to measure how
good the current weights are at predicting the target outputs.
The input data is passed through the network layer by layer to compute the
output. During this phase, the activations of each neuron are computed
and stored for later use. Formally, compute predictions y(x;w) for input
x and weights w, and save intermediate activations a(l) for each layer l.
Here, a(l) represents the activations at layer l:

a(l) = f
(
W (l)a(l−1) + b(l)

)
= f(z(l))

where f is the activation function, W (l) are the weights, and b(l) are the
biases at layer l.

• Backward Pass (Output → Input): The purpose is to know how to
change weights to reduce the loss. The error (the difference be-
tween the predicted output and the actual target) is propagated backward
through the network. During this phase, the gradients of the loss function
with respect to each weight and bias are computed using the chain rule,
utilizing the stored activations from the forward pass. Formally, compute

gradients
∂E

∂w
(l)
ij

and
∂E

∂b
(l)
i

for all weights and biases using the chain rule.

The stored activations a(l) are used to compute these gradients efficiently.

Hence the name backpropagation: the error is propagated backward through
the network to compute gradients efficiently. In the next pages, we will see a

97

2 From Perceptrons to FNNs 2.4 Learning and Optimization

detailed example of how backpropagation works step by step. Formally deriving
the backpropagation equations will be covered in later sections.

Example 9: Numerical Example of Backpropagation Concept

We’ll train a 1-hidden-layer neural network to learn the function
y = x for one input sample x = 1 and target t = 0.5. Visually, the
network looks like this:

x = 1

σ(0.7) = h

h ≈ 0.668

b
(1)
1 = 0.3

y = a(2)

y ≈ 0.434

b
(2)
1 = 0.1

target: t = 0.5

w
(1)
11 = 0.4 w

(2)
11 = 0.5

The network architecture is as follows:

• Input layer: 1 neuron, with notation a(0) = x = 1.

• Hidden layer: 1 neuron, with a sigmoid activation function:

g(1)(a) = σ(a) =
1

1 + e−a

• Output layer: 1 neuron, with notation y = w2 · h + b2. Where y
is the output, w2 is the weight connecting hidden to output layer,
and b2 is the bias of the output layer. The activation function is
linear:

g(2)(a) = a

The weights and biases are initialized as follows (randomly chosen for
this example):

• w
(1)
11 = 0.4 (weight from input to hidden layer)

• b
(1)
1 = 0.3 (bias of hidden layer)

• w
(2)
11 = 0.5 (weight from hidden to output layer)

• b
(2)
1 = 0.1 (bias of output layer)

The learning rate η is set to 0.1.

Backpropagation Step 1: Forward Pass. In this step, we compute
the activations of the hidden and output layers given the input a(0) =
x = 1.

98

2 From Perceptrons to FNNs 2.4 Learning and Optimization

1. Compute hidden layer activation (net input). The neuron has
the index i = 1 in layer l = 1 since it’s the first hidden layer
(equation 11, page 57):

a
(1)
1 = w

(1)
11 · a(0) + b

(1)
1 = 0.4 · 1 + 0.3 = 0.7

The a
(1)
1 calculated above is the weighted sum before activation.

Now, this value is passed through the sigmoid activation function:

h = g(1)
(
a
(1)
1

)
= g(1) (0.7) = σ(0.7) =

1

1 + e−0.7
≈ 0.668

2. Compute output layer activation. Again, using equation 11
(page 57), we compute the net input to the output neuron:

a
(2)
1 = w

(2)
11 · h+ b

(2)
1 = 0.5 · 0.668 + 0.1 ≈ 0.434

But now, Since the output layer uses a linear activation function,
the output is:

y = g(2)(a
(2)
1) = a

(2)
1 ≈ 0.434

3. Compute the error. The predicted output from the forward
pass is y ≈ 0.434. The error can now be computed using the target
t = 0.5. For example, using Mean Squared Error (MSE):

E =
1

2
(t− y)

2
=

1

2
(0.5− 0.434)

2 ≈ 0.0022

This error quantifies how far the network’s prediction is from the
target.

At the end of this step, we have stored (cached) some intermediate values
needed for the backward pass:

• Input activation: a(0) = 1

• Linear combo to hidden layer: a
(1)
1 = w

(1)
11 · a(0) + b

(1)
1 = 0.7

• Hidden layer activation: h = g(1)
(
a
(1)
1

)
= σ (0.7) ≈ 0.668

• Linear combo to output layer: a
(2)
1 = w

(2)
11 · h+ b

(2)
1 ≈ 0.434

• Output activation (identity): y = g(2)
(
a
(2)
1

)
≈ 0.434

• Error: E ≈ 0.0022

Backpropagation Step 2: Backward Pass. In this step, we compute
the gradients of the loss function with respect to each weight and bias
using backpropagation. We use the Mean Squared Error (MSE, page 68)
loss function:

E =
1

2
(t− y)

2

99

2 From Perceptrons to FNNs 2.4 Learning and Optimization

Where t is the target output (t = 0.5) and y is the predicted output from
the forward pass (y ≈ 0.434). We will compute the gradients layer by
layer, starting from the output layer and moving backward to the hidden
layer. Also, we will denote the error term for each layer as δ(l) and
we propagate it backward through the network (using the cached values
from the forward pass!). Simply put, we need to find ∇E(w):

∇E(w) =

{
∂ E

∂ w
(l)
ij

,
∂ E

∂ b
(l)
i

}
=

{
∂ E

∂ w
(2)
11

,
∂ E

∂ b
(2)
1

,
∂ E

∂ w
(1)
11

,
∂ E

∂ b
(1)
1

}
Where:

∂ E

∂ w
(l)
ij

=
∂ E

∂ y
· ∂ y

∂ a
(l)
i

· ∂ a
(l)
i

∂ w
(l)
ij

∂ E

∂ b
(l)
i

=
∂ E

∂ y
· ∂ y

∂ a
(l)
i

· ∂ a
(l)
i

∂ b
(l)
i

However, to avoid recomputing terms, we define the error term δ(l) for
layer l as:

δ(l) =
∂E

∂a
(l)
i

=
∂E

∂y
· ∂y

∂a
(l)
i

This allows us to express the gradients more compactly:
∂E

∂w
(l)
ij

= δ(l) · a(l−1)
j

∂E

∂b
(l)
i

= δ(l)

These equations may be unfamiliar now, but they will make sense in
future sections when we derive them formally. For now, let’s treat them
as given formulas for computing the gradients using the error terms δ(l).
Now, we compute δ(l) for each layer starting from the output layer and
moving backward to the hidden layer. The steps are as follows:

1. Compute the error at the output layer:
∂ E

∂ b
(l)
i

=
∂E

∂b
(2)
1

= δ(2) =
∂E

∂y
· ∂y

∂a
(2)
1

=
∂

∂y

(
1

2
(t− y)2

)
· 1

= −(t− y) · 1
= −(0.5− 0.434) = −0.066

It represents how much the output y deviates from the target t.
Here we used the output activation function value y from the
cached values.

2. Compute gradients for weights and biases in the output
layer:

∂E

∂w
(2)
11︸ ︷︷ ︸

∂ E

∂ w
(l)
ij

= δ(2) · a(1)1︸︷︷︸
a
(l−1)
j

= δ(2) · h ≈ −0.066 · 0.668 ≈ −0.044

100

2 From Perceptrons to FNNs 2.4 Learning and Optimization

It shows how much the weight w(2)
11 should be adjusted to reduce the

error. It will be used to update the weight during the optimization
step. Again, we used the hidden layer activation (h ≈ 0.668) from
the cached values. Now, also compute the gradient for the bias
that is obtained directly from the previously step (also cached):

∂ E

∂ b
(l)
i

=
∂E

∂b
(2)
1

= δ(2) ≈ −0.066

3. Compute the error at the hidden layer:

δ(1) = δ(2) · w(2)
11 · g′(1)

(
a
(1)
1

)
where g′(1)(a) is the derivative of the sigmoid function:

g′(1)(a) = σ(a) · (1− σ(a))

Thus,

g′(1)(0.7) = σ(0.7) · (1− σ(0.7)) ≈ 0.668 · (1− 0.668) ≈ 0.222

Where we used the cached values of the activation of the hidden
layer σ(0.7) ≈ 0.668 from the forward pass. Therefore,

δ(1) ≈ −0.066 · 0.5 · 0.222 ≈ −0.0073

4. Compute gradients for weights and biases in the hidden layer:

∂E

∂w
(1)
11

= δ(1) · a(0) ≈ −0.0073 · 1 ≈ −0.0073

∂E

∂b
(1)
1

= δ(1) ≈ −0.0073

Step 3: Update Weights and Biases. Finally, we update the weights
and biases using the computed gradients and the learning rate η = 0.1
(all the gradients are cached from the backward pass):

• Update weight from hidden to output layer:

w
(2)
11 ← w

(2)
11 − η · ∂E

∂w
(2)
11

≈ 0.5− 0.1 · (−0.044) ≈ 0.5044

• Update bias of output layer:

b
(2)
1 ← b

(2)
1 − η · ∂E

∂b
(2)
1

≈ 0.1− 0.1 · (−0.066) ≈ 0.1066

• Update weight from input to hidden layer:

w
(1)
11 ← w

(1)
11 − η · ∂E

∂w
(1)
11

≈ 0.4− 0.1 · (−0.0073) ≈ 0.40073

101

2 From Perceptrons to FNNs 2.4 Learning and Optimization

• Update bias of hidden layer:

b
(1)
1 ← b

(1)
1 − η · ∂E

∂b
(1)
1

≈ 0.3− 0.1 · (−0.0073) ≈ 0.30073

After this single iteration of forward and backward passes, the weights
and biases have been updated to better approximate the target function
y = x for the input x = 1. Repeating this process over many iterations
and samples will allow the network to learn the desired mapping.

102

2 From Perceptrons to FNNs 2.5 Maximum Likelihood Estimation (MLE)

2.5 Maximum Likelihood Estimation (MLE)
In the previous sections, we discussed how to compute gradients (backpropaga-
tion) and optimize weights (gradient descent) in neural networks. But why do
we minimize a loss function in the first place? What’s the statistical justifi-
cation for this approach? Is there a probabilistic interpretation of learning
in neural networks? And why is it important?

We’ve already seen that when we train a neural network, we minimize a loss
function E(w) (page 84). MLE gives a statistical justification for that loss:
it’s equivalent to maximizing the probability of observing our data given the
model parameters. In other words, MLE turns learning into a probability
problem.

Definition 9: Maximum Likelihood Estimation (MLE)

Let our model have parameters θ (or w in neural networks), and our
dataset be:

D = {x1, x2, . . . , xN}

We assume that each data point is drawn from a probability distribution
that depends on those parameters:

p (xn | θ)

If all samples are i.i.d. (independent and identically distributed) then
the probability of the entire dataset is:

p (D | θ) =
N∏

n=1

p (xn | θ)

This is called the likelihood function:

L (θ) = p (D | θ) =
N∏

n=1

p (xn | θ) (47)

Then the Maximum Likelihood Estimation (MLE) is the value of
θ that maximizes this likelihood:

θ̂MLE = argmax
θ

L (θ) = argmax
θ

p (D | θ) (48)

In practice, we often maximize the log-likelihood instead:

θ̂MLE = argmax
θ

logL (θ) = argmax
θ

log p (D | θ) (49)

Because the logarithm is a monotonic function, maximizing the log-
likelihood is equivalent to maximizing the likelihood itself. Also, the
logarithm allows us to turn products into sums, which are easier to work
with.

103

2 From Perceptrons to FNNs 2.5 Maximum Likelihood Estimation (MLE)

® What does i.i.d. mean?

The acronym i.i.d. stands for independent and identically distributed. It’s a
fundamental assumption in statistics that simplifies how we model data.
When we say that our samples are i.i.d., we mean two things:

1. Independent. Each observation (data point) does not depend on the
others. Formally:

p (x1, x2, . . . , xN) =

N∏
n=1

p (xn)

So, knowing x1 tells us nothing about x2, and so on. Each is separate,
independent draw from the underlying process. For example, if we toss a
coin 10 times, each toss is independent of the others, assuming the coin is
fair and the tosses don’t influence each other.

2. Identically Distributed. All samples come from the same probability
distribution. Formally:

xn ∼ p (x | θ) ∀n

This means they are generated by the same model parameters (θ) (e.g.,
same mean and variance in a Gaussian). For example, each coin toss has
the same probability (P (Head) = 0.5).

So, when we say:
x1, x2, . . . , xN

are i.i.d.∼ p (x | θ)
We mean that each sample xn is an independent draw from the same dis-
tribution underlying probability parameterized by θ. This is the standard
assumption when deriving the Likelihood:

p (D | θ) =
N∏

n=1

p (xn | θ)

Without the i.i.d. assumption, we couldn’t factor the joint probability into a
product of individual probabilities, making the analysis much more complex.

� Core Idea of MLE

The core idea of MLE is to find the parameter values that make the observed
data most probable under our assumed statistical model. By maximizing the
likelihood function, we identify the parameters that best explain the data we
have collected. Let’s illustrate this with a simple example.

Imagine a Gaussian distribution (bell curve) centered around some unknown
true mean µ̂. Each black point below the curve represents one sample (obser-
vation): x1, x2, . . . , xN . These samples:

• Come from the same distribution N
(
µ, σ2

)
, so they are identically

distributed. It means they share the same mean µ and variance σ2.

• Are drawn independently from each other, so they are independent.

If we were to repeat the sampling many times, we’d get different sets of samples,
but all coming from the same bell curve.

104

2 From Perceptrons to FNNs 2.5 Maximum Likelihood Estimation (MLE)

0 2 4 6 8 10
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y
De

ns
ity

MLE intuition: choose the hypothesis that makes the data most likely
MLE hypothesis =5.82
Wrong hypothesis =3.5
i.i.d. samples

Now, MLE asks: “which value of µ would make these observed points most
likely under the Gaussian model? ” If we shift the curve too far left or right, the
points no longer lie near its center, reducing their likelihood. The “best” µ is
the one centering the curve on the data cloud, called µ̂MLE. This µ̂MLE is the
Maximum Likelihood Estimate of the mean.

Let’s derive the MLE for the mean of a Gaussian distribution step-by-step.

1. Model assumption. We assume our data points are i.i.d. samples from
a Gaussian distribution:

x1, x2, . . . , xN ∼ N (µ, σ2)

Where σ2 is known, and µ is the parameter we want to estimate. Each
point has probability density:

p
(
xn | µ, σ2

)
=

1√
2πσ2

exp

(
− (xn − µ)

2

2σ2

)
The probability density is a function that describes the likelihood of a
random variable taking on a specific value. For continuous variables, it
indicates how dense the probability is around that value.

2. Likelihood of the dataset. The likelihood of the entire dataset, assum-
ing i.i.d. samples, is:

L (µ) = p
(
D | µ, σ2

)
=

N∏
n=1

p
(
xn | µ, σ2

)
3. Log-likelihood. We take the logarithm of the likelihood to simplify cal-

culations:

log ℓ (µ) = −N

2
log
(
2πσ2

)
− 1

2σ2

N∑
n=1

(xn − µ)
2

Derivative with respect to µ. We differentiate the log-likelihood with
respect to µ because we want to find the value of µ that maximizes it (and

105

2 From Perceptrons to FNNs 2.5 Maximum Likelihood Estimation (MLE)

the gradient tells us where the maximum is):

∂ℓ

∂µ
=− 1

2σ2
· ∂

∂µ

N∑
n=1

(xn − µ)
2

=− 1

2σ2
·

N∑
n=1

2 (µ− xn)

⇒ 1

σ2
·

N∑
n=1

(xn − µ)

4. Set derivative to zero. To find the maximum, we set the derivative
equal to zero and solve for µ, because at the maximum point, the slope of
the function is zero:

0 =
1

σ2
·

N∑
n=1

(xn − µ)

⇒
N∑

n=1

xn −Nµ = 0

⇒Nµ =

N∑
n=1

xn

⇒µ =
1

N
·

N∑
n=1

xn

Thus, the MLE for the mean of a Gaussian distribution is the sample
mean:

µ̂MLE =
1

N
·

N∑
n=1

xn (50)

This derivation shows how MLE provides a principled way to estimate model
parameters by maximizing the likelihood of the observed data. In this case, it
leads us to the intuitive result that the best estimate for the mean of a Gaussian
is simply the average of the observed samples. In simple terms, Gaussian is the
geometric intuition behind the MLE of the mean.

® Applying MLE to Neural Networks

In neural networks we do something that looks like this:

Find w∗ = argmin
w

E (w)

Where E(w) is the loss function (e.g., Mean Squared Error, Binary Cross-
Entropy). MLE gives the statistical justification for this optimization: min-
imizing these loses is equivalent to maximizing the likelihood of the observed
data under the model defined by the neural network with parameters w. So,
MLE defines what loss we should minimize, and gradient descent plus
backpropagation define how to minimize it.

106

2 From Perceptrons to FNNs 2.5 Maximum Likelihood Estimation (MLE)

1. Assume a probabilistic model for our targets. We assume each
training example (xn, tn) was generated by an unknown process:

tn ∼ p (tn | xn, w)

Where:

• xn is the input (features).

• tn is the target (label).

• w are the model parameters (weights of the neural network).

• p (tn | xn, w) is the probability of observing target tn given input xn

and model parameters w.

2. Apply the Maximum Likelihood principle. We want to find weights
that make our observed dataset as probable as possible:

ŵMLE = argmax
w

p (D | w) = argmax
w

N∏
n=1

p (tn | xn, w)

Taking the logarithm:

ŵMLE = argmax
w

N∑
n=1

log p (tn | xn, w)

Or equivalently:
ŵMLE = argmin

w
E(w)

Where:

E(w) = −
N∑

n=1

log p (tn | xn, w)

Is the negative log-likelihood loss, in neural networks often called sim-
ply the loss function (used in training).

3. Depending on the probabilistic assumptions, we get different loss
functions. For example:

• For Regression tasks, the probabilistic model is often Gaussian:

tn ∼ N
(
y (xn, w) , σ

2
)

With logarithm of the likelihood:

− 1

2σ2
·

N∑
n=1

(tn − y (xn, w))
2

This leads to the Mean Squared Error (MSE) loss (page 69):

E(w) =
1

N
·

N∑
n=1

(tn − y (xn, w))
2

w∗ = argmin
w

E(w)︸ ︷︷ ︸
optimize weights

107

2 From Perceptrons to FNNs 2.5 Maximum Likelihood Estimation (MLE)

• For Binary Classification tasks, the probabilistic model is often
Bernoulli:

tn ∼ Bernoulli (y (xn, w))

With logarithm of the likelihood:

N∑
n=1

[tn log y + (1− tn) log (1− y)]

This leads to the Binary Cross-Entropy (BCE) loss (page 73):

E(w) = − 1

N
·

N∑
n=1

[tn · ln (y (xn, w)) + (1− tn) · ln (1− y (xn, w))]

w∗ = argmin
w

E(w)︸ ︷︷ ︸
optimize weights

• For Multi-Class Classification tasks, the probabilistic model is often
Categorical:

tn ∼ Categorical (softmax(y (xn, w)))

With logarithm of the likelihood:

N∑
n=1

C∑
c=1

tn,c log yc

This leads to the Categorical Cross-Entropy (CCE) loss (page
79):

E(w) = − 1

N
·

N∑
n=1

C∑
c=1

tn,c · ln (yc (xn, w))

w∗ = argmin
w

E(w)︸ ︷︷ ︸
optimize weights

So if we assume Gaussian noise, the MLE leads to MSE; if we assume
Bernoulli labels, it leads to binary cross-entropy; and if we assume Cat-
egorical labels, it leads to categorical cross-entropy. This shows how
the choice of loss function is directly tied to our probabilistic
assumptions about the data.

In summary, MLE provides a statistical foundation for training neural net-
works by showing that minimizing common loss functions is equivalent to maxi-
mizing the likelihood of the observed data under appropriate probabilistic mod-
els. This connection helps us understand why we use certain loss functions and
guides us in choosing the right one based on the nature of our data and task.

108

2 From Perceptrons to FNNs 2.5 Maximum Likelihood Estimation (MLE)

Deepening: How to Choose the Error Function?

Now that we understand where loss functions come from via MLE, the
next question is: How do we choose the right loss function for a
given problem? The choice depends on the type of task (regression
vs. classification) and the underlying probabilistic assumptions
about the data.

1. Linear. If our model is linear and data are separable, we can use
Perceptron Loss. This loss focuses on maximizing the margin
between classes.

2. Regression Tasks. If we’re predicting continuous values, we of-
ten assume Gaussian noise in the targets. This leads us to use
the Mean Squared Error (MSE) loss, which corresponds to
maximizing the likelihood under a Gaussian model.

3. Binary Classification Tasks. If we’re classifying inputs into two
classes, we typically model the targets as Bernoulli-distributed.
This results in using the Binary Cross-Entropy (BCE) loss,
which maximizes the likelihood under a Bernoulli model.

4. Multi-Class Classification Tasks. For problems with more than
two classes, we assume a Categorical distribution for the targets.
This leads us to use the Categorical Cross-Entropy (CCE)
loss, which maximizes the likelihood under a Categorical model.

In practice, it’s essential to align our choice of loss function with our
assumptions about the data generation process. This ensures that our
training procedure is statistically sound and that we’re optimizing for
the most appropriate objective given our specific problem.

109

2 From Perceptrons to FNNs 2.6 Perceptron Learning Algorithm

2.6 Perceptron Learning Algorithm
After understanding how modern feed-forward neural networks are trained
(through gradient descent, backpropagation, and MLE), we now return
to the first learning rule ever proposed for neural models: the Perceptron
Learning Algorithm (PLA), introduced by Frank Rosenblatt in 1957.

® Why study this old algorithm after learning about modern
techniques?

Because it is actually the ancestor of the entire modern training framework we
just saw (gradient descent, error minimization, MLE, backpropagation). In sim-
ple terms, backpropagation didn’t appear out of nowhere: it is a generalization
of the Perceptron rule. Rosenblatt’s 1957 perceptron was the first algorithm
that learned from data autonomously. It introduced three ideas that survive
today in modern deep learning:

1. Weighted sum of inputs → decision. The perceptron computes a
weighted sum of its inputs and applies a threshold to decide its
output (0 or 1). This is the basis of all neural networks. We have already
formalized this as:

a = wTx+ b

2. Error-based correction. The perceptron updates its weights based
on the error it makes on each training example. This is the core idea
of learning from data, which we have seen in modern networks through
loss functions and gradient descent.

3. Iterative improvement. The perceptron learning algorithm itera-
tively adjusts its weights over multiple passes through the train-
ing data, refining its decision boundary. This iterative process is funda-
mental to modern training algorithms, including stochastic gradient de-
scent.

Every deep learning model, even a transformer, still rests on these same princi-
ples.

Remark: What is an algebraic hyperplane?

In Rd a (linear) Hyperplane is the set of points x ∈ Rd that satisfy a
single linear equation of the form:

wTx+ w0 = 0

Where:

• w ∈ Rd is the normal vector (perpendicular to the hyperplane).

• w0 is the bias/offset shifting the hyperplane from the origin (or b
in our notation).

• The signed distance of any point x from the hyperplane is given

110

2 From Perceptrons to FNNs 2.6 Perceptron Learning Algorithm

by:

d (x,Π) =
wTx+ w0

∥w∥
Its sign tells the side of the hyperplane; its magnitude is the
perpendicular distance.

For a linear classifier (perceptron), we assign class by the sign:

class(x) = sign
(
wTx+ w0

)
In 2D, a hyperplane is a line (see below). In the following figure, the
hyperplane separates two classes of points in R2. Two example points
are projected perpendicularly onto the hyperplane to illustrate their dis-
tances.

2 1 0 1 2 3 4
x1

2

1

0

1

2

3

4

x 2

normal w

d=0.30

d=-0.70

Algebraic hyperplane in 2D: geometry, normal, and signed distance
Hyperplane w x + w0 = 0
Class +1 (t=+1)
Class -1 (t=-1)

The perceptron learning algorithm is designed for binary classification tasks
where the data is linearly separable. It iteratively adjusts the weights of the
perceptron based on the errors it makes on the training data, aiming to find
a hyperplane that separates the two classes. So, we want to derive an error
function that expresses how wrong the perceptron is, such that we can later
minimize it using a gradient-based rule.

1. Start from the algebraic hyperplane . For a linear classifier, the deci-
sion boundary is ahyperplane:

wTx+ w0 = 0

Where:

111

2 From Perceptrons to FNNs 2.6 Perceptron Learning Algorithm

• w is the normal vector to the plane (its orientation).

• w0 is the bias term (offset from the origin).

• x is an input vector (sample).

Every point xi can lie:

• Above the plane if wTxi + w0 > 0 (positive side, class +1).

• Below the plane if wTxi + w0 < 0 (negative side, class −1).
• On the plane if wTxi + w0 = 0 (neutral).

The value calculated by wTxi + w0 is called the activation, algebraic
distance or net input (page 57):

ai = wTxi + w0

2. Encode class labels as ti ∈ {+1,−1}

• If a sample belongs to the positive class, set ti = +1.

• If it belongs to the negative class, set ti = −1.

Then the predicted class (the output of the perceptron) is given by:

ŷi = sign (ai) = sign
(
wTxi + w0

)
3. Determine whether a sample is correct or misclassified. We mul-

tiply the predicted algebraic distance by the true label ti:

ti · ai ⇒ ti ·
(
wTxi + w0

)
This product indicates correctness:

Case Expression Meaning

Correctly classified ti
(
wTxi + w0

)
> 0 Sample lies on the correct

side of the hyperplane.
Misclassified ti

(
wTxi + w0

)
< 0 Sample lies on the wrong

side.
Exactly on the boundary ti

(
wTxi + w0

)
= 0 Neutral (rare case).

So this single product already encodes correctness of the classification.

4. Define the set of misclassified samples. We now define the set of
misclassified samples M as:

M =
{
i | ti

(
wTxi + w0

)
< 0
}

These are the indices of samples that are on the wrong side of the hyper-
plane (i.e., misclassified).

112

2 From Perceptrons to FNNs 2.6 Perceptron Learning Algorithm

5. Measure “how wrong” those samples are. Each misclassified point
xi with i ∈M lies at a signed distance from the hyperplane given by:

di =
wTxi + w0

|w|

Since the point is misclassified, ti ·
(
wTxi + w0

)
< 0, so the signed dis-

tance is negative (i.e., it’s on the wrong side). To simplify, we can just
use the activation ai = wTxi + w0 as a measure of error (ignoring the
normalization by |w|). This simplification isn’t a problem because it only
scales the error, not its direction.

6. Build an error function using those distances. To quantify the
total error made by the perceptron, we sum the negative activations of all
misclassified samples. So, we want a scalar function D (w,w0) that:

• Is positive when there are misclassifications.

• Is zero when all samples are correctly classified.

• Increases when misclassified points are further from the decision
boundary.

Simply summing the negative activations of misclassified points achieves
this:

D (w,w0) = −
∑
i∈M

ti ·
(
wTxi + w0

)
Where:

• wTxi +w0 is the algebraic distance (activation) of sample i from the
hyperplane.

• ti is the true label (+1 or −1) that flips the sign for misclassified
points (flipping it makes it negative when misclassified).

• The negative sign in front ensures that D is positive when there are
misclassifications (since ti ·

(
wTxi + w0

)
< 0 for misclassified points).

• The sum over i ∈ M aggregates the errors from all misclassified
samples.

So this function is large when many points are misclassified or far
away, and zero when all points are correctly classified.

7. Objective: Minimize this error function. The perceptron learning
algorithm aims to find weights w and bias w0 that minimize the error
function D (w,w0). Formally:

min
w,w0

D (w,w0) = min
w,w0

(
−
∑
i∈M

ti ·
(
wTxi + w0

))

Minimizing D will push ti ·
(
wTxi + w0

)
to be positive for all samples,

meaning all points will be correctly classified.

113

2 From Perceptrons to FNNs 2.6 Perceptron Learning Algorithm

Now that we have defined the error function D (w,w0) that quantifies how wrong
the perceptron is, we can proceed to derive the Perceptron Learning Algo-
rithm by finding a way to update the weights w and bias w0 to minimize this
error. This will involve computing the gradients of D with respect to w and w0,
and using these gradients to iteratively adjust the parameters in the direction
that reduces the error. In simple terms, we have developed the recipe (the error
function) and now we will derive the cooking instructions (the learning rule).

1. Compute the gradient. We’ll compute the partial derivatives with
respect to w and w0:

∂D

∂w
= −

∑
i∈M

ti ·
∂
(
wTxi + w0

)
∂w

= −
∑
i∈M

ti · xi

∂D

∂w0
= −

∑
i∈M

ti ·
∂
(
wTxi + w0

)
∂w0

= −
∑
i∈M

ti · 1

2. Apply gradient descent. Gradient descent updates parameters in the
direction opposite to the gradient to minimize the error:

w(new) = w(old) − η · ∂D
∂w

w
(new)
0 = w

(old)
0 − η · ∂D

∂w0

Where η is the learning rate (a small positive constant). Substituting the
partial derivatives calculated earlier:

w(new) = w(old) − η ·

(
−
∑
i∈M

ti · xi

)
= w(old) + η ·

∑
i∈M

ti · xi

w
(new)
0 = w

(old)
0 − η ·

(
−
∑
i∈M

ti

)
= w

(old)
0 + η ·

∑
i∈M

ti

. Trying to optimize over all misclassified points at once. Here,
we are happy to see that the updates add contributions from all mis-
classified points, pushing the weights and bias in the direction that
reduces their error (i.e., moves all misclassified points to the correct side
of the hyperplane

∑
i∈M ti · xi and

∑
i∈M ti).

However, this approach can be computationally expensive for large
datasets since it requires summing over all misclassified points in each
update. Furthermore, there is no randomness, which can lead to slow
convergence and getting stuck in suboptimal solutions. To address these
issues, we can add a pinch of stochasticity to the learning process.

114

2 From Perceptrons to FNNs 2.6 Perceptron Learning Algorithm

3. Make it stochastic. The word “stochastic” means “involving randomness
or uncertainty”. It comes from the Greek “stochastikos”, meaning “able to
guess” or “randomly determined ”. So a stochastic process is one that
includes random variables or random choices; instead, a deterministic
process always behaves the same way for the same inputs (no random-
ness). In neural networks, stochastic means that we don’t compute the
gradient using all training data at once, but rather we approximate it
using a subset (or even a single sample). This introduces a bit of random
noise in each update, but makes learning faster and more dynamic.

In perceptron learning algorithm, computing the whole sum over all mis-
classified points M can be expensive and inefficient, especially for large
datasets. Instead, we can update one misclassified point at a time:

w(new) = w(old) + η · ti · xi

w
(new)
0 = w

(old)
0 + η · ti

• ti · xi are the points in the direction that will move xi to the correct
side of the hyperplane.

• η > 0 is the learning rate (small step size).

This approach is called Stochastic Gradient Descent (SGD) (or
Batch Gradient Descent with batch size 1, where the batch size is
the number of samples used to compute the gradient at each
step) because we use a single (or a few) random samples to approximate
the gradient, rather than the full dataset.

This makes the learning process more efficient and allows the perceptron to
adapt quickly to new data because each update is based on the most recent
misclassification and not the entire dataset at once. See the Figure 13 for
an illustration of stochastic vs full-batch updates (page 116).

4. Interpret geometrically. We can interpret the updates geometrically:

• Case 1: Point correctly classified. If ti ·
(
wTxi + w0

)
> 0, no

update is made.

• Case 2: Point misclassified. If ti ·
(
wTxi + w0

)
< 0, then update

using:

w ← w + η · ti · xi

w0 ← w0 + η · ti

This pushes the hyperplane towards the misclassified point, re-
ducing its error D (w,w0).

Intuitively:

• If ti = +1 (positive class), the point is misclassified, so we add xi to
w to move the hyperplane closer to w.

• If ti = −1 (negative class) and the point is misclassified, we subtract
xi from w to move the hyperplane away from w.

115

2 From Perceptrons to FNNs 2.6 Perceptron Learning Algorithm

3 2 1 0 1 2 3 4 5
a (slope)

4

3

2

1

0

1

2

3

b
(in

te
rc

ep
t)

Batch Gradient Descent vs Stochastic Gradient Descent on Linear Regression Loss

0.6

1.2

1.8
2.4

3.0

3.6

4.2
4.8

5.46.0

6.6 6.6

7.2

7.2

7.8

7.8

7.8
8.4

8.4
8.4

9.0 9.0

9.0

9.0

9.6 9.6

9.6

9.6

10.2 10
.2

10.2
10.2

10.8

10
.8

10
.8

10.8

11.4 11
.4

11.4

11.4

12.0

12
.0

12
.0

12.0

12
.6

12
.6 12.6

13
.2

13.2

Batch GD (full gradient)
SGD (stochastic updates)
Start
True parameters

Figure 13: An illustration example of stochastic updates vs full-batch updates.
The contours are the MSE loss for a simple linear regression in parameter
space (a, b). Batch Gradient Descent follows a smooth path (solid line) using
the full dataset gradient each step, while Stochastic Gradient Descent
(dashed line) takes a more erratic path using individual sample gradients,
leading to faster but noisier convergence.

1 // Init
2 Initialize w, w0 = small random values
3 Set learning rate η > 0

4 // Training loop
5 while not converged:
6 for each training sample (xi, ti):
7 // Compute activation
8 ai = wT xi + w0

9 // If misclassified update weights and bias
10 if ti · ai ≤ 0:
11 w ← w + η · ti · xi

12 w0 ← w0 + η · ti

Listing 1: Perceptron Learning Algorithm

116

2 From Perceptrons to FNNs 2.7 Summary

2.7 Summary
This section starts with the simplest neuron (the perceptron, page 38) and
ends with the first learning algorithm (the Perceptron Learning Rule), show-
ing how these early ideas evolved into the modern feed-forward networks that
can learn complex, non-linear patterns.

1. Where we started: the Perceptron model (page 38). At the begin-
ning of the chapter, we see historical context: the perceptron as the first
trainable neural network model, invented by Frank Rosenblatt in 1957.
It introduced the idea of adjusting weights based on errors to learn from
data:

y = sign
(
wTx+ b

)
This was the first artificial neuron, a linear classifier with a hard thresh-
old activation function. However, it could only solve linearly separable
problems and had limitations (e.g., XOR problem).

2. Multilayer networks (FNNs). To overcome this limitation, we intro-
duced hidden layers, differentiable activations (sigmoid, tanh), and
continuous outputs. Now the model can approximate any continu-
ous function, not just linear boundaries. This is what transforms the
perceptron into a Feed-Forward Neural Network (FNN).

3. How do we train these networks? That lead to:

• Gradient descent: an optimization algorithm to minimize the loss
function by iteratively updating weights in the direction of the steep-
est descent.

• Backpropagation: an efficient way to compute gradients for all
weights in the network using the chain rule of calculus (a sort of
cache mechanism to avoid redundant calculations).

• Maximum Likelihood Estimation (MLE): a statistical frame-
work to derive loss functions (e.g., cross-entropy for classification,
mean squared error for regression) based on the likelihood of the
observed data given the model parameters.

We saw how modern NNs learn, layer by layer, using data and gradients.

4. Return to the perceptron learning algorithm. Once we understood
how modern networks learn, we revisited the Perceptron Learning Al-
gorithm as a simple case of these principles. It uses a Stochastic Gradient
Descent (SGD) approach to update weights based on individual training
examples.

117

3 Neural Networks and Overfitting

3 Neural Networks and Overfitting

3.1 Universal Approximation Theorem
During the 1980s, researchers were trying to understand the theoretical
power of neural networks. Before this period, many scientists were skeptical
about the capabilities of neural networks: “could neural networks really learn
any kind of relationship between inputs and outputs, or were they limited to
simple functions? ”. In 1989-1991, a series of papers by:

• George Cybenko (1989): “Approximation by superpositions of a sig-
moidal function” [1];

• Kurt Hornik (1991): “Approximation Capabilities of Multilayer Feed-
forward Networks” [3].

Proved rigorously that: even a single hidden layer feed-forward neural net-
work with enough neurons and a non-linear activation (like sigmoid or tanh) can
approximate any continuous function on a compact domain of Rn to any de-
sired degree of accuracy. This result gave mathematical legitimacy to neural
networks, showing that they are not just pattern machines, but theoretically
universal function approximators.

[Formal Statement

Let’s formalize the theorem.

Theorem 2 (Universal Approximation Theorem). Let f : Rn → R be a
continuous function defined on a compact set K ⊂ Rn.

Then, for any smaller number ε > 0, there exists a neural network function
F (x) of the form:

F (x) =

m∑
j=1

αj · g
(
wT

j x+ bj
)

(51)

Such that:
|F (x)− f(x)| < ε ∀x ∈ K (52)

Where:

• g (·) is a nonlinear, continuous, bounded activation function (e.g.,
sigmoid, tanh);

• αj , wj , bj are the network parameters (weights and biases);

• m is the number of neurons in the hidden layer.

• ε is the desired approximation accuracy.

In other words, with enough hidden neurons, a simple feedforward neural
network can represent any function, no matter how complex.

118

3 Neural Networks and Overfitting 3.1 Universal Approximation Theorem

� Intuition

The Universal Approximation Theorem tells us that neural networks are
incredibly powerful function approximators. Even with just a single
hidden layer, they can learn to represent any continuous function to an
arbitrary degree of accuracy, as long as we provide enough neurons. This is be-
cause the non-linear activation functions allow the network to combine simple
building blocks (the outputs of individual neurons) into complex structures
that can capture intricate patterns in the data. However, it’s important to note
that while the theorem guarantees the existence of such a network, it does not
provide a practical way to find the right architecture or parameters, nor does it
address issues like overfitting or generalization to unseen data.

) Geometric Intuition. Geometrically, each neuron in the hidden layer
defines a non-linear “bump” or “ridge” in the input space. By combining
enough of these bumps (weighted by αj), the network can shape its output
to follow any desired surface. Visually, if we had a 2D function f(x1, x2), each
hidden neuron adds a small deformation to the surface. Stacking many of them
yields a highly flexible model:

f(x1, x2) ≈
m∑
j=1

αj · g (wj1 · x1 + wj2 · x2 + bj)

So, neural networks are universal sculptors of mathematical functions, capa-
ble of molding their outputs to fit any continuous shape we desire.

{ Practical Implications

The theorem tells us existence, not constructability (it says a perfect net-
work exists, but not how to find its weights efficiently). In practice, we rely on
training algorithms (like backpropagation), which may get stuck in local
minima or underfit/overfit the data. Also, even though a single layer is the-
oretically enough, deep networks (many layers) cam approximate the same
function with fewer neurons and more efficient representations. This is why
deep learning became the dominant paradigm.

8 Ockham’s Razor and Model Simplicity

The idea dates back to William of Ockham (c. 1285-1349), a Franciscan
friar and philosopher who formulated a logical and methodological principle still
fundamental to science and machine learning “Entia non sunt multiplicanda
praeter necessitatem” (entities must not be multiplied beyond necessity). In
essence, prefer the simplest explanation that fits the data. This became
known as Ockham’s Razor, where “razor” metaphorically represents the act
of cutting away unnecessary complexity.

In the context of Neural Networks and Deep Learning, Ockham’s Razor sug-
gests that when building models, we should favor simpler architectures that
adequately capture the underlying patterns in the data without introducing un-
necessary complexity. In other words, among all models that can explain the

119

3 Neural Networks and Overfitting 3.1 Universal Approximation Theorem

3 2 1 0 1 2 3
1.0

0.5

0.0

0.5

1.0
5 iterations

True function (sin x)
Neural Network Approximation

3 2 1 0 1 2 3
1.0

0.5

0.0

0.5

1.0
10 iterations

True function (sin x)
Neural Network Approximation

3 2 1 0 1 2 3
1.0

0.5

0.0

0.5

1.0
25 iterations

True function (sin x)
Neural Network Approximation

3 2 1 0 1 2 3
1.0

0.5

0.0

0.5

1.0
50 iterations

True function (sin x)
Neural Network Approximation

Universal Approximation: sin(x) NN(x)

Figure 14: This grid of four plots illustrates how a simple 1-hidden layer network
(with 20 neurons) can approximate a nonlinear function, such as a sine wave.
This simple 1-hidden layer neural network learns to approximate sin(x) even
though we never told it what “sine” is. Also, this example shows how increasing
the number of iterations allows the network to better fit the target function.

120

3 Neural Networks and Overfitting 3.1 Universal Approximation Theorem

training data, choose the one with the lowest complexity that still generalizes
well to unseen data. Because neural networks are universal approximators, they
can model almost anything, including true underlying patterns and random
noise. But this flexibility is dangerous: a too-powerful model may memorize
the training data rather than learn patterns, leading to overfitting. However,
a model that is too simple may underfit, failing to capture important struc-
tures in the data. Thus, Ockham’s Razor guides us to find a balance between
simplicity and complexity, aiming for models that are just complex enough to
capture the true patterns without overfitting.

Remark: What is Overfitting?

Overfitting occurs when a model learns not just the true patterns
in the data, but also the random noise. It’s like memorizing answer
for an exam instead of understanding the subject; we do well on the
questions we saw before (training data), but fail on new ones (test data).
Imagine fitting a curve to data points:

Fit Type Description

Underfitting The model is too simple (e.g., a straight line
when the pattern is curved), it misses impor-
tant structure.

Good Fit The model captures the true pattern without
being too complex.

Overfitting The model bends and twists to go exactly
through every training point, even if those
points contain random noise.

. Our model is overfitting when we observe the following:

• Training error: very low • Test error: high

The model performs too well on the training set because it’s memo-
rized it, not generalized it. Usually, we can spot overfitting by plotting
training and test errors over time:

0 20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Typical Overfitting Behavior
Training loss
Validation loss

121

3 Neural Networks and Overfitting 3.1 Universal Approximation Theorem

Remark: What is Underfitting?

Underfitting occurs when a model is too simple to capture the un-
derlying structure or patterns of the data. It performs poorly not only
on unseen (test) data but also on the training data. Formally, if f(x)
is the true function we want to learn, and f̂ is our model’s prediction,
underfitting means that:

f̂(x) cannot approximate f(x) even on the training set

So, the training error remains high, and naturally the test error
will be high as well.

We can think of underfitting as using a too rigid model for a complex
relationship. For example, trying to fit a straight line to data that
follows a sinusoidal curve, or training a neural network with too few
neurons/layers, so it can’t represent the non-linearities of the data.
The model simply doesn’t have enough capacity (parameters, com-
plexity, expressiveness) to learn the data’s structure.

0 1 2 3 4 5 6
x

1.5

1.0

0.5

0.0

0.5

1.0

y

Underfitting vs Good Fit vs Overfitting
Training data
True function (sin x)
Underfitting (degree=1)
Good fit (degree=5)
Overfitting (degree=15)

. In a neural network context, underfitting can occur when:

• It has too few neurons or layers to represent the data completely.

• The training time is too short → not enough gradient updates
to learn the patterns.

• The learning rate is too high → never converges properly.

• Strong regularization (e.g., large weight decay, dropout) limits
learning capacity.

• Features are not informative (bad processing, missing normal-
ization).

122

3 Neural Networks and Overfitting 3.2 Model Complexity

3.2 Model Complexity
Machine learning, and neural networks in particular, are based on an inductive
assumption: “if a model performs well on a large and representative set
of training examples, then it will also perform well on unseen examples
drawn from the same distribution”. This is called Inductive Hypothesis (or
Inductive Bias) because it assumes that the patterns learned from the training
data will generalize to new data.

In other words, we trust that patterns learned from the training data
generalize to future data, as long as the data are independent and iden-
tically distributed (i.i.d.), and the model captures the true underlying
structure rather than random noise.

Formally, if:
Etrain = E(x,t)∼Dtrain

[
(f(x;w)− t)

2
]

is the expected training error, and

Etest = E(x,t)∼Dtest

[
(f(x;w)− t)

2
]

is the expected test error, where Dtrain and Dtest are drawn from the same
distribution, then the inductive hypothesis assumes Etrain ≈ Etest when:

• Dtrain ≈ Dtest (i.i.d. data)

• The model has learned general rules rather than memorizing specific
examples (i.e., it has not overfitted)

If that assumption breaks (e.g., due to too high complexity, data shift, or
small dataset), generalization fails, leading to poor performance on unseen
data.

® How can we quantify model complexity?

The complexity of a neural network is determined by several factors, including:

• The number of parameters (weights and biases) in the network: More
parameters generally mean higher complexity.

• The depth of the network (number of layers): Deeper networks can cap-
ture more complex patterns.

• The nonlinearities introduced by activation functions: More complex
activation functions can increase the model’s capacity to learn intricate
patterns.

• The regularization applied. Regularization is a technique used to reduce
model complexity and prevent overfitting.

As complexity increases, the model’s capacity to fit the data grows.

123

3 Neural Networks and Overfitting 3.2 Model Complexity

® Not too complex, not too simple: how to find the right balance?

Finding the right model complexity is crucial for good generalization. This
involves balancing:

• Underfitting: When the model is too simple to capture the underlying
patterns in the data, leading to high bias and poor performance on both
training and test data.

• Overfitting: When the model is too complex and captures noise in the
training data, leading to low training error but high test error (high vari-
ance).

This balance is often referred to as the Bias-Variance Trade-off , a mathe-
matical intuition that helps explain the relationship between model complexity,
bias, and variance:

Etest = E

[(
y − f̂(x)

)2]
=

(
Bias2

)︸ ︷︷ ︸
Systematic error

+ Variance︸ ︷︷ ︸
Sensitivity error

+ Noise︸ ︷︷ ︸
Irreducible error

(53)

Where:

• Etest is the expected test error.

• y is the true output.

• f̂(x) is the model’s prediction.

• Bias is the systematic error introduced by approximating a real-world
problem with a simplified model. High bias can cause the model to miss
relevant relations between features and target outputs (underfitting). For
example, a linear model trying to fit a highly nonlinear relationship will
have high bias.

• Variance is the sensitivity error due to fluctuations in the training data.
High variance can cause the model to model the random noise in the
training data rather than the intended outputs (overfitting). For example,
a very deep neural network with many parameters may fit the training data
perfectly but perform poorly on unseen data.

• Noise is the irreducible error inherent in the data itself, which cannot be
eliminated by any model. For example, measurement errors or inherent
randomness in the data generation process contribute to noise.

The goal is to find a model complexity that minimizes the total error, which
is the sum of bias and variance, paying attention to underfitting (high bias,
low variance) and overfitting (low bias, high variance). In practice, the in-
ductive hypothesis is what makes machine learning possible, model
complexity decides whether this hypothesis holds or breaks, and the
bias-variance trade-off provides a framework to understand and man-
age this balance.

124

3 Neural Networks and Overfitting 3.2 Model Complexity

Definition 1: Inductive Hypothesis

The Inductive Hypothesis (or inductive bias) is the fundamental
assumption that a model that performs well on the training data
will also perform well on unseen data, proved that both come from
the same underlying distribution.

In mathematical terms:

Etest ≈ Etrain if Dtrain ∼ Dtest (54)

Where Etrain and Etest are the expected training and test errors, respec-
tively, and Dtrain and Dtest are the training and test data distributions;
the ∼ symbol indicates that both datasets are drawn from the same
distribution.

This assumption underlies all machine learning: without it, no matter
how low the training error is, we would have no reason to believe the
model will generalize to new data.

0.0 0.2 0.4 0.6 0.8 1.0
Model Complexity (parameters, layers, degree...)

0.1

0.2

0.3

0.4

Er
ro

r

Error vs Model Complexity

Training Error
Test Error
Optimal Complexity

Figure 15: This plot illustrates the Model Complexity vs. Error Curve,
showing how training and test errors evolve as model complexity increases,
giving the classic U-shaped curve for test error. Initially, as model complexity
increases, both training and test errors decrease, indicating better fit to the data.
However, beyond a certain point (the optimal complexity), the test error starts
to increase due to overfitting, while the training error continues to decrease.
The optimal model complexity is where the test error is minimized, balancing
bias and variance effectively.

125

3 Neural Networks and Overfitting 3.3 Measuring Generalization

3.3 Measuring Generalization
When we train a neural network, we typically monitor the training loss (i.e.,
how well the model predicts the training data). However, a low training error
does not necessarily mean that our model is generalizing well to unseen data.

. The model has seen the training data. The model’s parameters
were directly optimized to minimize that same error. So it’s like asking
a student to re-solve the same exercises used in the exam preparation.
Success there tells us nothing about their ability to handle new ones.

Etrain = Empirical Risk (on known data)

Etest = True Risk (on unseen data)

. Optimism bias. Since the model learned from those points, the estimate
of performance on that data is optimistically biased, it always looks
better than reality.

Etrain ≤ Etest

Always true for flexible models that can overfit the training data. The
more complex the model, the stronger the bias (the model can fit noise,
artificially lowering training error Etrain).

. Example. Imagine fitting a very flexible polynomial to noisy data:

• With degree 1 (linear), training error is high (underfitting).

• With degree 15, training error goes to zero, but the curve oscillates
widly. Test error on unseen data is huge (overfitting).

That’s why we cannot rely on training error Etrain to assess generalization.
It doesn’t measure generalization, only memorization of training data.

2 4 6 8 10 12 14
Model Complexity (Polynomial Degree)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

Why Training Error Can Mislead Us
Training Error
Test Error

126

3 Neural Networks and Overfitting 3.3 Measuring Generalization

® How to measure generalization?

To correctly measure generalization, we must evaluate on data the model
has never seen during training. This is done by dataset splitting. We
divide the available dataset D into disjoint subsets:

Set Purpose Size

Training set Learn model parameters (weights, bi-
ases).

During training.

Validation set Tune hyperparameters, monitor over-
fitting.

During training.

Test set Asses final generalization performance. After training.

The goal is:
Training data → Model fitting

Validation data → Model selection
Test data → Model assessment

This ensures that the test error Etest is an unbiased estimate of the model’s
true generalization performance on unseen data.

® Okay, but how to split the data?

The most common approach is Random Subsampling (or Hold-Out Method):

1. Randomly shuffle the dataset D.

2. Randomly split our dataset into three disjoint subsets, for example:

• 70% for training,
• 15% for validation,
• 15% for testing.

3. Train on the training set.

4. Tune on the validation set.

5. Evaluate once on the test set.

Because of the randomness in sampling, we often repeat the split several times
(with different seeds) and average the results to reduce bias. This process
is, of course, automated using libraries like scikit-learn (Python), not done
manually.

. Use Stratified Sampling. Imagine we have a dataset for binary classifi-
cation with 90% of class A and 10% of class B. That means 90% of our data are
Class A and only 10% are Class B (class imbalance). If we randomly split our
dataset into training and test sets (say, 80% training, 20% test), there’s a risk
that one of the splits contains almost no examples of Class B. To avoid this, we
use Stratified Sampling, which ensures that each subset (train, validation
and test) preserves the same class properties as the original dataset.
In our example, both training and test sets would have approximately 90% of
Class A and 10% of Class B, maintaining the class distribution.

127

3 Neural Networks and Overfitting 3.4 Terminology Clarifications

3.4 Terminology Clarifications
In the context of neural networks and deep learning, certain terms are often
used interchangeably or may have nuanced meanings depending on the context.
Here are some clarifications on commonly used terminology:

• Training Dataset. Let’s start from the whole thing we have available to
us. The training dataset (sometimes called the available dataset) is the
complete collection of samples we can access for building and evaluating
our model. It contains all our labeled examples:

D = {(xi, ti)}Ni=1

But we will not train our model on all of them at once. We’ll split them
into smaller subsets with different purposes.

• Training Set. The training set is the portion of the data used to fit
the model parameters (i.e., to adjust the weights and biases so that the
network learns patterns). It is used during backpropagation and gradient
descent. The loss computed on this set is called the training loss and
drives weight updates. Performance on this set tells us if the model is
learning, but not if it generalizes well.

Etrain =
1

Ntrain

Ntrain∑
i=1

(ti − f (xi;w))
2

We can monitor the training loss over epochs to see if the model is con-
verging, but it’s not sufficient to decide if the model is “good” (we’ll soon
use validation for that).

• Validation Set. The validation set is used to evaluate and tune the
model during training, without directly affecting the weights. It’s like a
“preview” of how the model will perform on new data. The main purposes
of the validation set are:

– Selecting hyperparameters (like learning rate, number of neurons,
regularization, dropout rate, etc.).

– Performing early stopping (detecting overfitting by monitoring val-
idation loss).

– Comparing different model architectures.

We typically compute a validation loss or validation accuracy after
each epoch:

Eval =
1

Nval

Nval∑
i=1

(ti − f (xi;w))
2

When validation error starts increasing while training error decreases, it’s
a sign of overfitting.

• Test Set. The test set is used only once, at the very end, to obtain
an unbiased estimate of the models generalization performance.
It acts as a simulation of the real world : the model has never seen these

128

3 Neural Networks and Overfitting 3.4 Terminology Clarifications

samples during training or validation. No gradient updates or hyperpa-
rameter tuning should be done based on test set performance. Its purpose
is final assessment only.

Etest =
1

Ntest

Ntest∑
i=1

(ti − f (xi;w))
2

After we’ve looked at the test performance, we should not go back and
tune hyperparameters, otherwise the test set stops being “unseen” data,
and our estimate becomes optimistically biased.

• Golden Rule: Always keep the test set completely separate until the
very end. Use training and validation sets for model development, and
only use the test set for final evaluation. So, never use validation/test
data to update model weights.

Training
Set

Validation
Set

Test
Set

Learn weights
(fit model)

Tune hyperparams
+ Early stopping

Final eval
(no retraining)

Training Dataset (Available Data)

Figure 16: Visualization of the relationships between training, validation, and
test sets within the overall training dataset.

129

3 Neural Networks and Overfitting 3.5 Cross-Validation Techniques

3.5 Cross-Validation Techniques
Cross-Validation is the use of the training dataset to both: train the model
(parameter fitting and model selection), and estimate its error on new data.
In other words, we don’t need a separate external test dataset for every trial,
we can reuse the available data intelligently (e.g., part for training, part for
checking generalization).

� Main Idea. Instead of holding out a single fixed portion (like in the simple
hold-out method), cross-validation systematically rotates which samples are
used for training and which for validation. Each sample eventually acts as
validation data once and training data many times. Thus, we can:

• Train multiple models on different training subsets;

• Validate each on the complementary subset;

• Average the validation errors to get a more robust estimate of the
model’s true performance on unseen data.

It is especially useful when the dataset is limited, as it maximizes the use of
available data for both training and validation. However, other techniques (like
hold-out, LOOCV, K-Fold) are specific implementations of cross-validation with
different trade-offs in terms of bias, variance, and computational cost. In the
following, we explore some of these techniques.

130

3 Neural Networks and Overfitting 3.5 Cross-Validation Techniques

3.5.1 Hold-Out Validation

The Hold-Out Validation (or Hold-Out Method) is the simplest form of
cross-validation. It consists of dividing the available dataset into two or three
subsets, each serving a specific role in training, tuning, and evaluating the
model. This method provides a first, practical way to test the inductive hy-
pothesis, that a model performing well on unseen data will also generalize to
future examples (page 123).

® How does it work?

In the typical three-way split, we start from the training dataset, i.e., all
the data we can use to develop the model, we then split it into disjoint subsets:

• Training Set: This subset is used to parameter fitting, i.e., to train
the model by adjusting its weights based on the input-output pairs.

• Validation Set: This subset is used to model selection, i.e., to evaluate
different model configurations (e.g., architectures, hyperparameters) and
select the best one based on its performance on this set.

• Test Set (hold-out): This subset is used to model assessment, i.e., to
provide an unbiased evaluation of the final model’s performance on unseen
data after training and validation are complete.

The steps are as follows:

1. Divide the available dataset into training and validation (and possibly
test) sets.

2. Train the neural networks using only the training set.

3. Validate periodically on the validation set to monitor generalization:

• Tune hyperparameters (e.g., learning rate, architecture) based on
validation performance.

• Apply early stopping if validation error starts to increase (indicating
overfitting).

4. Assess the final model on the hold-out test set (data not seen during
training) to estimate its true generalization error.

The hold-out validation gives an estimate of how well the model performs on un-
seen data by simulating future inputs using the reserved portion of the dataset.
It’s essentially a “miniature deployment test” performed before real-world
use.

131

3 Neural Networks and Overfitting 3.5 Cross-Validation Techniques

. Risks and Limitations

While hold-out validation is straightforward and easy to implement, it has some
limitations. The main risk is that hold-out validation can be biased de-
pending on how the data are split:

1. Non-representative sampling

• The validation set may not accurately reflect the data distribution.

• The estimated generalization error may be too optimistic or too pes-
simistic.

2. Small datasets

• If we hold out too many samples, there are too few left for training.

• If we hold out too few, the validation estimate becomes noisy and
unreliable.

3. Unbalanced classes (classification case)

• If the classes are not represented equally in the training and vali-
dation sets, the model may not learn to generalize well across all
classes.

✓ Solution: use stratified sampling (page 127) to maintain class
proportions in each subset.

4. Single split variability

• A different random split can yield a different result.

• The error estimate depends too much on “which data” ended up in
the validation set.

✓ Solution: Later, we will see more robust techniques (like K-Fold
Cross-Validation) that mitigate this issue by averaging results over
multiple splits.

® When to use Hold-Out Validation?

Hold-out validation is most appropriate when:

✓ When the dataset is large enough to afford separate training, validation
and test sets without sacrificing training data. With large enough we mean
at least a few thousand samples.

✓ When we want fast model evaluation without the computational over-
head of more complex cross-validation methods (only one training phase).

✓ When small fluctuations in the validation split are not expected to signif-
icantly affect the model selection process.

132

3 Neural Networks and Overfitting 3.5 Cross-Validation Techniques

3.5.2 Leave-One-Out Cross-Validation (LOOCV)

Leave-One-Out Cross-Validation (LOOCV) is a special case of K-Fold
Cross-Validation (next section) where the number of folds K is equal to the
number of samples N in the dataset. It means that each data point acts once
as validation data, and N − 1 times as part of the training set.

{ How does it work?

1. Given a dataset with N samples:

D = {(x1, t1) , (x2, t2) , . . . , (xN , tN)}

2. For each sample i = 1, 2, . . . , N :

• Train the model on all samples except the i-th one:

D(i)
train = D \ {(xi, ti)}

• Validate (test) the model on the i-th sample:

D(i)
val = {(xi, ti)}

3. Collect all validation errors Ei from each iteration, and compute the av-
erage error:

ÊLOOCV =
1

N
·

N∑
i=1

Ei

This average error ÊLOOCV gives an almost unbiased estimate of the
model’s generalization error.

. Risks and Limitations

While LOOCV maximizes data usage for training and provides a nearly unbiased
error estimate, it has some drawbacks:

1. Computational Cost. We must train the model N times (once for each
sample), which can be prohibitively expensive for large datasets or
deep neural networks.

2. High variance in models. Each training set differs by only one sample,
so the models can be very similar. This can lead to high variance in the
validation errors, making the average error estimate less stable.

3. Not practical for deep learning. Neural networks often require thou-
sands of training iterations to converge, making LOOCV impractical for
large-scale problems.

133

3 Neural Networks and Overfitting 3.5 Cross-Validation Techniques

® When to use LOOCV?

LOOCV has an unbiased estimate (each data point serves as validation once,
so every sample influences the estimate equally) and an efficient use of data
(almost all samples are used for training in each iteration, ideal when data are
scarce). Thanks to these properties, LOOCV is particularly useful when:

✓ When N is small (e.g., a few hundred samples or less).

✓ When we want an almost unbiased generalization error estimate.

✓ When computation time is not a concern (e.g., simple models).

LOOCV approximates the true expected error Etest and it’s nearly unbiased
because each sample plays both roles, training and validation, but it tends to
have high variance because each training set is almost identical, leading to
similar models. However, for modern deep learning, it’s mostly of theoretical
interest, a conceptual benchmark rather than a practical tool.

134

3 Neural Networks and Overfitting 3.5 Cross-Validation Techniques

3.5.3 K-Fold Cross-Validation

K-Fold Cross-Validation divides the available dataset into K equally (or
nearly equally) sized subsets, called folds. The model is trained and validated K
times, each time using a different fold as the validation set, and the remaining
K−1 folds as the training set. After completing all K rounds, the K validation
errors are averaged to estimate the model’s overall generalization performance.

{ How does it work?

1. Given a dataset with N samples:

D = {(x1, t1) , (x2, t2) , . . . , (xN , tN)}

2. Split the dataset D into K folds (disjoint subsets):

D = D1 ∪ D2 ∪ . . . ∪ DK

Where each fold Dk contains approximately
N

K
samples:

|Dk| ≈
N

K
, for k = 1, 2, . . . ,K

3. For each fold k = 1, 2, . . . ,K:

• Train the model on the other K − 1 folds (i.e., all folds except the
k-th one, mathematically D \ Dk):

D(k)
train =

K⋃
j=1
j ̸=k

Dj

• Validate (test) the model on the k-th fold:

D(k)
val = Dk

• Compute the validation error êk on the validation set D(k)
val .

4. Collect all validation errors Ek from each iteration, and compute the av-
erage error:

ÊK-Fold =
1

K
·

K∑
k=1

êk

This average error ÊK-Fold provides an estimate of the model’s generaliza-
tion error.

Differently from LOOCV, K-Fold Cross-Validation allows us to choose a smaller
K:

• 5-Fold Cross-Validation is the most commonly used value, balancing
bias and variance in the error estimate.

135

3 Neural Networks and Overfitting 3.5 Cross-Validation Techniques

• 10-Fold Cross-Validation is also popular, especially in scenarios where
more data is available, providing a slightly lower bias at the cost of in-
creased computational time.

• Stratified K(K = N)-Fold Cross-Validation equivalent to LOOCV,
where each fold contains exactly one sample. Unbiased but computation-
ally expensive.

• 2 or 3-Fold Cross-Validation can be used for very large datasets where
computational efficiency is a concern, but may lead to higher variance in
the error estimate.

. Limitations and ¥ Advantages

Compared to Hold-Out, it uses the entire dataset more efficiently because
each sample is used for validation once and for training K − 1 times (lower
bias). Also, compared to LOOCV, it is much cheaper computationally (only
K trainings instead of N).

✓ Efficient data usage: all samples contribute to both training and vali-
dation.

✓ Reduced bias: the averaged approximates the expected generalization
error better than a single split.

✓ Stability: more reliable than hold-out because the specific data division
matter less.

p Computational cost: the model is trained K times, still heavier than a
single hold-out validation. For deep neural networks, this can be imprac-
tical.

p Data leakage risk: all processing (normalization, scaling, etc.) must be
recomputed inside each fold, otherwise information from the valida-
tion folds can leak into the training folds.

p Variance in small datasets: if K is too small, each fold may not rep-
resent the full data distribution well.

136

3 Neural Networks and Overfitting 3.5 Cross-Validation Techniques

3.5.4 Nested Cross-Validation

When we train a neural network (or any machine learning model), we actually
perform two separate activities:

• Model selection: choose the best configuration (e.g., hyperparameters,
architecture) based on performance on a validation set.

• Model assessment: estimate the true generalization ability of the final
chosen model on unseen data.

. But here lies a problem: in most cross-validation setups, we reuse the
same data for both tasks. That means we peek at our test data while tuning
our model, leading to optimistic bias in our performance estimates.

® Why that’s a problem (hidden optimism)? Let’s say we’re testing 10
different neuronal network architectures and we run 5-fold cross-validation
(K = 5) to see which performs best.

1. We choose the one with the lowest average validation error across the 5
folds.

2. Then we report that same average validation error as “the model’s perfor-
mance”.

. But this is optimistically biased, because:

• We used the validation data to pick the best model.

• Therefore, the validation score no longer represents unseen data, because
the model (and our choice) are tuned to those particular folds we used
(even if indirectly).

So we get a number that looks great, but it’s too optimistic, it doesn’t reflect
how the model would perform on truly unseen data.

¥ There is no more optimism with Nested Cross-Validation

Nested Cross-Validation is a technique that separates model selection
from model assessment by introducing two layers of cross-validation
loops:

• An outer loop for model assessment (unseen test data). It evaluates
how good that chosen configuration really is on truly unseen data.

• An inner loop for model selection (tuning hyperparameters). It decides
which configuration performs best (uses only training data of that outer
fold).

So now, when we report the average outer test error, it reflects real general-
ization, not the performance on data we optimized for.

137

3 Neural Networks and Overfitting 3.5 Cross-Validation Techniques

Example 1: Nested Cross-Validation Analogy

Think of it like preparing for an exam:

• We take practice tests to decide the best study method (this is
the inner loop, model selection).

• Then, we take the final exam to measure how well our preparation
really worked (this is the outer loop, model assessment).

If we report our practice test scores as our final exam result, we’ll be
unrealistically confident, exactly what happens without nested cross-
validation.

{ How does Nested Cross-Validation work?

1. Outer Loop (Model Assessment):

• Split the entire dataset into K outer folds:

D = {D1,D2, . . . ,DK}

• For each outer fold k:
– Reserve fold Douter

k for testing.
– Use the remaining K − 1 folds as the training set for model

selection in the inner loop:

Douter
train =

K⋃
j=1
j ̸=k

Dj

2. Inner Loop (Model Selection):

• Inside that outer training data Douter
train , perform another K-fold cross-

validation, called M-fold cross-validation:

Douter
train =

{
Dinner

1 ,Dinner
2 , . . . ,Dinner

M

}
To tune hyperparameters (e.g., learning rate, number of layers,
etc.). The letter M is used to distinguish it from the outer loop’s K.

• Select the configuration θ∗k that gives the lowest inner validation
error averaged over the M inner folds:

θ∗k = argmin
θ

(
1

M
·

M∑
m=1

Error
(
Dinner, val

m ; θ
))

3. Model Evaluation:

• Retrain the model on all inner folds combined using the selected
configuration θ∗k:

Dinner
train =

M⋃
m=1

Dinner
m

138

3 Neural Networks and Overfitting 3.5 Cross-Validation Techniques

• Evaluate it on the outer test fold Douter
k to get the test error for

that outer fold:

Test Errork = Error
(
Douter

k ; θ∗k
)

And store the test error for that outer fold:

ek = Test Errork

4. Average over outer folds. After completing all K outer folds, compute
the overall performance estimate:

Overall Test Error = Ênested =
1

K

K∑
k=1

ek

This gives an unbiased estimate of the model’s generalization perfor-
mance.

. Limitations and ¥ Advantages

✓ Provides an unbiased generalization estimate, even after hyperpa-
rameter tuning.

✓ Ensures a clear separation between selection and assessment.

✓ Uses all data efficiently across different folds.

p Computationally expensive: Each outer folds contains a full inner
cross-validation loop, so the model is trained K × M times. For deep
neural networks, this can be prohibitive.

p Complex implementation: Careful bookkeeping is required to manage
data splits and model configurations across nested loops. In other words,
it’s easy to make mistakes if not implemented carefully.

Some typical choices are K = 5 for the outer loop and M = 3 for the inner
loop, balancing computational cost and reliable estimates. For more accurate
estimates, K = 10 and M = 5 can be used, but at a higher computational cost.
For small datasets, nested cross-validation is particularly beneficial to avoid
overfitting during model selection, and a common choice is K = 10 and M = 5.

139

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

3.6 Preventing Overfitting
So far we’ve seen:

• Overfitting: when the model fits both the signal and the noise in the
training data, leading to poor generalization on unseen data.

• Underfitting: when the model is too simple to capture the underlying
patterns in the data, resulting in poor performance on both training and
test sets.

• Cross-Validation: how to detect when a model generalizes poorly us-
ing techniques like Hold-Out Validation, Leave-One-Out Cross-Validation
(LOOCV), K-Fold Cross-Validation, and Nested Cross-Validation.

But detecting overfitting is only half the battle. The next crucial step is to
implement strategies to prevent or limit overfitting during training and
enhance the model’s ability to generalize well to new, unseen data. This section
presents the three main families of solutions that modern deep learning
uses to control complexity and improve generalization.

. The Core Problem: Neural networks have enormous representational
power, by the Universal Approximation Theorem (page 118), they can approx-
imate any continuous function. However, if they have too many parame-
ters, and too little data (or data with noise), they will memorize rather
than learn. Preventing overfitting is thus about introducing constraints or
checks that force the model to extract essential structure from the data, not
incidental details.

¥ Overview of Prevention Techniques. In this section, we will explore
three main strategies to prevent overfitting in neural networks:

1. Training control: Early Stopping technique (page 142). This method
stops training when validation error starts increasing.

2. Model complexity control: Regularization (Weight Decay, L2)
technique (page 151). This method adds a penalty when weights grow
too large, because large weights often indicate memorization.

3. Randomization / Model averaging: Dropout technique (page 160).
This method randomly deactivates neurons during training, forcing the
network to learn redundant representations that generalize better.

Each of these reduce the effective capacity of the network in a different way.
Either by limiting how long it trains, how larger weights can grow, or how tightly
neurons depend on each other.

140

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

® How these techniques relate to the Training Curve

Similar to the curve of Model Complexity vs. Error shown in Figure 15,
these techniques aim to find the optimal point where the model is complex
enough to capture the underlying patterns in the data, but not so complex that
it overfits. The Training vs. Validation Error Curve plot (shown in Figure
17) illustrates how training and validation errors evolve during training. The
goal of these techniques is to keep the model in the region where both training
and validation errors are low, avoiding the point where validation error starts
to increase due to overfitting.

0 20 40 60 80 100 120 140
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

Training vs Validation Loss - Overfitting and Early Stopping
Training Loss
Validation Loss
Early stopping (epoch 57)

Figure 17: This plot illustrates the Training vs. Validation Error Curve
during the training of a neural network. Initially, both training and validation
errors decrease as the model learns from the data. However, after a certain point
(epoch 57), the validation error starts to increase while the training error con-
tinues to decrease, indicating that the model is beginning to overfit the training
data. The optimal stopping point is where the validation error is minimized,
which can be achieved using techniques like Early Stopping.

Furthermore, all these techniques operationalize the Ockham’s Razor
principle we saw earlier: “prefer the simplest model that explains the data
well” (page 119). By constraining the model’s capacity in various ways, we
encourage it to focus on the most salient features of the data, leading to better
generalization and performance on unseen data.

141

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

3.6.1 Early Stopping

During training, the training error keeps decreasing as the model learns to fit
the training data better and better. However, at some point, the validation
error starts to increase again, indicating that the model is beginning to overfit
the training data (as we saw in Figure 17 on page 141). That’s the signature
of overfitting: the model is still improving on the training data, but getting
worse on unseen data.

The first and simplest method to prevent overfitting is early stopping. The
idea is very straightforward: we stop the training process right before the
validation error starts to rise.

¢ Monitoring Validation Error

To apply early stopping, we need to monitor both:

• The training error/loss Etrain(k) (measures how well the network fits
the training data).

• The validation error/loss Eval(k) (measures how well it generalizes to
unseen data).

Where k is the current training iteration (or epoch). So, during training, at
each iteration (epoch) k, we look for the epoch kES (Early Stopping iteration)
that minimizes the validation error:

Eval(k) is minimal =⇒ k = kES

Once we find kES , we stop training and use the model parameters (weights and
biases) from that iteration for our final model.

[Stopping Criteria (iteration kES)

Definition 2: Early Stopping

Early Stopping is a regularization technique that prevents overfitting
by monitoring the validation error during training and halting
the learning process when the error begins to increase.

The stopping iteration kES is defined as the epoch where the validation
error Eval(k) is minimized. Formally:

kES = argmin
k

Eval(k) (55)

It marks the point of best generalization; beyond it, the network starts
fitting noise rather than signal.

By interrupting training at kES , the model parameters remain close to
their optimal generalizing values, providing an online estimate of the
true generalization error. With “online estimate”, we mean that

142

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

we can assess the model’s performance on unseen data without needing
a separate test set at this stage; “online” refers to the fact that this
evaluation happens during the training process itself.

However, simply stopping at the first sign of validation error increase can be
problematic due to random fluctuations (noise) in the validation curve. So, in
practice, we implement a more robust strategy. We usually use a patience
window to avoid stopping too early due to random noise in the validation
curve. The Patience Window (or Patience Parameter) defines how many
epochs the training process should wait after the last improvement in
validation error before deciding to stop. In other words, we don’t stop imme-
diately when Eval(k) increases once; instead, we wait for a few epochs to see if
it improves again (since small fluctuations can occur due to noise).

Example 2: Early Stopping with Patience Window

Imagine this simplified validation loss curve during training (table val-
ues):

Epoch Validation Loss Improvement?

.
10 0.40 ✓ improvement
11 0.38 ✓ improvement
12 0.37 ✓ improvement
13 0.375 p slightly worse
14 0.373 ✓ improvement
15 0.376 p worse again
16 0.379 p worse
17 0.382 p worse

Suppose we set a patience window of 2 epochs, the algorithm will
stop after epoch 17, because it waited for 2 epochs after the last im-
provement (epoch 14) and saw no new decrease in validation loss. If we
had set a patience of 4 epochs, it would have waited until epoch 19 before
stopping.

. Be careful: it’s a heuristic! Early stopping with a patience window is
not mathematically guaranteed to find the optimal epoch kES ; we might
stop a few epochs too early or too late, depending on noise, random initial-
ization, learning rate, and other hyperparameters. In formal terms, it doesn’t
guarantee the true optimum, but it approximates a local minimum in the
generalization curve, which is what we really want in practice. The local
minimum corresponds to a model that generalizes well without overfitting, even
if it’s not the absolute best possible model.

143

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

[Online Estimation of Generalization Error

The Early Stopping method can be viewed as an online estimation of the
true generalization error, because we continuously track the validation loss
as the network learns, and the shape of that curve tells us when the model begins
to overfit. So, we use validation data to approximate the true test error
dynamically without needing to retrain multiple times. Thus, early stopping
is like a built-in regularizer: it doesn’t change the loss function, but limits
training to the “sweet spot” where generalization is maximal. Where “online”
means that this estimation happens during the training process itself, rather
than after training is complete.

. Limitations and ¥ Advantages

✓ Simple & efficient: no modification to loss or architecture

✓ Automatic: modern frameworks can monitor and stop automatically.

✓ Improves generalization without additional parameters.

p Requires a validation set, which reduces training data slightly.

p Works best when validation loss is smooth (less noisy).

p The “patience” value and monitoring metric must be chosen carefully.

144

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

3.6.2 Hyperparameter Tuning

After understanding Early Stopping (which stops training at the right mo-
ment), we now focus on choosing the right model itself ; that is, deciding
how big, how deep, how fast, and how regularized the network should be. This
process is called Hyperparameter Tuning, and it’s a crucial step to con-
trol overfitting and improve generalization.

Definition 3: Hyperparameter Tuning

Hyperparameter Tuning is the process of selecting the best model
configuration, that is, the combination of hyperparameters (such as the
number of layers, neurons, learning rate, regularization, strength, etc.).
That yields the lowest validation error and thus the best generaliza-
tion ability.

Unlike parameters (weights and biases), which are learned automat-
ically during training, hyperparameters control how learning occurs
and how complex the model can be.

The optimal configuration:

θ∗ = argmin
θi

Eval (θi) (56)

is chosen by comparing validation errors across candidate models,
often within a cross-validation framework to reduce bias.

8 Parameters vs. Hyperparameters

The definition above highlights the distinction between parameters and hy-
perparameters:

• Parameters: These are the internal weights and biases of the neu-
ral network that are learned during training through optimization
algorithms like gradient descent. They directly influence the model’s
predictions, so they determine the function learned by the network.

• Hyperparameters: These are external configurations set before
training begins. They include choices like the:

– Number of layers: This determines the depth of the network. More
layers can capture more complex patterns but may also lead to over-
fitting.

– Number of neurons per layer: This controls the width of the net-
work. More neurons can model more complex functions but increase
the risk of overfitting.

– Learning rate: This is a crucial hyperparameter that controls how
much to change the model in response to the estimated error each
time the model weights are updated.

145

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

– Batch size: This defines the number of training examples utilized
in one iteration. Smaller batch sizes can provide a more accurate
estimate of the gradient but take longer to train. We have seen
this in the Stochastic Gradient Descent (batch gradient descent,
item 2, page 114)

– Regularization strength γ: This controls the amount of regu-
larization applied to the model to prevent overfitting. Higher values
impose a stronger penalty on large weights. We will see this in future
sections.

– Dropout rate: This defines the fraction of neurons to drop during
training to prevent overfitting. A higher dropout rate means more
neurons are ignored during each training iteration. Also this will be
covered in future sections.

Hyperparameters are set manually by the user or automatically
through hyperparameter optimization techniques (e.g., grid search, ran-
dom search, Bayesian optimization). They control how the model learns
and how complex it can become, thus affecting its ability to generalize to
unseen data.

® Why is Hyperparameter tuning important? And why does it
matter for overfitting?

Hyperparameter tuning is essential for several reasons, especially in the context
of overfitting. It determines the model’s capacity to learn from data and
its ability to generalize to unseen examples.

Hyperparameter Low Value High Value

Number of layers/neu-
rons

Underfitting (too simple) Overfitting (too complex)

Learning rate Slow convergence Unstable or overfitting
Regularization
strength γ

Weak penalty, overfit Too strong, underfit

Dropout rate Too little regularization Too much, underfit

Table 1: Impact of Hyperparameter Values on Model Performance.

In geneal, too low values of hyperparameters can lead to underfitting, where
the model is too simple to capture the underlying patterns in the data. Con-
versely, too high values can lead to overfitting, where the model learns the
training data too well, including its noise and outliers, resulting in poor gener-
alization to new data. So tuning them correctly is essential to reach the sweet
spot of generalization.

146

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

Ô Hyperparameter Tuning Algorithm

The Hyperparameter Tuning Algorithm is not a real algorithm per se, but
rather a conceptual framework for selecting the best hyperparameters based
on validation performance. The input are:

• A set Θ of possible hyperparameter configurations:

Θ = {θ1, θ2, . . . , θM}

Where each θi is a specific combination of hyperparameter values (e.g.,
number of layers, learning rate, regularization strength, etc.), and M is
the total number of configurations to evaluate.

• A training dataset Dtrain used to train the model for each hyperparam-
eter configuration.

• A validation dataset Dval used to evaluate the model’s performance
for each configuration. Here we assume that our dataset is large enough
to be split into training and validation sets. If not, cross-validation tech-
niques can be employed to make the most of limited data (hold-out method
page 131, k-fold page 135 or leave-one-out cross-validation page 133, or
nested cross-validation page 137).

The procedure is as follows:

1. Define candidate configurations. Choose which hyperparameter com-
binations to evaluate. Each configuration θi should specify values for all
relevant hyperparameters. For example, number of layers, number of neu-
rons per layer, learning rate, regularization strength, etc.

2. For each configuration θi ∈ Θ:

(a) Train a neural network using Dtrain with the hyperparameters spec-
ified by θi. This involves initializing the model, performing forward
and backward passes, and updating weights according to the chosen
optimization algorithm (we will see this in future sections).

(b) Evaluate its performance on the validation set Dval to compute the
validation error Eval(θi). This error metric could be mean squared
error, cross-entropy loss, accuracy, etc., depending on the task. If
using cross-validation, average the validation errors across all folds
to get a robust estimate.

3. Compare validation errors. Identify the configuration that gives the
lowest validation error:

θ∗ = argmin
θi∈Θ

Eval (θi)

4. Select the best model. Keep the model trained with the optimal hy-
perparameters θ∗, or retrain it from scratch using the union of training
and validation data with the chosen hyperparameters to maximize the
data available for learning.

147

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

5. (optional) Final test. Evaluate the chosen model on a separate test
set Dtest to estimate its generalization performance on unseen data.

The output of this procedure is the optimal hyperparameter configuration
θ∗ that minimizes the validation error, along with the trained model that can
be used for predictions on new data, and an estimate of its generalization
performance (from validation or test set).

® How to choose candidate hyperparameter configurations?

In practice, candidate hyperparameter configurations are not chosen manually
because this would be too time-consuming and inefficient. Instead, we use au-
tomatic search methods to explore the hyperparameter space effectively.

Once we define the set of hyperparameters we want to tune, the following meth-
ods automatically explore different configurations and identify which one
minimizes the validation error (or maximizes validation accuracy, depending
on the task). The three classical methods are:

1. Grid Search (Exhaustive Search on a Discrete Grid). This method eval-
uates the model on all possible combinations of a predefined set of
hyperparameter values. For example, we define a grid for each hyperpa-
rameter:

η ∈ {0.001, 0.01, 0.1} γ ∈ {0.01, 0.1, 1.0} layers ∈ {2, 3, 4} . . .

Then the algorithm trains a model for every combination of these val-
ues:

Θ = {(η, γ, layers, . . .) | η ∈ {. . .}, γ ∈ {. . .}, layers ∈ {. . .}, . . .}

After training and evaluating each configuration, the one with the lowest
validation error is selected (minimum Eval).

✓ Advantages

✓ Simple and systematic.
✓ Parallelizable and easy to implement.

. Limitations

p Computationally expensive (combinations grow exponentially
with more hyperparameters). Also, parallelizable only if enough
resources are available.

p Many evaluations wasted on unimportant regions of the hyper-
parameter space.

p Works well only with a few hyperparameters or coarse grids.

2. Random Search (Stochastic Sampling of Hyperparameter Space). In-
stead of evaluating all combinations, this method randomly samples
hyperparameter configurations from specified distributions. For example,

148

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

we define ranges or distributions for each hyperparameter:

η ∼ Uniform(0.001, 0.1)

γ ∼ LogUniform(0.01, 1.0)

layers ∼ DiscreteUniform{2, 3, 4}

. . .

Then the algorithm samples N configurations randomly:

Θ = {θ1, θ2, . . . , θN}

After training and evaluating each sampled configuration, the one with
the lowest validation error is selected. This method is much more effi-
cient than grid search, because typically only a few hyperparameters
significantly impact performance.

✓ Advantages

✓ Covers the search space more efficiently.
✓ Works better for high-dimensional spaces.
✓ Can easily add or extend hyperparameters.

. Limitations

p Still blind, don’t use information from previous trials.
p May miss the best configuration by chance.

3. Bayesian Optimization (Probabilistic Model-Based Search, Learning
from Past Trials). The idea is simple yet powerful. Model the function:

f (θ) = Eval (θ)

As an unknown function (black box) and use probabilistic reasoning
to decide which hyperparameters to test next. The steps are:

(a) Use previous evaluations to build a probabilistic surrogate model
(e.g. a Gaussiano Process, Tree Parzen Estimator, etc.) that approxi-
mates the relationship between hyperparameters and validation error
(f(θ)).

(b) Define an acquisition function (e.g. Expected Improvement, Up-
per Confidence Bound, etc.) that quantifies the potential benefit of
evaluating a new configuration based on the surrogate model. It bal-
ances exploration (trying uncertain areas) and exploitation (fo-
cusing on promising areas).

(c) Choose the next configuration θnext to evaluate by maximizing the
acquisition function (i.e., the configuration that is expected to yield
the most improvement).

(d) Now, train the model with θnext, evaluate its validation error
Eval(θnext), and update the surrogate model with this new data point.

(e) Repeat steps 2-4 until a stopping criterion is met (e.g., a maximum
number of evaluations or convergence).

149

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

This method is not a naive search; it learns from past evaluations
to make informed decisions about which hyperparameters to test next,
leading to more efficient optimization.

✓ Advantages

✓ Much fewer evaluations needed for good performance.
✓ Adapts search intelligently (guided by prior results).
✓ Suitable for expensive models (deep networks, large datasets).

. Limitations

p Implementation complexity (requires probabilistic modeling).
p Needs a meaningful continuous search space (discrete hyperpa-

rameters can be tricky).
p Slower per iteration (but far fewer iterations needed).

These methods follow the same underlying goal: minimize the validation
error by efficiently exploring the hyperparameter space

θ∗ = argmin
θi∈Θ

Eval (θi)

But they differ in how they select candidate configurations to evaluate,
balancing exploration and exploitation in different ways.

150

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

3.6.3 Weight Decay (L2 Regularization)

The Weight Decay (or L2 Regularization) is a widely used technique to
prevent overfitting in neural networks by adding a penalty term to the loss
function that discourages large weights. This method helps to keep the model
simpler and more generalizable by constraining the magnitude of the weights.

The key idea behind weight decay is to penalize overly large weights to prevent
the network from overfitting training noise. When we train a neural network,
we minimize a loss function (e.g. MSE regression or cross-entropy for classifi-
cation):

Etrain(w) =
1

N

N∑
i=1

L (yi, f (xi;w))

If we let the optimization freely minimize this error, the network might use
very large weights to fit every detail, creating a complex,oscillating decision
surface that produces low training error but poor generalization to unseen data
(i.e., overfitting). To counter this, we add a penalty on the magnitude of
weights to the loss function:

Ereg(w) = Etrain(w) +
γ

2

∑
q

w2
q

Where:

• wq is the q-th weight in the network.

• γ > 0 is the regularization parameter that controls the strength of the
penalty (sometimes called weight decay coefficient). A larger γ en-
courages smaller weights, leading to a simpler model (more bias, less vari-
ance), while a smaller γ allows for more complex models (less bias, more
variance).

This makes the optimization prefer small, smooth weights, producing
smoother mappings from inputs to outputs, which helps in generalization.

In other words, the optimizer now minimizes both error and weight energy.
This discourages the model from relying too heavily on any single feature or neu-
ron, promoting a more distributed representation that is less likely to overfit the
training data (the network learns gentler transformations, simpler hypothe-
ses).

Definition 4: Weight Decay (L2 Regularization)

Weight Decay, or L2 Regularization, is a technique that prevents
overfitting by adding a penalty on the magnitude of the network’s
weights to the loss function. The regularized loss function is:

Ereg(w) = Etrain(w) +
γ

2

∑
q

w2
q (57)

Where:

151

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

• Etrain(w) is the original training loss (e.g., MSE or cross-entropy).

• wq are the weights of the neural network.

• γ > 0 is the regularization parameter controlling the strength of
the penalty.

By discouraging large weights, the model learns smoother mappings and
achieves better generalization, effectively limiting its complexity.

8 Relation to Early Stopping

Early Stopping limited training time to prevent overfitting (page 142), while
weight decay directly limits the magnitude of parameters. Both meth-
ods implement the Ockham’s Razor principle by favoring simpler models that
generalize better, but act at different stages:

• Early Stopping stops training when validation error starts to rise, so
before weights can grow too large.

• Weight Decay continuously penalizes large weights during training,
keeping them small throughout the process.

0 2 4 6 8 10
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Effect of L2 Regularization (Weight Decay)
Training data
True function sin(x)
Without Regularization
With L2 Regularization (= 10)

Figure 18: A simulation of polynomial regression with two different fits: one
without regularization (large, oscillating weights, overfitting the data) and one
with L2 regularization (smaller weights, smoother fit). The L2 regularized model
generalizes better to unseen data.

152

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

[Bayesian Interpretation (MAP vs MLE)

When we train a neural network, we’re finding parameters w that best explain
the data D = {xi, yi}, where xi are inputs and yi are outputs. There are two
main approaches to estimate these parameters:

• Maximum Likelihood Estimation (MLE) (page 103): choose the
parameters w that maximize the probability of the data given the
model:

wMLE = argmax
w

P (D | w)

Or equivalently, minimize the negative log-likelihood (which corresponds
to minimizing the training error Etrain(w)):

wMLE = argmin
w
− logP (D | w) ≡ argmin

w
Etrain(w)

That’s just the training loss we usually minimize (like MSE or cross-
entropy).

✓ MLE fits the data as best as possible.

p But it can lead to overfitting, especially with complex models and
limited data. This is because MLE doesn’t penalize complex param-
eters.

• Maximum A Posteriori Estimation (MAP): instead of trusting data
blindly, we also include prior beliefs about what weights are likely. Let’s
explain this step by step. When we use MLE, we’re saying: “we don’t
know anything about the parameters w; just find the ones that make the
data as likely as possible”. That’s pure data fitting. But what if we
do have priori knowledge? For example, we might believe that weights
shouldn’t be too large (to avoid overfitting), and most weights should
be closer to zero (the network should be simple). Then we can express
this belief probabilistically, by giving each possible value of w a prior
probability P (w) that reflects how plausible we think that value
is before seeing any data. Here, MAP combines this belief with the
observed data.

We want the posterior probability of the weights given the data:

P (w | D) =
P (D | w)P (w)

P (D)

– P (D | w) is the likelihood of the data given weights (same as in
MLE).

– P (w) is the prior probability of weights (our belief about weights
before seeing data).

– P (w | D) is the posterior probability of weights given the data
(what we believe about weights after seeing data).

– P (D) is the evidence (normalizing constant).

153

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

The Maximum A Posteriori (MAP) estimation means: choose the
weights w that maximize the posterior probability P (W | D):

wMAP = argmax
w

P (w | D)

Using Bayes’ rule, we can rewrite this as:

wMAP = argmax
w

P (D | w)P (w)

P (D)
= argmax

w
P (D | w)P (w)

Since P (D) is constant with respect to w, we can ignore it in the opti-
mization. Taking logs, we get:

wMAP = argmax
w

[logP (D | w) + logP (w)]

Where the first term fits the data (like MLE), and the second term
adds a regularization effect (our prior belief about weights).

To connect this to weight decay, we need to choose a specific prior P (w).
A common choice is a Gaussian prior centered at zero:

P (w) =
∏
q

1√
2πσ2

exp

(
−

w2
q

2σ2

)

This prior says that we believe weights are likely to be small (close to zero),
with variance σ2 controlling how strongly we believe this. Taking the log of this
prior gives:

logP (w) = −
∑
q

w2
q

2σ2
+ constant

Ignoring constants, the MAP objective becomes:

wMAP = argmax
w

[
logP (D | w)−

∑
q

w2
q

2σ2

]

Or equivalently, minimizing the negative log-posterior:

wMAP = argmin
w

[
− logP (D | w) +

∑
q

w2
q

2σ2

]

This is exactly the same as minimizing the regularized loss function with weight
decay:

Ereg(w) = Etrain(w) +
γ

2

∑
q

w2
q

Where γ =
1

σ2
. Thus, weight decay can be interpreted as MAP estima-

tion with a Gaussian prior on weights. This Bayesian perspective shows
that weight decay not only helps prevent overfitting but also incorporates prior
beliefs about model simplicity into the learning process.

154

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

4 3 2 1 0 1 2 3 4
Weight w

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(u

nn
or

m
al

ize
d)

MAP Estimation: Combining Prior and Likelihood
Likelihood P(D w)
Prior P(w)
Posterior P(w D)
MLE
MAP

Figure 19: Bayesian interpretation of Weight Decay (L2 Regularization): MLE
focuses solely on fitting the data, while MAP incorporates prior beliefs about
weights, leading to more generalizable models. We have simulated a one-
dimensional weight w: the likelihood P (D | w) is peaked around some data-
fitted value (like MLE); the prior P (w) is a Gaussian centered at zero (we
believe small weights are more likely); the posterior P (w | D) combines (prod-
uct) both, resulting in a peak that balances data fit and weight size.

155

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

[Gaussian Priori Explanation

® What is a prior over weights? When we train a model, we want to find
good values for all weights wq. If we follow a Bayesian approach, we say: each
weight wq is a random variable, and before seeing data we have a belief about
how likely different values are. This belief is encoded in a prior distribution.

® Choosing a Gaussian Prior. A natural, simple choice for this prior is a
Gaussian (normal) distribution centered at zero:

P (wq) =
1√
2πσ2

exp

(
−

w2
q

2σ2

)
Intuitively:

• The mean is zero, so small weights are more probable than large ones.

• The variance σ2 controls how strongly we believe this:

– A small σ2 means we strongly believe weights should be close to zero
(less flexibility).

– A large σ2 means we allow for larger weights (more flexibility).

Assuming independence between weights, the joint prior over all weights is:

P (w) =
∏
q

P (wq) =
∏
q

1√
2πσ2

exp

(
−

w2
q

2σ2

)
So the prior over all weights is a multivariate Gaussian with diagonal covariance.
Taking the log of this prior gives:

logP (w) =
∑
q

logP (wq) = −
1

2σ2

∑
q

w2
q + constant

® Combine with likelihood (training error.) The MAP objective (as
derived earlier) is:

wMAP = argmax
w

[logP (D | w) + logP (w)]

Equivalently, minimizing the negative log-posterior:

Ereg(w) = − logP (D | w)− logP (w)

Replace − logP (D | w) with the training loss Etrain(w), and substitute the
log prior:

Ereg(w) = Etrain(w) +
1

2σ2

∑
q

w2
q + constant

Define γ =
1

σ2
, we get:

Ereg(w) = Etrain(w) +
γ

2

∑
q

w2
q

This is exactly the weight decay regularization term! Thus, assuming a Gaussian
prior on weights leads directly to L2 regularization in the MAP framework.

156

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

Deepening: What is a Multivariate Gaussian with Diagonal
Covariance?

If we have a single weight w1, we can describe our belief about it as a
univariate Gaussian:

P (w1) =
1√
2πσ2

exp

(
− (w1 − 0)

2

2σ2

)
That’s just the classic bell curve centered at zero, spreading depending
on σ2.

Now suppose we have two weights w1 and w2. We could model their
joint belief as a 2D Gaussian distribution:

P (w1, w2) =
1

2π |Σ|1/2
exp

(
−1

2

[
w1

w2

]T
Σ−1

[
w1

w2

])
Where Σ is the covariance matrix. This tells us how the two weights
vary together.

The covariance matrix Σ looks like this:

Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
Where:

• σ2
1 and σ2

2 are the variances of w1 and w2.

• ρ is the correlation coefficient between w1 and w2.

– If ρ = 0, the weights are independent (no correlation). This
means changing w1 doesn’t affect w2.

– If ρ ̸= 0, the weights are correlated (changing one affects
the other). This means if w1 increases, w2 might also tend to
increase (if ρ > 0) or decrease (if ρ < 0).

When we assume the weights are independent, we set ρ = 0. This
simplifies the covariance matrix to a diagonal matrix, because the
off-diagonal terms (which represent correlations) become zero:

Σ =


σ2
1 0 0 . . .

0 σ2
2 0

...

0 0 σ2
3

...
...

...
...

. . .


Then the multivariate Gaussian factorizes into independent 1D Gaus-
sians for each weight:

P (w) =
∏
q

1√
2πσ2

q

exp

(
−

w2
q

2σ2
q

)

157

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

Each weight has its own Gaussian prior, and they don’t influence each
other. That’s exactly what we assumed: each wq has its own N

(
0, σ2

)
prior, and all weights are independent.

Finally, when the covariance is diagonal (ρ = 0 and equal for all weights),
we get:

Σ = σ2I

Where I is the identity matrix. This means that the log prior simplifies
to:

− logP (w) =
1

2σ2
wTw =

1

2σ2

∑
q

w2
q

Which is exactly the L2 regularization term we use in weight decay! So
the assumption of a multivariate Gaussian with diagonal covariance is
what mathematically justifies the standard weight decay formula.

® How do we choose the right regularization strength γ?

Different values of γ change how much we penalize large weights:

• γ = 0 means no regularization (just MLE, prone to overfitting).

• γ small means weak regularization (allows larger weights, more complex
models).

• γ large means strong regularization (forces weights to be small, simpler
models).

So we must find the optimal γ = γ∗ that gives the best generalization. The
idea is to split our data into:

• A training set for fitting the weights w.

• A validation set for evaluating performance for each candidate γ.

Practically:

1. Choose a range of candidate γ values, for example:∣∣10−5, 10−4, 10−3, 10−2, 10−1, 1, 10
∣∣

2. For each candidate γ:

• Train the neural network with regularized loss:

Ereg(w) = Etrain(w) +
γ

2

∑
q

w2
q

• Compute validation error on the validation set:

Eval(w) = Eval(w) +
γ

2

∑
q

w2
q

158

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

3. Pick the γ∗ that gives the lowest validation error:

γ∗ = argmin
γ

Eval (58)

4. Finally, retrain the network on all data using the selected γ∗ to get the
final model.

This cross-validation approach ensures we select a regularization strength that
balances fitting the training data well while maintaining good generalization to
unseen data.

159

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

3.6.4 Dropout (Stochastic Regularization)

Even with weight decay and early stopping, large networks can still overfit
because neurons learn to co-adapt too much. For example, neuron A might
learn to rely on neuron B being active to make its predictions. If B overfits, then
A will also overfit. We need a way to force independence among neurons, to
make the network robust to missing or noisy signals.

� The Idea. During training, we randomly “drop” neurons (i.e., set their
output to 0) with a certain probability p, independently at each training itera-
tion.

• Each forward pass uses a different random subnetwork.

• The model can’t rely on any specific neuron always being present, so it
must learn redundant representations.

Without dropout, the activation of neuron j in layer l is:

h
(l)
j = g

(∑
i

w
(l)
ij h

(l−1)
i + b

(l)
j

)

• h
(l−1)
i are the activations from the previous layer.

• w
(l)
ij are the weights connecting neuron i in layer l− 1 to neuron j in layer

l.

• b
(l)
j is the bias term for neuron j in layer l.

• g(·) is the activation function (e.g., tanh, sigmoid).

Dropout introduces a random mask m
(l)
j for each neuron, sampled from a

Bernoulli distribution with parameter p (the probability of keeping the
neuron). Formally:

m
(l)
j ∼ Bernoulli(p)⇒ m

(l)
j =

{
1 with probability p neuron is kept
0 with probability 1− p neuron is dropped

(59)
Then we define the new (masked) activation as:

h̃
(l)
j = m

(l)
j · h

(l)
j (60)

• h
(l)
j is the activation of neuron j in layer l.

• m
(l)
j is a dropout mask (binary mask, 1 = keep neuron, 0 = drop neuron).

• p is the probability of keeping a neuron (typically p = 0.5 for hidden
layers, p = 0.8− 0.9 for input layer).

• h̃
(l)
j is the post-dropout activation of neuron j in layer l.

160

3 Neural Networks and Overfitting 3.6 Preventing Overfitting

Definition 5: Dropout

Dropout is a regularization technique where, during training, each
neuron is randomly dropped (set to zero) with probability 1−p, inde-
pendently of other neurons. This prevents co-adaptation of neurons
and encourages the network to learn robust features.

Formally, for neuron j in layer l:

m
(l)
j ∼ Bernoulli(p) ⇒ m

(l)
j =

{
1 with probability p

0 with probability 1− p

h̃
(l)
j = m

(l)
j · h

(l)
j

Where h̃
(l)
j is the post-dropout activation.

® What happens during training vs testing

During training, we apply dropout as described above, randomly dropping
neurons with probability 1− p. This forces the network to learn robust features
that do not rely on any specific neuron. Formally, during training:

h̃
(l)
j = m

(l)
j · h

(l)
j

During testing, we do not apply dropout. Instead, we use the full network (i.e.,
all neurons are active) and scale the activations (or weights) by the
probability p to account for the fact that fewer neurons were active during
training. This ensures that the output distribution remains consistent between
training and testing. Formally, during testing:

h
(l)
j ← p · h(l)

j (61)

This is called also Weight Scaling Rule.

Example 3: Dropout in a Simple Neural Network

Suppose a layer has a 5 neurons with activations:

h(l) = [0.4, 0.7, 0.3, 0.1, 0.9]

And we set dropout probability p = 0.6 (i.e., 60% chance to keep each
neuron), and we randomly sample masks:

m(l) = [1, 0, 1, 0, 1]

During training, the post-dropout activations are:

h̃(l) = m(l) · h(l) = [0.4, 0, 0.3, 0, 0.9]

During testing, we use the full activations scaled by p (each neuron’s
activation is multiplied by 0.6):

h(l) ← p · h(l) = [0.24, 0.42, 0.18, 0.06, 0.54]

161

3 Neural Networks and Overfitting 3.7 Tips & Tricks

3.7 Tips & Tricks
Once we know the loss function, the optimization rule (gradient descent/back-
propagation), and the regularization techniques (weight decay, dropout, etc.),
we still face a practical problem: “even if our model and data are correct, why
does training sometimes fail, diverge, or get stuck? ”. This last section focuses
on the engineering side of deep learning, the small design decisions that make
or break our model’s ability to learn effectively.

In this section, we will cover six practical “tricks” to improve neural network
training:

1. Activation Function Saturation (page 163): Sigmoid and Tanh sat-
urate for large inputs, then gradients vanish (go to zero). We’ll see the
zero-gradient problem and why modern networks use non-saturating
functions.

2. ReLu and Variants (page 166): the most widely used activation today.
Simple, fast, avoids saturation, but comes with its own issues (dead neu-
rons). Variants like Leaky ReLu, ELU, and GELU help mitigate these
problems.

3. Weight Initialization (page 170): setting initial weights correctly is
critical for stable gradient propagation. The Xavier (Glorot) and He
initializations balance signal variance between layers to avoid vanishing/-
exploding gradients.

4. Batch Normalization (page 174): normalizes intermediate activations
to keep each layer’s input distribution stable across training. This speeds
up convergence and allows for higher learning rates.

5. Mini-Batch Training (page 179): instead of computing gradients on
the full dataset or single sample, we use small batches for better conver-
gence and generalization. It’s the practical compromise between SGD
(Stochastic Gradient Descent) and full-batch gradient descent.

6. Learning Rate Scheduling (page 182): the learning rate controls the
“step size” in optimization. Adaptive or decaying schedules (e.g., Mo-
mentum, RMSProp, Adam) ensure stable and efficient learning.

162

3 Neural Networks and Overfitting 3.7 Tips & Tricks

3.7.1 Activation Function Saturation

. Problem: During backpropagation (page 96), the gradient must flow
backward through all layers. If it becomes very small (≈ 0) in some layer, early
layers stop learning. This is known as the Vanishing Gradient Problem
(or Zero-Gradient Problem) and it happens when the activation function
saturates.

® What does “saturation” mean?

An activation function takes a neuron’s input (weighted sum z = wTx + b)
and produces a non-linear output g(z). For instance:

• The sigmoid function g(z) = 1
1+e−z

• The tanh function g(z) = tanh(z)

Now, both are S-shaped (see Figure 6, page 61), tey flatten for large positive
or negative z values:

z range sigmoid g(z) tanh g(z) Derivative g′(z)

Very negative ≈ 0 ≈ −1 ≈ 0
Near zero ≈ 0.5 ≈ 0 ≈ 0.25 (sigmoid), ≈ 1 (tanh)
Very positive ≈ 1 ≈ 1 ≈ 0

When |z| is large, the output saturates (flattens) and the derivative g′(z)
becomes very small (≈ 0).

. And why zero gradient is a disaster?

Let’s review the backpropagation. In any neural network trained with gradi-
ent descent, each parameter (weight or bias) is updated according to the core
learning rule (Equation 45, page 92):

w
(l)
ij ← w

(l)
ij − η

∂ E

∂ w
(l)
ij

and b
(l)
i ← b

(l)
i − η

∂ E

∂ b
(l)
i

Where:

• η is the learning rate.

•
∂E

∂w
(l)
ij

and
∂E

∂b
(l)
i

are the gradients of the loss E with respect to the weights

and biases.

Each derivative is computed using the chain rule in backpropagation. For a
neuron i in layer l, we have:

∂ E

∂ w
(l)
ij

=
∂ E

∂ y
· ∂ y

∂ a
(l)
i

· ∂ a
(l)
i

∂ w
(l)
ij

∂ E

∂ b
(l)
i

=
∂ E

∂ y
· ∂ y

∂ a
(l)
i

· ∂ a
(l)
i

∂ b
(l)
i

163

3 Neural Networks and Overfitting 3.7 Tips & Tricks

Where:

• y is the output of the network.

• a
(l)
i = g

(
z
(l)
i

)
is the activation of neuron i in layer l.

• z
(l)
i =

∑
k

w
(l)
ik a

(l−1)
k + b

(l)
i is the weighted input to neuron i in layer l.

The critical term here is
∂ y

∂ a
(l)
i

, which involves the derivative of the activation

function g′
(
z
(l)
i

)
. If the activation function saturates, its derivative becomes

almost zero: g′
(
z
(l)
i

)
≈ 0. This leads to:

∂ E

∂ w
(l)
ij

≈ 0 and
∂ E

∂ b
(l)
i

≈ 0

As a result, the weight and bias updates become negligible:

w
(l)
ij ← w

(l)
ij − η · 0 = w

(l)
ij and b

(l)
i ← b

(l)
i − η · 0 = b

(l)
i

So the weight and bias remain unchanged, effectively halting learning in that
layer (neuron effectively stops learning).

Also, the problem is not local, it propagates backward! For a neuron in
layer l − 1, its gradient depends on the next layer:

δ
(l−1)
j = g′(z

(l−1)
j)

∑
i

w
(l)
ij δ

(l)
i

If the next layer has small derivatives (g′(z(l−1)
j) ≈ 0) due to saturation, then

δ
(l−1)
j also becomes very small, causing the same issue in layer l − 1. This

cascading effect can lead to vanishing gradients throughout the network,
because gradients shrink exponentially as they are propagated backward
through multiple layers with saturated activations.

¥ Solutions?

In future sections, we will explore various strategies to mitigate the vanishing
gradient problem caused by activation function saturation, including:

• Use activation functions that do not saturate easily, such as ReLU
(page 166).

• Properly initialize weights to keep activations in the non-saturated
region (page 170).

• Use normalization techniques like Batch Normalization to maintain
stable activation distributions (page 174).

• Employ architectures like Residual Networks that facilitate gradient
flow.

164

3 Neural Networks and Overfitting 3.7 Tips & Tricks

Deepening: Exploding Gradient Problem

Not all problems with gradients are about them becoming too small.
Sometimes, they can become excessively large, leading to instability dur-
ing training.
The Exploding Gradient Problem is the opposite of the vanish-
ing gradient problem. It occurs when gradients grow exponentially
during backpropagation and become numerically unstable (very
large values), causing very large updates to the weights and divergence
of the training process.

® How does it happen? It typically occurs when:

• Weights are initialized with very large values.

• The network is very deep, and the product of derivatives during
backpropagation leads to large gradients.

If each layer amplifies the gradient by a factor greater than 1, the gra-
dients can grow exponentially as they are propagated backward through
the layers. For example, if each layer multiplies the gradient by a fac-
tor of 2, after n layers, the gradient will be multiplied by 2n, leading
to extremely large values. With only 50 layers, this results in a factor
of 250 ≈ 1.13 × 1015, which is numerically unstable. So a tiny gradient
(e.g., 10−10) can become a huge value (e.g., 105) after backpropagating
through 50 layers.

{ In practice: Symptoms we might see during training include:

• The loss suddenly becomes NaN or Inf after a few epochs.

• The network weights contain extremely large values.

• The gradient norm is enormous (hundreds or thousands).

• Training oscillates wildly or diverges completely.

This often happens in deep fully connected networks with bad ini-
tialization or RNNs (Recurrent Neural Networks) because gradi-
ents are multiplied through time steps.

¥ Solutions? In future sections, we will explore strategies to mitigate
the exploding gradient problem, including:

• Gradient Clipping: Limit the maximum value of gradients dur-
ing backpropagation.

• Proper Weight Initialization: Use techniques like Xavier or He
initialization to keep gradients stable (page 170).

• Use of Normalization Layers: Such as Batch Normalization to
stabilize activations and gradients (page 174).

• Architectural Changes: Such as using LSTM or GRU units in
RNNs to control gradient flow.

165

3 Neural Networks and Overfitting 3.7 Tips & Tricks

3.7.2 ReLU and Variants

Definition 6: ReLU Activation Function

The Rectified Linear Unit (ReLU) is defined as:

g (z) = max (0, z) (62)

And its derivative:

g′ (z) =

{
1, if z > 0

0, if z ≤ 0
(63)

So it’s a piecewise linear function that outputs the input directly if it
is positive; otherwise, it outputs zero. No exponential, no sigmoid, just
a straight cutoff at zero.

T Why does it work? The powerful simplicity of the ReLU

The ReLU activation function has become the default choice for many neural
network architectures due to its simplicity and effectiveness. Here are some
reasons why ReLU works so well:

✓ Non-saturating: for z > 0, the derivative is constant (1), which helps
mitigate the vanishing gradient problem that plagues sigmoid and tanh
activations (page 163).

✓ Computationally cheap: ReLU is simply a thresholding at zero, which
is computationally efficient compared to sigmoid or tanh functions that
require expensive exponentials.

✓ Sparse activation: In practice, many neurons output zero, leading to a
sparse representation that can be beneficial for learning and generalization.

✓ Fast convergence: Empirically, networks using ReLU tend to converge
faster during training compared to those using traditional activation func-
tions.

✓ Biological motivation: ReLU is inspired by the behavior of real neurons,
which are either activated (firing) or not (silent), resembling the ReLU
activation pattern.

. So is it the perfect activation function? Not quite...

Despite its advantages, the biggest drawback of ReLU is the “dead ReLU”
problem. The Dead ReLU Problem, or Dying ReLU Problem, occurs
when a significant portion of neurons in a neural network become in-
active and only output zero for any input. This happens when the weights
are updated in such a way that the input to the ReLU activation function is
always negative, causing the neuron to output zero and effectively “die”.

166

3 Neural Networks and Overfitting 3.7 Tips & Tricks

When a neuron dies, it stops learning because its gradient is zero (since the
derivative of ReLU is zero for inputs less than or equal to zero). This can lead
to a situation where a large number of neurons in the network are inactive,
reducing the model’s capacity to learn complex patterns in the data.

In simple terms, if a neuron’s input z becomes negative for all samples, its
output will always be zero, then the gradient will also be zero, and the neuron
will be marked as dead (i.e., it will not contribute to learning anymore). This
often happens with: (1) large negative biases, (2) too high learning rates, or
(3) poor weight initialization (with poor we mean that many neurons start in
the negative region). Hence the ned for ReLU variants that maintain some
gradient even for negative inputs.

¥ ReLU Variants to the Rescue

To address the dead ReLU problem, several variants of the ReLU activation
function have been proposed. Here the four most popular ones:

1. Leaky ReLU: a variant that allows a small slope, called α, for neg-
ative inputs (since the standard ReLU has a slope of 0 for negative
inputs). It is defined as:

g (z) =

{
z, if z > 0

αz, if z ≤ 0
(64)

where α is a small constant (e.g., 0.01). This creates a small, non-zero
gradient when the unit is inactive, which helps to keep the neuron active
during training. It is the simplest and most naïve attempt to solve the
dead ReLU problem.

¥ Pros
✓ Fixes dead neurons by allowing a small gradient when z ≤ 0.
✓ Keeps non-saturating property for positive inputs.

q Cons
p Slight computational overhead compared to standard ReLU (but

still cheap).
p The choice of α is arbitrary and may require tuning.
p Still linear for negative inputs, which may not capture complex

patterns.

2. Parametric ReLU (PReLU): similar to Leaky ReLU, but instead of
using a fixed small slope α for negative inputs, PReLU learns the slope
parameter during training. It is defined as:

g (z) =

{
z, if z > 0

az, if z ≤ 0
(65)

where a is a learnable parameter. This allows the model to adaptively
learn the best slope for negative inputs based on the data. Useful when
different neurons may benefit from different slopes.

167

3 Neural Networks and Overfitting 3.7 Tips & Tricks

¥ Pros
✓ Learns the slope for negative inputs, potentially improving per-

formance.
✓ Retains non-saturating property for positive inputs.

q Cons
p Introduces additional parameters to learn, increasing model com-

plexity.
p Slightly more computationally expensive than standard ReLU.

3. Exponential Linear Unit (ELU): a smoother variant that exponen-
tially approaches a negative value for negative inputs, defined as:

g (z) =

{
z, if z > 0

α (ez − 1) , if z ≤ 0
(66)

where α is a positive constant that controls the value to which ELU sat-
urates for negative inputs. ELU has a smooth curve for negative inputs,
which can help with learning (see Figure 20 page 169).

¥ Pros
✓ Smooth gradient for negative inputs (no sharp corner at zero).
✓ Keeps mean activations close to zero, better convergence.
✓ Reduces bias shift, improving learning dynamics.

q Cons
p More computationally expensive due to the exponential function.
p The choice of α may require tuning.

4. Scaled Exponential Linear Unit (SELU): a self-normalizing acti-
vation function that scales the output to maintain a mean of zero and
unit variance. It is defined as:

g (z) = λ ·

{
z, if z > 0

α (ez − 1) , if z ≤ 0
(67)

where λ and α are predefined constants (typically λ ≈ 1.0507 and
α ≈ 1.6733). Introduced with Self-Normalizing Neural Networks
(Klambauer et al., 2017), SELU is designed to keep the activations
normalized throughout the network, which can lead to faster conver-
gence and improved performance.

¥ Pros
✓ Self-normalizing properties help maintain stable activations.
✓ Reduces the need for batch normalization (since activations are

kept normalized).
✓ Improves convergence speed and performance.

q Cons
p More computationally expensive due to the exponential function.
p Requires careful weight initialization to maintain self-normalizing

properties.

168

3 Neural Networks and Overfitting 3.7 Tips & Tricks

Activation Formula g′(z < 0) g′(z > 0) Notes

ReLU max(0, z) 0 1 Fast, simple,
may die.

Leaky
ReLU

max (αz, z) α 1 Prevents
dead neurons.

PReLU max (az, z) a (learned) 1 Adaptive
slope.

ELU

{
z, z > 0

α (ez − 1) , z ≤ 0
αez 1 Smooth,

mean close to
0.

SELU λ ·

{
z, z > 0

α (ez − 1) , z ≤ 0
λαez λ Self-

normalizing.

Table 2: Summary of ReLU, Leaky ReLU, PReLU, ELU, and SELU.

4 2 0 2 4
z

2

0

2

4

g(
z)

Activation Functions (ReLU and Variants)
ReLU
Leaky ReLU (= 0.01)
ELU (= 1)
SELU (= 1.6733, = 1.0507)

4 2 0 2 4
z

0.0

0.5

1.0

1.5

g'
(z

)

Derivatives of Activation Functions
ReLU'
Leaky ReLU'
ELU'
SELU'

Figure 20: Comparison of ReLU and its variants: Leaky ReLU, PReLU, and
ELU. Classic ReLU and Leaky ReLU are almost identical, with the Leaky having
a slight slope for negative inputs. PReLU adapts its slope during training,
whereas ELU provides a smooth transition for negative inputs. And SELU
scales the output to maintain a mean of zero and unit variance.

169

3 Neural Networks and Overfitting 3.7 Tips & Tricks

3.7.3 Weight Initialization

When we initialize a neural network, we want activations and gradients to keep
a stable scale across layers. Otherwise:

• If weights are too small, signals shrink layer after layer, leading to van-
ishing gradients (vanish gradient problem, page 163).

• If weights are too large, signals blow up exponentially, leading to ex-
ploding gradients (explode gradient problem, page 165).

Hence, initialization must preserve the variance of signals forward and back-
ward through the network.

 Forward-pass variance analysis

Consider one neuron:

z
(l)
j =

nl−1∑
i=1

w
(l)
ji h

(l−1)
i + b

(l)
j where h

(l−1)
i = g

(
z
(l−1)
i

)
Where h

(l−1)
i are the activations from the previous layer, w

(l)
ji are the

weights, b(l)j is the bias, and g(·) is the activation function. Assume:

• Inputs h
(l−1)
i are i.i.d. (independent and identically distributed, page

104) with:
E
[
h
(l−1)
i

]
︸ ︷︷ ︸

mean

= 0 and Var
[
h
(l−1)
i

]
︸ ︷︷ ︸

variance

= vh

• Weights w
(l)
ji are i.i.d. with:

E
[
w

(l)
ji

]
= 0 and Var

[
w

(l)
ji

]
= vw

• Bias b
(l)
j with:

E
[
b
(l)
j

]
= 0 and Var

[
b
(l)
j

]
= vb

Then, the variance of z(l)j is:

Var
[
z
(l)
j

]
= nl−1 · vw · vh + vb

Where nl−1 is the number of neurons in layer l−1 (the previous layer). To keep
the variance stable across layers, we want:

Var
[
z
(l)
j

]
= Var

[
h
(l−1)
i

]
= vh ⇒ nl−1 · vw · vh + vb = vh

Assuming vb is small, we get:

nl−1 · vw ·��vh +��vb =��vh ⇒ vw =
1

nl−1
(68)

This means we should initialize weights with variance vw =
1

nl−1
to pre-

serve forward-pass variance.

170

3 Neural Networks and Overfitting 3.7 Tips & Tricks

� Backward-pass variance analysis

During backpropagation, the gradient with respect to activations δ
(l)
i = ∂E

∂z
(l)
i

obeys:

δ
(l)
i = g′

(
z
(l)
i

) nl+1∑
j=1

w
(l+1)
ji δ

(l+1)
j

Where g′(·) is the derivative of the activation function, and δ
(l+1)
j are the gra-

dients from the next layer. Assume:

• Gradients δ
(l+1)
j are i.i.d. with:

E
[
δ
(l+1)
j

]
= 0 and Var

[
δ
(l+1)
j

]
= vδ

• Weights w
(l+1)
ji are i.i.d. with:

E
[
w

(l+1)
ji

]
= 0 and Var

[
w

(l+1)
ji

]
= vw

• Activation derivatives g′
(
z
(l)
i

)
are i.i.d. with:

E
[
g′
(
z
(l)
i

)]
= 0 and Var

[
g′
(
z
(l)
i

)]
= vg′

Then, the variance of δ(l)i is:

Var
[
δ
(l)
i

]
= nl+1 · vw · vδ · vg′

Where nl+1 is the number of neurons in layer l + 1 (the next layer). To keep
the variance stable across layers, we want:

Var
[
δ
(l)
i

]
= Var

[
δ
(l+1)
j

]
= vδ ⇒ nl+1 · vw · vδ · vg′ = vδ

Assuming vδ is non-zero, we get:

nl+1 · vw ·��vδ · vg′ =��vδ ⇒ vw =
1

nl+1 · vg′
(69)

This means we should initialize weights with variance vw =
1

nl+1 · vg′
to

preserve backward-pass variance.

171

3 Neural Networks and Overfitting 3.7 Tips & Tricks

⋆ The Xavier (Glorot) and He (Kaiming) Initialization

To satisfy both forward and backward variance preservation, we can combine
equations (68) and (69). Exists two popular initialization schemes:

• Xavier (Glorot) Initialization. Glorot & Bengio (2010), two re-
searchers from the University of Montreal, proposed a balanced compro-
mise between forward and backward variance preservation. They com-
bined the two equations by averaging the number of neurons in the previ-
ous and next layers:

Var
[
w

(l)
ji

]
= vw =

2

nl−1 + nl
(70)

– nl−1 is the number of input units from the previous layer to layer l.

– nl is the number of output units from layer l to the next layer.

It works well for activation functions like tanh or sigmoid, where both
positive and negative activations are symmetric and can saturate easily.
Hence, Xavier initialization keeps activations within a “safe” non-saturated
range, reducing the change of vanishing gradients (or exploding gradients).

• He (Kaiming) Initialization. He et al. (2015), researchers from
Microsoft Research, proposed an initialization scheme specifically designed
for ReLU and its variants. He proofed that with ReLU activations, only
about half the neurons are active at a time (since ReLU outputs zero for
negative inputs). Therefore, the effective variance of activations halves:

Var
[
h(l)
]
=

1

2
·Var

[
z(l)
]

Where h(l) are the activations after ReLU, and z(l) are the pre-activation
values. To compensate for this reduction, He et al. (2015) proposed to
double the variance of weights:

Var
[
w

(l)
ji

]
= vw =

2

nl−1
(71)

This ensures that activations after the ReLU maintain a unit variance and
gradients remain stable during backpropagation.

In summary, both initialization methods were designed to control the vari-
ance of: activations during the forward pass and gradients during the back-
ward pass. They make sure that, on average:

Var
[
z(l)
]
≈ Var

[
z(l−1)

]
and Var

[
δ(l)
]
≈ Var

[
δ(l+1)

]
So they explicitly avoid both:

p Var < 1 (vanishing gradients)

✓ Var = 1 (stable)

p Var > 1 (exploding gradients)

172

3 Neural Networks and Overfitting 3.7 Tips & Tricks

The goal is a critical regime (Var = 1) where the signal neither dies nor
explodes. But, remember that Xavier and He initialization prevent both van-
ishing and exploding gradients only at the start of training. During training,
weights are updated, and the variance can drift away from the ideal value.
Therefore, other techniques like batch normalization (page 174) are often
used in conjunction to maintain stable activations and gradients throughout
training.

Initialization Recommended for Weight Variance

Xavier (Glorot) Sigmoid / Tanh
2

nin + nout

He (Kaiming) ReLU / Leaky ReLU
2

nin

Table 3: Summary of popular weight initialization schemes. nin is the number
of input units to the layer, and nout is the number of output units from the
layer.

In practice, these initialization schemes significantly improve training stability
and convergence speed, especially in deep networks. Modern deep learning
frameworks (like TensorFlow and PyTorch) implement these initializations by
default when creating layers.

173

3 Neural Networks and Overfitting 3.7 Tips & Tricks

3.7.4 Batch Normalization

When training deep networks, each layer’s input distribution keeps chang-
ing as previous layers update their weights. This phenomenon is called internal
covariate shift.

In machine learning, the Internal Covariate Shift (or simply Covariate
Shift) happens when the distribution or input data changes between train-
ing and testing. For example, we train a model to detect cats using bright
studio photos; then we test it on dark or outdoor photos. The model strug-
gles because Ptrain(X) ̸= Ptest(X), even though the task (detect cats) remains
the same. That’s the classic covariate shift problem: a change in the input
feature distribution that forces the model to adapt to new data patterns. In
a deep neural network, every layer has its own inputs, and those inputs come
from the previous layer’s outputs, which are constantly changing as training
proceeds. So, while the external dataset stays the same, the internal data
(the activations flowing between layers) keeps shifting its distribution during
training. This is what we call internal covariate shift, and it is called “in-
ternal ” because it happens within the network itself, not just between training
and testing datasets.

In simple terms, every time earlier layers update their weights, the input dis-
tribution to later layers changes. This means that from the perspective of layer
l:

• At iteration 1, its input z(l) might have mean = 0 and variance = 1.

• At iteration 100, the same input might have mean = 3 and variance = 10.

So layer l is constantly trying to adapt to a moving target distribution, its
own input is unstable.

® Why is internal covariate shift a problem? Neural networks assume
(implicitly) that the distribution of each layer’s inputs stays within a “reason-
able” range. But if these distributions shift too much:

• Neurons may enter the saturated region of activation functions (like
sigmoid or tanh), leading to vanishing gradients.

• Gradient flow becomes unstable, making optimization slower and more
difficult.

• Convergence slows down dramatically, requiring smaller learning rates
and careful initialization.

In other words, internal covariate shift makes training harder and slower,
because every layer must re-learn how to operate each time the layers before it
change.

174

3 Neural Networks and Overfitting 3.7 Tips & Tricks

¥ Solution: Batch Normalization

Since covariate shift arises from changing input distributions, the solution is to
stabilize these distributions. This is where Batch Normalization (BN)
comes in. Introduced by Sergey Ioffe and Christian Szegedy in 2015 [5], BN
fixes this problem by re-centering and re-scaling each layer’s input at every
training step, so that:

E
[
z(l)
]
= 0 and Var

[
z(l)
]
= 1 (72)

Where z(l) is the input to layer l, E is the expectation (mean), and Var is the
variance. That means the input distribution to each layer remains stable, even
as earlier layers’ weights keep evolving. So layer l can focus on learning useful
transformation, not on constantly re-adjusting to a changing scale or mean.

Formally, let’s denote the pre-activations of a neuron as z(l)i for the i-th example
in a batch of size m. Batch Normalization performs the following steps during
training:

1. Compute the batch mean :

µB =
1

m

m∑
i=1

z
(l)
i (73)

Where µB is the mean of the pre-activations over the batch.

2. Compute the batch variance :

σ2
B =

1

m

m∑
i=1

(
z
(l)
i − µB

)2
(74)

Where σ2
B is the variance of the pre-activations over the batch.

3. Normalize each activation:

ẑ
(l)
i =

z
(l)
i − µB√
σ2
B + ε

(75)

Where ẑ
(l)
i is the normalized activation, and ε is a small constant added

for numerical stability, preventing division by zero. After this step, the
normalized activations ẑ

(l)
i have mean 0 and variance 1 across the batch.

But, since this step destroys the original mean and variance information
of z, we need to add a way to restore it if needed.

4. Scale and shift with learnable parameters:

y
(l)
i = γẑ

(l)
i + β (76)

Where y
(l)
i is the final output of the Batch Normalization layer, and γ and

β are learnable parameters that allow the network to restore the
original distribution if needed.

175

3 Neural Networks and Overfitting 3.7 Tips & Tricks

® If Batch Normalization forces every layer to have mean 0
and variance 1, how can the two parameters γ and β possibly
recover the original distribution? Isn’t the information lost?
Normalization helps stability, but what if a neuron needs its activations
to be, say: shifted up (mean = 2) or spread wider (variance = 9)? If we
stop at pure normalization we’d limit the representational power of
the layer, because every neuron would have to operate under the same
fixed scale 1 and mean 0. That’s where the learnable parameters γ and β
come in:

• γ (scale) allows the network to stretch or compress the normalized
activations, effectively controlling the variance.

• β (shift) allows the network to move the normalized activations up
or down, effectively controlling the mean.

This lets the network relearn any affine transformation of the nor-
malized values.

Example 4: Restoring Original Distribution with γ and β

Suppose before normalization a neuron had:

µorig = 2, σorig = 3

After normalization, the activations have:

ẑ
(l)
i =

zi − 2

3
⇒ E[ẑ] = 0, Var[ẑ] = 1

Then, if the network learns:

γ = 3, β = 2

The final output becomes:

y
(l)
i = 3 · ẑ(l)i + 2 = 3 · zi − 2

3
+ 2 = zi

Thus, the original distribution is perfectly restored!

So the full Batch Normalization transformation can be summarized as:

y
(l)
i = BN

(
z
(l)
i

)
= γ · z

(l)
i − µB√
σ2
B + ε

+ β (77)

® When to apply Batch Normalization?

During training, Batch Normalization is applied inside the forward pass
of the network, right after the linear transformation (affine operation) and
before the activation function. Formally, for layer l:

z(l) = W (l)a(l−1) + b(l)

176

3 Neural Networks and Overfitting 3.7 Tips & Tricks

Batch Normalization acts as:

BN: ẑ(l) =
z(l) − µB√

σ2
B + ε

then y(l) = γẑ(l) + β

And then:

a(l) = g
(
y(l)
)

where g is the activation function (e.g., ReLU, sigmoid)

So the order is typically Linear → Batch Norm → Activation.

® What about during inference (testing)?

During inference (testing), the model process one example at a time (or
a few), not large batches. Therefore, computing “batch statistics” doesn’t make
sense anymore because a single sample doesn’t have a meaningful mean or vari-
ance. Instead, we use running estimates (a.k.a. moving averages) of mean
and variance that were computed during training. Specifically:

1. Running averages during training. As we train, we maintain running
estimates of the mean and variance for each layer:

µrunning = (1− α)µrunning + αµB (78)

σ2
running = (1− α)σ2

running + ασ2
B (79)

Where α is a small constant (e.g., 0.1) that controls the update rate. These
running estimates capture the overall distribution of activations over the
entire training set.

2. At inference (testing). At inference, Batch Normalization uses these
“frozen” running estimates instead of batch statistics:

y
(l)
i = γ · z

(l)
i − µrunning√
σ2

running + ε
+ β

These are constants, no mini-batch dependence, no randomness. This
ensures that the model’s behavior is consistent and stable during inference.

¥ Benefits of Batch Normalization

• Stabilizes training: Keeps activations in non-saturating range, reducing
vanishing/exploding effects.

• Allows higher learning rates: Because activations are normalized,
large updates won’t blow up the model.

• Regularization effect: Adds small noise (due to batch statistics), im-
proving generalization.

• Reduces sensitivity to initialization: Training becomes less depen-
dent on perfect Xavier/He settings.

• Improves convergence speed: Layers adapt faster because their inputs
are more predictable.

177

3 Neural Networks and Overfitting 3.7 Tips & Tricks

10 5 0 5 10 15
0

100

200

Before Batch Normalization (different batches different distributions)
Batch 1
Batch 2
Batch 3

8 6 4 2 0 2 4 6
0

100

200

After BN During Training (each batch normalized independently)
BN(Batch 1)
BN(Batch 2)
BN(Batch 3)

6 4 2 0 2 4 6 8
0

100

200

At Inference: Using Running Statistics from Training
Raw Test Activations
After BN (inference: running ,)

Figure 21: Batch Normalization normalizes layer inputs to stabilize training.
Before BN, each training batch has a very different distribution (different mean
& variance, top plot). After BN (during training), each batch is independently
normalized to roughly the same mean and variance — stable inputs for the next
layer (middle plot). At inference (testing), the model uses the running averages
of mean and variance collected during training, producing a fixed and consistent
normalization for new unseen data (bottom plot).

178

3 Neural Networks and Overfitting 3.7 Tips & Tricks

3.7.5 Mini-Batch Training

When we train a neural network, we want to minimize the empirical risk:

E(w) =
1

N

N∑
n=1

L (f (xn;w) , tn)

• N is the number of training samples

• L is the loss function

• f(xn;w) is the model’s prediction for input xn with parameters w (out-
puts)

• tn is the true target for input xn

Theoretically, the gradient for updating weights should be computed over the
entire dataset, over all N samples:

∇wE(w) =
1

N

N∑
n=1

∇wL (f (xn;w) , tn)

But in practice, especially with large datasets, this is computationally expensive
and inefficient.

� Solution: Mini-Batch Gradient Descent

Instead of using all N samples to compute the gradient, we use a smaller subset
of the data called a mini-batch. In general, the mini-batch technique is one of
a set of batching techniques. The main batch techniques are:

• Full-Batch Gradient Descent (BGD): uses the entire dataset to com-
pute the gradient. It is the method that we introduced when we covered
gradient descent, as it is the most general (it uses all the data, page 90).
However, it allows to get the exact gradient, but it is computationally
expensive for large datasets and can lead to slow convergence.

• Stochastic Gradient Descent (SGD): uses a single sample to com-
pute the gradient at each iteration. We introduced it when we covered
stochastic gradient descent (page 115) because we wanted to show how
randomness can help in optimization. It is computationally efficient and
can lead to faster convergence, but the gradient estimate is noisy and
can lead to unstable updates.

• Mini-Batch Gradient Descent (MBGD): uses a small subset of the
dataset (mini-batch) to compute the gradient at each iteration. It is a
compromise between BGD and SGD, balancing computational effi-
ciency and gradient accuracy. It is widely used in practice due to its
effectiveness in training deep neural networks.

179

3 Neural Networks and Overfitting 3.7 Tips & Tricks

The Mini-Batch Gradient Descent (MBGD) algorithm works as follows:

1. Shuffle the training dataset to ensure randomness.

2. Divide the dataset into mini-batches of size m (where m≪ N , much
smaller than N).

3. For each mini-batch B = {x1, x2, . . . , xm}:

(a) Compute the gradient of the loss function with respect to the
weights using only the samples in the mini-batch:

∇wEB(w) =
1

m

m∑
i=1

∇wL (f (xi;w) , ti)

(b) Update the weights using the computed gradient:

w ← w − η∇wEB(w)

where η is the learning rate.

4. Repeat until convergence or for a fixed number of epochs.

8 The trade-off: Stability vs. Speed

Choosing the right mini-batch size is crucial:

Property Small (1 ≤ m ≤ 32) Large (256 ≤ m ≤ 8192)

Computation per
step

Very low Very high

Update frequency Very high Very low

Gradient noise High, helps generaliza-
tion

Low, risk of sharp minima

Convergence Fast but noisy Smooth but slower learning
per sample

GPU parallelism Inefficient Efficient

So too small batches can lead to noisy updates and unstable training,
while too large batches can lead to slow convergence and poor generaliza-
tion. A common practice is to start with a moderate batch size (e.g., 32, 64, or
128) and adjust based on the model’s performance and available computational
resources.

180

3 Neural Networks and Overfitting 3.7 Tips & Tricks

[Impact on convergence and generalization

Mini-batch training affects both convergence and generalization of neural net-
works:

• Convergence. The stochasticity (small random fluctuations in gradi-
ent direction) helps the optimizer: escape shallow or sharp local minima,
explore a larger portion of the loss landscape, and converge faster in ex-
pectation.

• Generalization. Mini-batch noise acts as a regularizer, preventing the
model from memorizing training data perfectly (and thus overfitting).

– Too large a batch → almost deterministic gradient → risk of con-
verging to sharp minima → poor generalization.

– Smaller batches → noisier gradients → exploration of flatter min-
ima → better generalization.

181

3 Neural Networks and Overfitting 3.7 Tips & Tricks

3.7.6 Learning Rate Scheduling

The learning rate η is one of the most important hyperparameters in training
neural networks. It controls how big the weight updates are at each step of the
optimization process:

wk+1 = wk − η∇wE (wk)

If η is too large, training may diverge (overshoot minima). If it’s too small,
training is slow and can get stuck in local minima or plateaus. So we need
ways to make the learning rate adapt intelligently over time.

8 Fixed vs. Adaptive Learning Rates

There are four main strategies for setting the learning rate during training:

• Fixed Learning Rate (baseline). The learning rate η remains constant
throughout training. So gradient descent (GD) or stochastic gradi-
ent descent (SGD) uses the same η at every iteration:

wk+1 = wk − η∇wE (wk)

Works fine for simple convex problems (for example Figure 11,
page 94), but for deeper networks, loss landscapes are complex, and a
fixed η can lead to slow convergence or divergence.

• Learning Rate Scheduling (decay). The learning rate η is reduced
over time according to a predefined schedule. Typical schedules include:

– Step Decay: reduce η by a factor (e.g., halve it) every s epochs:

ηt = η0 · drop⌊t÷s⌋ (80)

Where η0 is the initial learning rate, t is the epoch number, and drop
is the factor by which to reduce η.

– Exponential Decay: reduce η by a factor every epoch:

ηt = η0 · e−λt (81)

Where λ is the decay rate and t is the epoch number.
– 1/t Decay: reduce η according to the inverse of the epoch number:

ηt =
η0

1 + λt
(82)

Where λ is the decay rate and t is the epoch number. It is a classic
stochastic approximation rule.

– Cosine Annealing: vary η according to a cosine function:

ηt =
η0
2
·
(
1 + cos

(
t

T
π

))
(83)

Where T is the maximum number of epochs. This allows for periodic
“restarts” of the learning rate, because the cosine function oscillates
(i.e., the interval [0, π] can be repeated multiple times during train-
ing).

182

3 Neural Networks and Overfitting 3.7 Tips & Tricks

In practice, learning rate is set to a relatively high value initially
to allow for rapid learning, and then gradually decreased to allow for
fine-tuning as training progresses.

• Momentum: adding inertia to updates. Since plain SGD (Stochaas-
tic Gradient Descent) may zig-zag in narrow valleys of the loss surface,
momentum accelerates learning by accumulating a velocity vector in
directions of persistent reduction in loss:

vt = αvt−1 − η∇wE (wt) (84)

Then weights are updated using this velocity:

wt+1 = wt + vt (85)

Where vt is the velocity at time t, α ∈ [0, 1) is the momentum coefficient
(typically around 0.9), and η is the learning rate.

• Adaptive Learning Rate Methods. These methods adjust the learning
rate for each parameter individually based on historical gradients:

– RMSProp (Root Mean Square Propagation). Adapts the step
using a running average of squared gradients:

st = ρst−1 + (1− ρ)g2t

wt+1 = wt −
η√

st + ε
gt

(86)

Where st is the running average of squared gradients, ρ is the decay
rate (typically around 0.9), gt is the gradient at time t, and ε is a small
constant to prevent division by zero. If gradients are large, then the
denominator increases, and the step size decreases, and vice versa.
This helps stabilize updates and allows for larger learning
rates.

– Adam (Adaptive Moment Estimation): combines momentum
(mean of gradients) and RMSProp (variance of gradients) by main-
taining both a velocity vector and an exponentially decaying average
of squared gradients:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

wt+1 = wt − η
m̂t√
v̂t + ε

(87)

Where:

∗ mt is the first moment (mean) estimate,

183

3 Neural Networks and Overfitting 3.7 Tips & Tricks

∗ vt is the second moment (uncentered variance) estimate,
∗ β1 and β2 are decay rates for the moment estimates (typically
β1 = 0.9, β2 = 0.999),

∗ m̂t and v̂t are bias-corrected estimates,
∗ ε is a small constant to prevent division by zero, typically around
10−8.

Adam adapts quickly, handles noisy gradients, and works well
with mini-batches. However, sometimes generalizes worse than
SGD with momentum (flatter minima are less explored).

In practice, we can take a hybrid approach:

1. Start with Adam for general-purpose training, especially with complex
architectures or noisy data.

2. Switch to SGD with Momentum for final fine-tuning to potentially
achieve better generalization.

3. Learning rate scheduling (cosine, step, or warm restarts) is used even
with Adam; we can adapt the global η while Adam adapts per-parameter
rates.

184

References

References
[1] George Cybenko. Approximation by superpositions of a sigmoidal function.

Mathematics of control, signals and systems, 2(4):303–314, 1989.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[3] Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257, 1991.

[4] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5):359–366,
1989.

[5] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International con-
ference on machine learning, pages 448–456. pmlr, 2015.

[6] Matteucci Matteo. Artificial neural networks and deep learning. Slides from
the HPC-E master’s degree course on Politecnico di Milano, 2025-2026.

185

http://www.deeplearningbook.org

Index
A
Activation Function 57
Activation Potential 57
ADALINE (Adaptive Linear Neuron) 39
Adam (Adaptive Moment Estimation) 183
Adaptive Learning Rate Methods: Adam (Adaptive Moment Estimation) 183
Adaptive Learning Rate Methods: RMSProp (Root Mean Square

Propagation) 183
Artificial Neuron 36

B
Backpropagation 96
Batch Gradient Descent 115
Batch Normalization (BN) 175
Bayesian Optimization 149
Bias 36
Bias-Variance Trade-off 124
Binary Cross-Entropy (BCE, Log Loss) 73

C
Categorical Cross-Entropy (CCE) 79
Chain Rule 96
Classification 9
Clustering 12
Core Learning Rule 91
Cost Function 86
Covariate Shift 174
Cross-Validation 130

D
Dead ReLU Problem 166
Decision Boundary 48
Decision Boundary Equation 41
Dropout 160, 161
Dying ReLU Problem 166

E
Early Stopping 142
Error Function E(w) 86
Experience (E) 5
Exploding Gradient Problem 165
Exponential Linear Unit (ELU) 168

F
Feature Engineering (Traditional ML) 21
Feed-Forward Neural Network (FNN) 54
Fixed Learning Rate 182

G
Gradient Descent 90

186

Index

Grid Search 148

H
He (Kaiming) Initialization 172
Hebbian Learning Rule 44
Hold-Out Method 127, 131
Hold-Out Validation 131
Hyperbolic Tangent (tanh) Activation Function 64
Hyperparameter Tuning 145
Hyperparameter Tuning Algorithm 147
Hyperplane 110

I
Independent and Identically Distributed (i.i.d.) 104
Inductive Bias 123
Inductive Hypothesis 123, 125
Internal Covariate Shift 174

K
K-Fold Cross-Validation 135

L
L2 Regularization 151
Leaky ReLU 167
Learned Features (Deep Learning) 21
Learning Rate Scheduling (decay) 182
Learning Rate Scheduling: 1/t Decay 182
Learning Rate Scheduling: Cosine Annealing 182
Learning Rate Scheduling: Exponential Decay 182
Learning Rate Scheduling: Step Decay 182
Leave-One-Out Cross-Validation (LOOCV) 133
Linear Activation Function 59
Linearly Separable 51
Logistic Activation Function 61
Loss Function 86

M
MADALINE (Multiple ADALINE network) 39
Maximum A Posteriori (MAP) 154
Maximum Likelihood Estimation (MLE) 103
Mean Absolute Error 70
Mean Squared Error (MSE) 68
Mini-Batch Gradient Descent (MBGD) 180
Model Complexity vs. Error Curve 125

N
Nested Cross-Validation 137
Net Input 57
Neural Network 38

O
Ockham’s Razor 119

187

Index

One-Hot Encoding 76
Overfitting 121

P
Parametric ReLU (PReLU) 167
Patience Parameter 143
Patience Window 143
Perceptron 38, 40
Performance measure (P) 5

R
Random Search 148
Random Subsampling 127
Rectified Linear Unit (ReLU) 166
Regression 11
Reinforcement Learning (RL) 17
RMSProp (Root Mean Square Propagation) 183

S
Scaled Exponential Linear Unit (SELU) 168
Sigmoid Activation Function 61
Softmax Activation Function 77
Stochastic Gradient Descent (SGD) 115
Stratified Sampling 127
Sum of Squared Errors (SSE) 87
Supervised Learning 9, 83

T
Task (T) 5
Task, Experience, Performance 5
Test Set 128
Threshold Logic Unit (TLU) 38
Training 84
Training Dataset 128
Training Set 128
Training vs. Validation Error Curve 141

U
Underfitting 122
Universal Approximation Theorem 80, 118
Unsupervised Learning 12

V
Validation Set 128
Vanishing Gradient Problem 163

W
Weight Decay 151
Weight Scaling Rule 161
Weight Update Rule in Hebbian Learning 45

188

Index

X
Xavier (Glorot) Initialization 172

Z
Zero-Gradient Problem 163

189

	Introduction to Deep Learning
	Machine Learning Foundations
	Machine Learning Paradigms
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Towards Deep Learning
	Modern Pattern Recognition (Pre-DL)
	What is Deep Learning after all?
	What's Behind Deep Learning?
	Summary

	From Perceptrons to FNNs
	Historical Context
	The Perceptron
	Who Invented It?
	Mathematical Model & Logical Operations
	Hebbian Learning Rule
	Perceptron as Linear Classifier
	Boolean Operators & Linear Separability

	Feed-Forward Neural Networks (FNNs)
	Architecture
	Activation Functions
	Linear
	Sigmoid
	Hyperbolic Tangent (tanh)

	Output Layer
	Regression
	Binary Classification
	Multi-Class Classification

	Neural Networks as Universal Approximators

	Learning and Optimization
	Supervised Learning and Training Dataset
	Error Minimization and Loss Function (SSE)
	Gradient Descent Basics
	Backpropagation (Conceptual Introduction)

	Maximum Likelihood Estimation (MLE)
	Perceptron Learning Algorithm
	Summary

	Neural Networks and Overfitting
	Universal Approximation Theorem
	Model Complexity
	Measuring Generalization
	Terminology Clarifications
	Cross-Validation Techniques
	Hold-Out Validation
	Leave-One-Out Cross-Validation (LOOCV)
	K-Fold Cross-Validation
	Nested Cross-Validation

	Preventing Overfitting
	Early Stopping
	Hyperparameter Tuning
	Weight Decay (L2 Regularization)
	Dropout (Stochastic Regularization)

	Tips & Tricks
	Activation Function Saturation
	ReLU and Variants
	Weight Initialization
	Batch Normalization
	Mini-Batch Training
	Learning Rate Scheduling

	Index

