
Foundations of Operations Research - Notes -
v0.5.1

260236

November 2024

1

Preface
Every theory section in these notes has been taken from the sources:

• Course slides. [2]

About:

§ GitHub repository

These notes are an unofficial resource and shouldn’t replace the course material
or any other book on foundations of operations research. It is not made for
commercial purposes. I’ve made the following notes to help me improve my
knowledge and maybe it can be helpful for everyone.

As I have highlighted, a student should choose the teacher’s material or a
book on the topic. These notes can only be a helpful material.

2

https://github.com/PoliMI-HPC-E-notes-projects-AndreVale69/HPC-E-PoliMI-university-notes

Contents
1 Introduction 5

1.1 Decision-making problems . 6
1.1.1 Assignment problem . 6
1.1.2 Network design . 7
1.1.3 Shortest path . 7
1.1.4 Other problems . 7

1.2 Scheme of an OR study . 8
1.3 Mathematical programming/optimization 12
1.4 Multi-objective programming . 15
1.5 Mathematical Programming or Simulation? 16

2 Graph and network optimization 17
2.1 Graphs . 17

2.1.1 Definitions and characteristics 17
2.1.2 Graphical representation 21
2.1.3 Graph reachability problem 22

2.1.3.1 Description and algorithm 23
2.1.3.2 Complexity of algorithm 24

2.2 Trees . 25
2.2.1 Definitions and characteristics 25
2.2.2 Properties . 26
2.2.3 Optimal cost spanning trees 27

2.2.3.1 Prim’s algorithm 29
2.2.3.2 Implementation of Prim’s algorithm in O

(
n2

)
. 32

2.2.3.3 Optimality condition 37

3 Laboratory 38
3.1 Introduction . 38

3.1.1 Diet problem . 39
3.1.2 Oil blending problem . 42

Index 47

3

Algorithms
1 Graph reachability problem: Breadth-First Search O (|N |+ |A|) . 23
2 Minimum spanning tree (MST) problem: Prim’s O (nm) 31
3 Minimum spanning tree (MST) problem: Prim’s O

(
n2

)
. 35

4

1 Introduction

1 Introduction

Definition 1

Operations Research (OR), often shortened to the initialism OR,
is the branch of mathematics in which mathematical models and
quantitative methods (e.g. optimization, game theory, simulation)
are used to analyze complex decision-making problems and find
(near-)optimal solutions.

The overall and primary goal is to help make better decisions.

OR can be seen as an interdisciplinary field at the intersection of applied math-
ematics, computer science, economics, and industrial engineering.

Operations research is often concerned with determining the extreme values
of some real-world objective: the maximum (of profit, performance, or
yield) or minimum (of loss, risk, or cost). Originating in military efforts before
World War II, its techniques have grown to concern problems in a variety of
industries. [4]

Its origins date back to World War II: teams of scientists were asked to research
the most efficient way to conduct operations (e.g., to optimize the allocation of
scarce resources).

In the decades after the war, the techniques became public and were applied
more widely to problems in business, industry, and society.

During the industrial boom, the substantial increase in the size of firms and
organizations led to more complex decision problems.

There are favorable circumstances: rapid progress in OR and in numerical anal-
ysis methods, and the advent and spread of computers (available computing
power and widespread software).

5

1 Introduction 1.1 Decision-making problems

1.1 Decision-making problems
Decision-making problems are analyzed using mathematical models and quan-
titative methods.

Definition 2

Decision-making problems are problems in which we must choose
a (feasible) solution among a large number of alternatives based
on one or several criteria.

In other words, they are complex decision-making problems that are addressed
through a mathematical modeling approach (mathematical models, algo-
rithms, and computer implementations).

Some practical examples include assignment problem, network design, shortest
paths, personnel scheduling, service management, multicriteria problem, and
maximum clique.

1.1.1 Assignment problem

A mathematical definition of an assignment problem is as follows. Given m
jobs and m machines, suppose that each job can be executed by any machine
and that tij is the execution time of job Ji on machine Mj .

M1 M2 M3

J1 2 6 3
J2 8 4 9
J3 5 7 8

Table 1: Example of an assignment problem table.

The main goal is to decide which job to assign to each machine in order
to minimize the total execution time. Also, (constraints) each job must be
assigned to exactly one machine, and each machine must be assigned to exactly
one job.

The number of feasible solutions is the permutations, then the factorial of
m: m!.

6

1 Introduction 1.1 Decision-making problems

1.1.2 Network design

The network design problem is characterized as how to connect n cities
(offices) via a collection of possible links so as (main goal) to minimize
the total link cost.

Using mathematical terms, given a graph G = (N,E) with a node i ∈ N for
each city and an edge {i, j} ∈ E of cost cij , select a subset of edges of minimum
total cost, guaranteeing that all pairs of nodes are connected.

Figure 1: Examples of network design graphs.

The number of alternative solutions is at most 2m, where m = |E|.

1.1.3 Shortest path

The shortest path problem is similar to network design. Given a direct path
that represents a road network with distances (traveling times) for each arc,
determine the shortest (fastest) path between two points (nodes).

Figure 2: Examples of shortest path graphs.

1.1.4 Other problems

Other decision-making problems are:

• Personnel scheduling problem: determine the week schedule for the
hospital personnel, so as to minimize the number of people involved (physi-
cians, nurses, . . .) while meeting the daily requirements.

• Service management problem: determine how many counters/desks
to open at a given time of the day so that the average customer waiting
time does not exceed a certain value (guarantee a given service quality).

• Multicriteria problem: decide which laptop to buy considering the
price, the weight and the performance.

• Maximum clique problem: determine the complete subgraph of a
graph, with maximum number of vertices.

7

1 Introduction 1.2 Scheme of an OR study

1.2 Scheme of an OR study
The most important and common steps in operational research are:

1. Problem. Define the problem;

2. Model. Build the model;

3. Algorithm. Select or develop an appropriate algorithm;

4. Implementation. Implementing or using an efficient computer program;

5. Results. Analyze the results.

Definition 3

A mathematical model is a simplified representation of a real-
world problem.

To define a mathematical model, it is necessary to identify the fundamental
elements of the problem and the main relationships between them. But how
can we decide the number of decision makers, the number of objectives and
the level of uncertainty in the parameters? It depends on the environment. If
we have:

• One decision maker, one object, then we will use mathematical pro-
gramming (section 1.3, page 12).

• One decision maker, multiple objectives, then we will use multi-objective
programming (section 1.4, page 15).

• Uncertainty greater than zero, then we will use stochastic program-
ming.

• Multiple decision makers, then we will use game theory.

Example 1: production planning

A company produces 3 types of electronic devices: D1, D2, D3; going
through 3 main phases of the production process: assembly, refinement
and quality control.
Time (in minutes) required for each phase and product:

D1 D2 D3

Assembly 80 70 120
Refinement 70 90 20

Quality control 40 30 20

Available resources within the planning horizon (depend on the work-
force) in minutes:

Assembly Refinement Quality control

30′000 25′000 18′000

8

1 Introduction 1.2 Scheme of an OR study

Unitary profit (in KEuro):

D1 D2 D3

1.6 1 2

Assumption: the company can sell whatever it produces.
Give a mathematical model for determining a production plan which max-
imizes the total profit.

• Decision variables, xj is equal to the number of devices Dj pro-
duced, for j = 1, 2, 3.

• Objective function: max z = 1.6x1 + 1x2 + 2x3.

• Constraints: the production capacity limit for each phase:

80x1 + 70x2 + 120x3 ≤ 30′000 (assembly)

70x1 + 90x2 + 20x3 ≤ 25′000 (refinement)

40x1 + 30x2 + 20x3 ≤ 18′000 (quality control)

• Non-negative variables: x1, x2, x3 ≥ 0 may be fractional (real)
values.

Example 2: portfolio selection problem

An insurance company must decide which investments to select out of a
given set of possible assets (stocks, bonds, options, gold certificates, real
estate, . . .).

Investments area capital (cj Ke) expected return (rj)

A Germany 150 11%
B Italy 150 9%
C U.S.A. 60 13%
D Italy 100 10%
E Italy 125 8%
F France 100 7%
G Italy 50 3%
H UK 80 5%

Legend:

• A and B: automotive

• C and D: ICT

• E and F: real estate

• G: short term treasury bounds

• H: long term treasury bounds

9

1 Introduction 1.2 Scheme of an OR study

The available capital is: 600 KEuro.
At most 5 investments to avoid excessive fragmentation.
Geographic diversification to limit risk: ≤ 3 investments in Italy and ≤ 3
abroad.
Give a mathematical model for deciding which investments to select so
as to maximize the expected return while satisfying the constraints.

• Decision variables, xj is equal to 1 if j-th investment is selected
and xj = 0 otherwise, for j = 1, . . . , 8.

• Objective function: max z =

8∑
j=1

cj rj xj .

• Constraints:

8∑
j=1

cj xj ≤ 600 (capital)

8∑
j=1

xj ≤ 5 (max 5 investments)

x2 + x4 + x5 + x7 ≤ 3 (max 3 in Italy)

x1 + x3 + x6 + x8 ≤ 3 (max 3 abroad)

• Binary (integer) variables: xj ∈ {0, 1} and 1 ≤ j ≤ 8.

Possible variant. In order to limit the risk, if any of the ICT investment
is selected then at least one of the treasury bond must be selected.

• Objective function: max z =

8∑
j=1

cj rj xj .

• Constraints:

8∑
j=1

cj xj ≤ 600 (capital)

8∑
j=1

xj ≤ 5 (max 5 investments)

x2 + x4 + x5 + x7 ≤ 3 (max 3 in Italy)

x1 + x3 + x6 + x8 ≤ 3 (max 3 abroad)

x3 + x4

2
≤ x7 + x8 (investment in treasury bonds)

• Binary (integer) variables: xj ∈ {0, 1} and 1 ≤ j ≤ 8.

10

1 Introduction 1.2 Scheme of an OR study

Example 3: facility location

Consider 3 oil pits, located in positions A, B and C, from which oil is
extracted.

Connect them to a refinery with pipelines whose cost is proportional to
the square of their length.
The refinery must be at least 100 km away from point D = (100, 200),
but the oil pipelines can cross the corresponding forbidden zone.
Give a mathematical model to decide where to locate the refinery so as
to minimize the total pipeline cost.

• Decision variables, x1, x2 cartesian coordinates of the refinery.

• Objective function:

min z =
[
(x1 − 0)

2
+ (x2 − 0)

2
]
+[

(x1 − 300)
2
+ (x2 − 0)

2
]
+[

(x1 − 240)
2
+ (x2 − 300)

2
]

• Constraints: √
(x1 − 100)

2
+ (x2 − 200)

2 ≥ 100

• Variables: x1, x2 ∈ R.

11

1 Introduction 1.3 Mathematical programming/optimization

1.3 Mathematical programming/optimization
Mathematical Optimization or Mathematical Programming is the se-
lection of a best element, with regard to some criteria, from some set of
available alternatives.

In the more general approach, an optimization problem consists of max-
imizing or minimizing a real function by systematically choosing input
values from within an allowed set and computing the value of the function.
The generalization of optimization theory and techniques to other formulations
constitutes a large area of applied mathematics.

® Okay, how is it defined mathematically?

Mathematical Operation problems belong to the category of decision-making
problems. They are characterized by a single decision maker, a single ob-
jective, and reliable parameter estimates. In mathematical language, we
can say:

opt f (x) with x ∈ X and opt =

{
min
max

}
Where:

• x ∈ Rn decision variables. They are numerical variables whose values
identify a solution of the problem.

• X ⊆ Rn feasible region. Distinguishes between feasible and infeasible
solutions (via constraints):

X =

x ∈ Rn : gi (x)

=
≤
≥

 0, i = 1, . . . ,m


• f : X → R objective function.Expresses in quantitative terms the value

or cost of each feasible solution.

Note an interesting observation:

max {f (x) : x ∈ X} = −min {−f (x) : x ∈ X}

® More specifically, how can we solve these problems?

It depends on how hard the given problem is to solve.

• The problem has an easy/medium level of complexity. It makes sense
to use the Global Optima technique. It consists in finding a feasible
solution that is globally optimum, then a vector x∗ ∈ X such that:

f (x∗) ≤ f (x) ∀x ∈ X if opt = min

f (x∗) ≥ f (x) ∀x ∈ X if opt = max

Unfortunately, this method is not perfect and it may happen that the
given problem occurs:

12

1 Introduction 1.3 Mathematical programming/optimization

– Is infeasible, so the feasible region is empty: X = ∅.
– Is unbounded: ∀c ∈ R, ∃xc ∈ X such that f (xc) ≤ c or f (xc) ≥ c.

– Has a single optimal solution.

– Has a large number (even an infinite number) of optimal solu-
tions (with the same optimal value!).

• The problem has a difficult/hard level of complexity. Then the Local
Optima is the best choice. It consists in finding a feasible solution that
is local optimum (main different against global optima technique), then
a vector x̂ ∈ X such that:

f (x̂) ≤ f (x) ∀x with x ∈ X and ||x− x̂|| ≤ ε if opt = min

f (x̂) ≥ f (x) ∀x with x ∈ X and ||x− x̂|| ≤ ε if opt = max

For an appropriate value ε > 0.

In this case, it may happen that the given problem has many local
optima.

] Categories

A Mathematical Programming can be categorized depending on the feasible
region:

• Linear Programming (LP). The function f is linear:

X =

x ∈ Rn : gi (x)

=
≤
≥

 0, i = 1, . . . ,m

 with gi linear ∀i

An example is the production planning.

• Integer Linear Programming (ILP). The function f is linear:

X =

x ∈ Rn : gi (x)

=
≤
≥

 0, i = 1, . . . ,m

 ∩ Zn with gi linear ∀i

An example is the portfolio selection (finance). As we can see, the ILP
technique is identical to LP with additional integrality constraints on the
variables.

• Nonlinear Programming (NLP). The function f is convex/regular or
non convex/regular:

X =

x ∈ Rn : gi (x)

=
≤
≥

 0, i = 1, . . . ,m


With gi convex/regular or not convex/regular ∀i.
An example is the facility location (with gi convex).

13

1 Introduction 1.3 Mathematical programming/optimization

] History of Mathematical Programming

It is correct to report the history of mathematical programming:

1826/27 Joseph Fourier presents a method to solve systems of linear inequalities
(Fourier-Motzkin) and discusses some LPs with 2-3 variables.

1939 Leonid Kantorovitch lays the bases of LP (Nobel prize 1975).

1947 George Dantzig proposes independently LP and invents the simplex algo-
rithm.

1958 Ralph Gomory proposes a cutting plane method for ILP problems.

14

1 Introduction 1.4 Multi-objective programming

1.4 Multi-objective programming
® How is it born?

Even though some real-word problems can be reduced to a matter of a single
objective very often it is hard to define all the aspects in terms of a single
objective. Defining multiple objectives often gives a better idea of the task.

Multi-objective programming (also known as Multi-objective optimiza-
tion or Pareto optimization) is an area of multiple-criteria decision
making that is concerned with mathematical optimization problems involv-
ing more than one objective function to be optimized simultaneously.
Multi-objective is a type of vector optimization that has been applied in many
fields of science, including engineering, economics and logistics where optimal
decisions need to be taken in the presence of trade-offs between two or more
conflicting objectives.

Minimizing cost while maximizing comfort while buying a car, and maximiz-
ing performance whilst minimizing fuel consumption and emission of pollutants
of a vehicle are examples of multi-objective optimization problems involving
two and three objectives, respectively. [1]

Suppose to minimize f1 (x) and maximize f2 (x) (e.g. laptop: f1 is cost and
f2 (x) is performance):

1. Turn it into a single objective problem by expressing the two objectives
in terms of the same unit (e.g. monetary unit):

minλ1f1 (x)− λ2f2 (x)

for appropriate scalars λ1 and λ2.

2. Optimize the primary objective function and turn the other objective
into a constraint:

max
x∈X̃

f2 (x) where X̃ = {x ∈ X : f1 (x) ≤ ε}

for appropriate constant ε.

This is a simple introduction, the more detailed explanation will be explained
in the following pages.

15

1 Introduction 1.5 Mathematical Programming or Simulation?

1.5 Mathematical Programming or Simulation?
Mathematical Programming and Simulation involves building a model and
designing an algorithm. And the main differences are:

Mathematical Programming Simulation

Problem can be “well” formalized. Problem is difficult to formalize.

Algorithm yields a(n optimal) so-
lution.

Algorithm simulates the evolution
of the real system and allows to
evaluate the performance of alter-
native solutions.

The results are “certain” The results need to be interpreted.

Example: assignment. Example: service counters.

Table 2: Major differences between Mathematical Programming and Simulation.

16

2 Graph and network optimization

2 Graph and network optimization

2.1 Graphs
2.1.1 Definitions and characteristics

In the following section we will explain some basic concepts about the graphs.
The terms used are important, and we will use the definition box to highlight
these words.

Definition 1: graph

A graph is a pair G = (N,E), with N a set of nodes or vertices and
E ⊆ N ×N a set of edges or arcs connecting them pairwise.

Definition 2: edge

An edge connecting the nodes i and j is represented by

• Graph undirected: {i, j}

• Graph directed: (i, j)

Example 1

For example, a road network which connects n cities can be modelled, by
a graph where a city corresponds to a node, and a connection corresponds
to an edge.

• Undirected graph:

– N = {1, 2, 3, 4, 5}
– E = {{1, 2} , {1, 4} , {2, 3} , {2, 4} , {3, 4} , {3, 5} , {4, 5}}

• Directed graph:

– N = {1, 2, 3, 4, 5}
– E′ = {(1, 2) , (1, 4) , (2, 3) , (2, 4) , (3, 4) , (3, 5) , (4, 5)}

17

2 Graph and network optimization 2.1 Graphs

Some graph properties are:

• Two nodes are adjacent if they are connected by an edge.

• An edge e is incident in a node v if v is an endpoint of e.

In other words, in a graph G, two edges are incident if they share a
common vertex. For example, edge E1 = (v1, v2) and edge (v1, v3) are
incident as they share the same vertex v1.

• The degree concept depends on the type of graph:

– Undirected graph: the degree of a node is the number of incident
edges.

– Directed graph: the in-degree and out-degree of a node is the
number of arcs that have it as succesor and predecessor.

Example 2: adjacent, incident, degree, in-degree and out-
degree

Given the graphs:

• Undirected graph:

– Nodes 1 and 2 are adjacent (unlike nodes 1 and 3).

– Edge {1, 2} is incident in nodes 1 and 2.

– Node 1 has degree 2, node 4 has degree 4.

• Directed graph: node 1 has in-degree 0, and out-degree 2.

Other useful features include:

• A (directed) path from i ∈ N to j ∈ N is a sequence of (arcs) edges:

p = ⟨{v1, v2} , {v2, v3} , . . . , {vk−1, vk}⟩

Connecting nodes v1 and vk, with {vi, vi+1} ∈ E, for i = 0, . . . , k − 1.

• A generic node u and v are connected if there is a path connecting them.

• A graph (N,E) is connected if two generic nodes u, v are connected,
∀u, v ∈ N . Recall that in generic graph notation, the variable N represents
a set of nodes or vertices and E represents a set of edges or arcs connecting
them in pairs.

18

2 Graph and network optimization 2.1 Graphs

• A graph (N,E) is strongly connected if two generic nodes u, v are
connected by a directed path, ∀u, v ∈ N (for any node in the set of nodes
or vertices of the graph).

Example 3: directed path, connected nodes, connected graph,
strongly connected

Given the graphs:

• Undirected graph:

– ⟨{2, 3} , {3, 4} , {4, 5}⟩ is a path from node 2 to node 5.

– Nodes 2 and 5 are connected.

– It is a connected graph.

• Directed graph:

– ⟨{3, 5} , {5, 4} , {4, 2} , {2, 3} , {3, 4}⟩ is a directed path from
node 3 to node 4.

– It is not a strongly connected graph because the node
1 cannot be the destination of none path. In other words,
doesn’t exist a directed path from node u to node 1 (where u
is a generic node, ∀u ∈ N \ {1}).

Finally, there are other interesting properties and notations about graphs and
edges:

• A cycle (circuit) is a directed path with v1 = vk (source and destination
are the same).

• A graph is bipartite if there is a partition N = N1 ∪N2 (N1 ∩N2 = ∅)
such that no edge connects nodes in the same subset.

• A graph is complete if E = {{vj , vj} : vi, vj ∈ N ∧ i ≤ j}.

• Given a directed graph G = (N,A) and S ⊂ N , the outgoing cut induced
by S is:

δ+ (S) = {(u, v) ∈ A : u ∈ S ∧ : v ∈ N ⊆ S}

The incoming cut induced by S is:

δ− (S) = {(u, v) ∈ A : v ∈ S ∧ : u ∈ N ⊆ S}

19

2 Graph and network optimization 2.1 Graphs

Example 4: cycle/circuit in graph, bipartite graph, complete
graph, out/incoming cut

An example of cycle in graph:

• Undirected graph: ⟨{2, 3} , {3, 5} , {5, 4} , {4, 2}⟩ is a cycle.

• Directed graph: ⟨(2, 3) , (3, 4) , (4, 2)⟩ is a circuit.

An example of bipartite/complete graph:

• To the left a bipartite graph, because:

N1 = {1, 2, 3} N2 = {4, 5}

• And to the right a complete graph.

Finally, an example of out/incoming cut:

• Left graph:

δ+ ({1, 4}) = ({1, 2} , {4, 2} , {4, 5})
S = {1, 4}

N \ S = {2, 3, 5}

• Right graph:

δ− ({1, 4}) = ({3, 4} , {5, 4})
S = {1, 4}

N \ S = {2, 3, 5}

20

2 Graph and network optimization 2.1 Graphs

2.1.2 Graphical representation

Such a matrix can easily be represented as a graph. This guarantees that it
can be stored efficiently in a computer. But to understand how to do this in
general, it’s important to understand some other important properties:

• For any graph G with n nodes, the number of edges satisfies:

– m ≤ n (n− 1)

2
if G is undirected.

– m ≤ n (n− 1) if G is directed.

• A graph is dense if m ≈ n2 and sparse if m ≪ n2. Where m is the
number of arcs and n the number of nodes.

• For dense directed graphs, exist an adjacency matrix An×n:{
aij = 1 if (i, j) ∈ A

aij = 0 otherwise

To build the adjacency matrix it is necessary to create a list of successors
for each node. In other words, for each node we need to write the outgoing
edges and write the matrix.

A =


0 1 0 1 0
0 0 1 0 0
0 0 0 1 1
0 1 0 0 1
0 0 0 1 0


S (1) = {2, 4}
S (2) = {3}
S (3) = {4, 5}
S (4) = {2, 5}
S (5) = {4}

Each row represents a node, and we set the value 1 if the column index is a
node that has the arc of the row node as its incoming edge. So row one (node
one) has the value one in column two (node two) and column four (node four).

21

2 Graph and network optimization 2.1 Graphs

2.1.3 Graph reachability problem

In general the graph reachability problem can be formulated as follows.

Definition 3: graph reachability problem

Given a directed graph G = (N,A) and a node s, determine all the node
that are reachable from s.

Where N is the set of nodes and A is the set of edges.

The problem takes:

• As input a graph G = (N,A) described by the successor lists and node
s ∈ N .

• As output produces a subset M ⊆ N of nodes of the graph G reachable
from s.

Our goal is to devise an efficient algorithm that allows us to find all nodes
reachable from s.

22

2 Graph and network optimization 2.1 Graphs

2.1.3.1 Description and algorithm

Definition 4: Breadth-First Search

Breadth-First Search (BFS) is an algorithm for searching a tree
data structure for a node that satisfies a given property. It
starts at the tree root and explores all nodes at the present depth prior
to moving on to the nodes at the next depth level. Extra memory, usually
a queue, is needed to keep track of the child nodes that were encountered
but not yet explored.

1 Q ← {s};
2 M ← ∅;
3 while Q ̸= ∅ do:
4 u ← node in Q;
5 Q ← Q \ {u};
6 // label u
7 M ← M ∪ {u} ;
8 for (u, v) ∈ δ+ (u) do:
9 if v /∈ M and v /∈ Q:

10 Q ← Q ∪ {v}

Algorithm 1: Graph reachability problem: Breadth-First Search O (|N |+ |A|)

Rows 1-2. Declare a queue Q containing the nodes reachable from the source s and
not yet processed. It is managed as a FIFO (First-In First-Out) queue.
By definition, we add the s node at the beginning because it is our entry
point.
Then we declare the set M. It represents the subset of nodes of the graph
that are reachable from the source s. Obviously, it is empty at the begin-
ning of the algorithm.

Row 3. The BFS algorithm continues to process the nodes until the queue is
empty. As long as there is an element, it continues.

Rows 4-5. Take a node from the queue Q and assign it to the variable u. Also remove
the element u from the set Q. In other words, perform a difference operation
between the sets Q and the set composed only of the element u (Q \ {u}).
For example, in Python we can get the same result using the popleft
method of the deque data structure.

Row 7. Using the union between sets, add the visited node u to the subset M of
reachable nodes. This operation is also called “labeling” because you are
labeling a node as visited.

Row 8. Iterate each tuple (node u just popped from the queue, node v adjacent
to node u) in the outgoing cut set of node u.

Rows 9-10. If the adjacent node v is not in the reachable set M and it is not in the
queue (so it is not waiting to be evaluated), add the adjacent node v to Q
using the union set operation.

As we said, the algorithm continues until the queue is not empty. Note that the
queue is updated each time a neighboring node is found that is not already in
the solution set (M).

23

https://docs.python.org/3/library/collections.html#collections.deque.popleft
https://docs.python.org/3/tutorial/datastructures.html#using-lists-as-queues

2 Graph and network optimization 2.1 Graphs

2.1.3.2 Complexity of algorithm

Â BFS Algorithm - Time Complexity

The BFS time complexity1 can be expressed as O (|N |+ |A|), since every node
and every edge will be explored in the worst case.

• |N | is the number of nodes;

• |A| is the number of edges in the graph.

Note that O (|A|) may vary between O (1) and O
(
N2

)
, depending on how sparse

the input graph is. For example, for dense graphs, exactly O
(
N2

)
.

: BFS Algorithm - Space Complexity

When the number of nodes (or vertices) in the graph is known ahead of time,
and additional data structures are used to determine which vertices have already
been added to the queue, the space complexity2 can be expressed as O (|N |),
where |N | is the number of vertices. This is in addition to the space required for
the graph itself, which may vary depending on the graph representation used
by an implementation of the algorithm.

In other words, the algorithm needs:

• The space to store the set N , i.e. the set of all nodes in the graph.

• The space to store the graph itself depends on the implementation
used.

1In theoretical computer science, the time complexity is the computational complexity
that describes the amount of computer time it takes to run an algorithm. Time complexity
is commonly estimated by counting the number of elementary operations performed by the
algorithm, supposing that each elementary operation takes a fixed amount of time to perform.
Thus, the amount of time taken and the number of elementary operations performed by the
algorithm are taken to be related by a constant factor. (source)

2The space complexity of an algorithm or a data structure is the amount of memory space
required to solve an instance of the computational problem as a function of characteristics
of the input. It is the memory required by an algorithm until it executes completely. This
includes the memory space used by its inputs, called input space, and any other (auxiliary)
memory it uses during execution, which is called auxiliary space. (source)

24

https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Space_complexity

2 Graph and network optimization 2.2 Trees

2.2 Trees
2.2.1 Definitions and characteristics

Before introducing what a tree is, it is necessary to understand what a subgraph
is. Mathematically speaking, G′ = (N ′, E′) is a subgraph of G = (N,E) if
N ′ ⊆ N and E′ ⊆ E.

A tree of the graph G is a connected and acyclic subgraph of G and it
is represented as GT = (N ′, T). If the tree contains exactly every node in the
graph G, it is called the spanning tree of G and is represented as GT = (N ′, T).
Finally, we call the nodes of degree 1 in a tree as leaves.

Example 5: subgraph, tree and spanning tree

Given a graph G:

• The following figure is a subgraph of G, but not a tree, because
there is a cycle (1, 2, 4).

• The following figure is a subgraph of G, and it is a tree because
there are no cycles and the graph is connected.

• The following figure is a spanning tree of G because it contains
all the nodes in G, and it is a tree because it is connected and
acyclic.

25

2 Graph and network optimization 2.2 Trees

2.2.2 Properties

1. Every tree with n nodes has n− 1 edges.

Inductive proof. Base case: the claim holds for n = 1 (tree with 1 node
and 0 edges).
Inductive step: show that, if this is true for trees with n nodes, then it is
also true for those with n+ 1 nodes.
Let T1 be a tree with n + 1 nodes and recall that any tree with n ≥ 2
nodes has at least 2 leaves (two nodes of degree 1, the number of incident
edges). By deleting one leaf and its incident edge, we obtain a tree T2

with n nodes. By induction hypothesis, T2 has n − 1 edges. Therefore,
the tree T1 has n− 1 + 1 = n edges. QED

2. Every pair of nodes in a tree is connected by a unique path. The
proof is not necessary, because otherwise there would be a cycle (and this
is against the definition of a tree).

3. By adding a new edge to a tree, we can create a unique cycle.

4. Let GT = (N,T) be a spanning tree of G = (N,E). Consider an edge
e /∈ T and the unique cycle C of T ∪{e} (as in property 3). For each edge
f ∈ C \ {e}, the subgraph T ∪ {e} \ {f} is also a spanning tree of G.

5. Let F be a partial tree (spanning nodes in S ⊆ N) contained in an optimal
tree of G. Consider e = {u, v} inδ (S) of minimum cost, then there exists
a minimum cost spanning tree of G containing e (is better explained in
the 2.2.3.1 paragraph, page 29).

Proof. By contradiction, assume T ∗ ⊆ E is a minimum cost spanning tree
with F ⊆ T ∗ and e /∈ T ∗. Adding edge e to T ∗ creates the cycle C. Let
f ∈ δ (S) ∩ C.

• If ce = cf , then T ∗∪{e}\{f} is (also) optimal since it has same cost
of T ∗.

• If ce < cf , then c (T ∗ ∪ {e} \ {f}) < c (T ∗), hence T ∗ is not optimal.

QED

26

2 Graph and network optimization 2.2 Trees

2.2.3 Optimal cost spanning trees

Spanning trees are very common because they are used in a wide range of
applications such as network design, IP network protocols, enterprise storage,
etc.

Example 6: introduction to finding the best and optimal cost
solution

Design a communication network so as to connect n cities at minimum
total cost.
The model is made up as follows:

• Graph G = (N,E) with n = |N |, m = |E|

• Cost function c : E → ce ∈ R, with e = {u, v} ∈ E.

The required properties are:

• Each pair of cities must communicate, then the connected subgraph
containing all the nodes.

• The minimum total cost, then the subgraph must have no cycles.

We give two solutions, where the second is better because it is more
feasible and optimal:

1. c (T1) = 15

2. c (T2) = 6

27

2 Graph and network optimization 2.2 Trees

In general, we can formalize the optimal cost as follows. Given an undirected
graph G = (N,E) and a cost function, find a spanning tree GT = (N,T) of
minimum total cost:

min
T∈X

∑
e∈T

ce where X is the set of all spanning trees of G (1)

Doesn’t exists only one spanning tree, they are multiples. But the number of
spanning trees available in a complete graph is defined by a theorem.

Theorem 1 (Cayley, 1889). A complete graph with n nodes (n ≥ 1) has nn−2

spanning trees.

In general, the problem of finding a spanning tree with minimum total cost is
also called minimum spanning tree (MST) problem. It plays an important
role in many networking applications, such as routing and networking. [3]

28

2 Graph and network optimization 2.2 Trees

2.2.3.1 Prim’s algorithm

Definition 5: Prim’s

Prim’s algorithm is a greedy algorithm that finds a minimum
spanning tree for a weighted undirected graph. This means it
finds a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is
minimized. The algorithm operates by building this tree one vertex
at a time, from an arbitrary starting vertex, at each step adding the
cheapest possible connection from the tree to another vertex. Finally,
Prim’s algorithm is exact (it provides an optimal solution for every
instance).

A greedy algorithm constructs a feasible solution iteratively by making
a “locally optimal” choice at each step, without reconsidering previous
choices. In Prim’s algorithm, at each step a minimum-cost edge is selected from
those in the cut δ (S) induced by the current set of nodes S. Unfortunately,
for most discrete optimization problems greedy-type algorithms yield a feasible
solution with no guarantee of optimality.

According to the definition of a greedy algorithm, the main idea of Prim is to
build a spanning tree iteratively. It starts with an initial tree (S, T) with
S = {u} (u ∈ N , so it can be any node in the set N) and T = ∅. At each step,
add to the current sub-tree (S, T) a minimum cost edge among those that
connect a node in S to a node in N \ S.

Example 7: Prim’s algorithm

Suppose we have the following graph:

1. We start from an arbitrarily node u that it is in the set N , for
example 3:

2. As we said, at each step we add to the current subtree (S, T) a
minimum cost edge among those that connect a node in S to a

29

2 Graph and network optimization 2.2 Trees

node in N \ S. So at this step we choose node 4 because the edge
starting from node 3 is the less weighted edge.

3. At this point we continue with the same logic. The edge, starting
from node 4, with less weighted edge is node 1. Note that at par-
ity of the weighted edge, it doesn’t matter which one we choose.
Maybe the decision will lead to a different subgraph, but Prim’s
algorithm is greedy by definition, then it doesn’t think about these
problems; it assumes that it is a locally optimal choice.

4. Since we are lucky, the previous doubt is useless (with parity of
weighted vertices, which should we choose?). Because node 1 ex-
poses an edge with a weight of 5, but node 4 has a weighted edge
of only 1, the choice is clear.

5. Finally, we choose the edge with a weight of 2 (to the node 2)
because is the lowest. At this step, the algorithm is finished because
there are no more vertices (S = N). The cost function returns the
value 6 (sum of each weighted edge selected).

30

2 Graph and network optimization 2.2 Trees

From the previous example it should be clear that at each step the Prim’s
algorithm creates the need to solve a minimum search problem.

The Prim’s algorithm take:

• Input: a connected graph G = (N,E) with edge costs.

• Output: a subset T ⊆ N of edges of G such that GT = (N,T) is a
minimum cost spanning tree of G.

1 S ← {u};
2 T ← ∅;
3 while |T | < n− 1 do:
4 {u} ← edge in δ(S) of minimum cost; // with u ∈ S and v ∈ N \ S
5 S ← S ∪ {v};
6 T ← T ∪ {{u, v}}

Algorithm 2: Minimum spanning tree (MST) problem: Prim’s O (nm)

Rows 1-2. Declare the general sets S and T . The first is filled with the starting node
u and the second is empty, because the core of the algorithm has not yet
started.

Row 3. Continue building the spanning tree until the length of the set of transi-
tions T is not equal to the number of nodes minus one.

Row 4. Find the edge with the lowest weight from the set δ (S). Then choose one
of the edges with the lowest weight and the corresponding target node.
Obviously the target node v cannot be already evaluated (v ∈ N \S) and
the source node u must be in the set of nodes already evaluated (u ∈ S).

Rows 5-6. Therefore, the most complex part of the algorithm (minimum search) is
to store the target vertex with the lowest edge weight and add the tuple
(source node, target node) to the set T .

The complexity of the algorithm is pretty much guessed. Or in the better case
neither worst case, we need to evaluate each node. Then the main difference
is made by the weighted edge search. If each edge has to be analyzed at each
iteration, the complexity order is given by O (nm).

31

2 Graph and network optimization 2.2 Trees

2.2.3.2 Implementation of Prim’s algorithm in O
(
n2

)
Prim’s algorithm is based on graph traversals (visiting every vertex in the
graph), which are inherently difficult to parallelize. It also has an irregular
memory access pattern. In CPUs, this limits the use of the cache and leads to
an overall performance penalty. The prim’s algorithm is highly dependent on
the organization of memory storage and memory access patterns. [3]

The following data structure we propose guarantees a complexity of O
(
n2

)
.

• k is the number of edges selected so far;

• S is the subset S ⊆ N of nodes incident to the selected edges (same as
explained in the 2.2.3.1 section, page 29);

• T is the subset T ⊆ E of selected edges (same as explained in the 2.2.3.1
section, page 29);

• Cj is a vector which has a value equal to:

Cj =

{
min {cij : i ∈ S} j /∈ S

∞ otherwise

At the beginning of the algorithm it is clearly composed of infinite values if
the edge i to j doesn’t exist, otherwise the weight of the edge. In the core
of the algorithm, each position is updated with the minimum weighted
edge value.

• closestj is a vector which has a value equal to:

closestj =

{
argmin {cij : i ∈ S} j /∈ S

predecessor of j in the minimum spanning tree j ∈ S

The node closest to the edge has less weight, otherwise if we look at the
node j in the set S, the predecessor of that node in the minimum spanning
tree. A trivial example:

With closestj = 3 and cclosestj , j = 1.

Let’s take an example to clear up any doubts.

32

2 Graph and network optimization 2.2 Trees

Example 8: Prim’s algorithm O
(
n2

)
Suppose we have the following graph:

1. At the beginning we choose an arbitrary node u that is in the set
N , for example 3. We set the set of transitions T to the empty
set, the set of evaluated nodes S to the selected node u, in our
case the value 3, and finally the two vectors. The vector Cj is
filled of infinite values if the edge u to j doesn’t exist, otherwise
the weight of the edge, and the vector closestj is filled with the
selected starting node, in our case 3.

• T = ∅
• S = {u} = {3}
• Cj = [+∞, 3,−, 2, 5]

• closestj = [3, 3,−, 3, 3]

Some observations:

• The symbol − is the don’t care term used in digital logic.
• The position of each value respects the j-index. For example,

the node 3 in the vectors Cj and closestj is placed at position
number 3. The value is don’t care (−) because it is the start-
ing point. The other values depend on the graph. Node 1 has
no direct edge to node 3, so it has an infty value; node 2 has
a direct edge with weight 3; node 3 doesn’t care because it’s
the starting point; and so on.

2. The minimum value in Cj is 2 and since it is in the 4th position,
node 4 is selected.

• T = {{3, 4}}
• S = {3, 4}
• Cj = [1,2,−, 2,1]

• closestj = [4,4,−, 3,4]

The values updated are the first, second and fifth positions, as
nodes three and four are in the S set.

33

https://en.wikipedia.org/wiki/Don%27t-care_term

2 Graph and network optimization 2.2 Trees

3. The minimum value in Cj is the first position. But the fifth position
is also the minimum. We choose the first value because the vector
is analyzed sequentially (first to last).

• T = {{3, 4} , {1, 4}}
• S = {1, 3, 4}
• Cj = [1,2,−, 2,1]

• closestj = [4,4,−, 3,4]

4. The minimum value in Cj is quite trivial, between 2 and 1. We
choose the value 1 and the node 4 is the closest.

• T = {{3, 4} , {1, 4} , {4, 5}}
• S = {1, 3, 4, 5}
• Cj = [1,2,−, 2, 1]

• closestj = [4,4,−, 3, 4]

5. Finally, node 2 with edge weight 2 is selected.

• T = {{3, 4} , {1, 4} , {4, 5} , {2, 4}}
• S = {1, 2, 3, 4, 5} = N

• Cj = [1, 2,−, 2, 1]

• closestj = [4, 4,−, 3, 4]

34

2 Graph and network optimization 2.2 Trees

® Ok, but how do we get the spanning tree from the nearest vector?

The minimum spanning tree found by Prim’s algorithm consists of the n − 1
edges:

{closestj , j} with j = 1, 2, . . . , n

For example, from the previous example, let the closest vector:

closestj = [4, 4,−, 3, 4]

A minimum cost spanning tree consists of the edges:

{4, 1} , {4, 2} ,����{−,−}, {3, 4} , {4, 4}

1 S ← {u};
2 T ← ∅;
3 for j ∈ N \ S do:
4 Cj ← cuj; // or +∞ if {u, j} /∈ E
5 closestj ← u;
6 for k = 1, . . . , n− 1 do:
7 // select min edge in δ(S)
8 min ← +∞;
9 for j = 1, . . . , n do:

10 if j /∈ S and Cj < min:
11 min ← Cj;
12 v ← j;
13 // extend S and T
14 S ← S ∪{v};
15 T ← T ∪{{closestv , v}};
16 // update Cj and closestj , ∀j /∈ S
17 for j = 1, . . . , n do:
18 if j /∈ S and cvj < Cj:
19 Cj ← cvj;
20 closestj ← v;

Algorithm 3: Minimum spanning tree (MST) problem: Prim’s O
(
n2

)
Rows 1-2. Declare the general sets S and T . The first is filled with the starting node

u and the second is empty, because the core of the algorithm has not yet
started.

Rows 3-5. The first for statement is used to initialize the two vectors Cj and closestj .
It inserts the edge weight into Cj if there is a direct edge from u to j,
otherwise infinity is used. Meanwhile, the closest vector consists only of
the starting node u at the beginning of the algorithm.

Row 6. The second for statement is the core of the algorithm. Here the index goes
from one to the number of nodes minus one.

Rows 8-12. This piece of code is used to select the minimum edge available in the Cj

vector. It starts by setting the min variable to infinity, to ensure that a
value is selected. Therefore, the for statement iterates over each node; at
each iteration, if the selected node is not in the S set (so it has not already
been evaluated) and the value at the corresponding position in the vector
Cj is less than minimum, then assign to the minimum the value of the
vector Cj at position j and to v the index j.

35

2 Graph and network optimization 2.2 Trees

Rows 14-15. Now it updates the variable S with the node v and the transitions set with
the tuple (value at the corresponding position in the vector closestv, node
v).

Rows 17-20. There is another for statement similar to the previous one, because here it
needs to update the vectors Cj and closestj with the new values. The for
iterates over every node of the graph. So at each iteration it checks that
the selected vertex is not in the S-set (not already evaluated) and that
the weight of the edge from vertex v to j (if it exists, otherwise infinity)
is less than the value Cj . If the double condition is true, it updates the
two vectors at position j.

The overall complexity is given by:

• The number of iterations of the first for at row 3, which is: (n− 1)

• Plus the number of iterations of the second for at row 6, which is: (n− 1)

• Times the number of iterations of the third and fourth for at lines 9 and
17, which is: (n− 1 + n− 1)

The result is O
(
n2

)
. For sparse graphs, a more sophisticated data structure

leads to an O (m log n) complexity.

36

2 Graph and network optimization 2.2 Trees

2.2.3.3 Optimality condition

Given a spanning tree T , an edge e /∈ T is cost decreasing if when e is added
to T it creates a cycle C with C ⊆ T ∪{e} and ∃f ∈ C \ {e} such that ce < cf .

Because c (T ∪ {e} \ {f}) = c (T) + ce − cf , if e is cost decreasing, then:

c (T ∪ {e} \ {f}) < c (T)

Theorem 2 (Tree optimality condition). A tree T is of minimum total cost if
and only if no cost-decreasing edge exists.

Proof. ⇒ If a cost-decreasing edge exists, then T is not of minimum total cost.
⇐ if no cost-decreasing edge exists, then T is of minimum total cost. Let T ∗

be a minimum cost spanning tree found by Prim’s algorithm. It can be verified
that, by exchanging one edge at a time, T ∗ can be iteratively transformed into
T without modifying the total cost. Thus, T is also optimal. QED

Testing optimality is quite simple. The optimality condition allows to verify
whether a spanning tree T is optimal: it suffices to check that each e ∈ E \ T is
not a cost-decreasing edge.

37

3 Laboratory

3 Laboratory

3.1 Introduction
For this course of Foundations of Operations Research we will use the mip
package (official website, installation guide) for modelling optimization problems
in Python. The mip package is a collection of Python tools for the modeling
and solution of Mixed-Integer Linear programs (MIPs).

38

https://www.python-mip.com/
https://python-mip.readthedocs.io/en/latest/install.html

3 Laboratory 3.1 Introduction

3.1.1 Diet problem

A canteen has to plan the composition of the meals that it provides. A meal
can be composed of the types of food indicated in the following table. Costs, in
Euro per hg, and availabilities, in hg, are also indicated.

Food Cost Availability

Bread 0.1 4
Milk 0.5 3
Eggs 0.12 1
Meat 0.9 2
Cake 1.3 2

A meal must contain at least the following amount of each nutrient:

Nutrient Minimum quantity

Calories 600 cal
Proteins 50 g
Calcium 0.7 g

Each hg of each type of food contains to following amount of nutrients:

Food Calories Proteins Calcium

Bread 30 cal 5 g 0.02 g
Milk 50 cal 15 g 0.15 g
Eggs 150 cal 30 g 0.05 g
Meat 180 cal 90 g 0.08 g
Cake 400 cal 70 g 0.01 g

Give a linear programming formulation for the problem of finding a diet (a meal)
of minimum total cost which satisfies the minimum nutrient requirements.

) Diet problem formulation

• Sets

– I: food types

– J : nutrients

• Parameters

– ci: unit cost of food type i ∈ I

– qi: available quantity of food type i ∈ I

– bj : minimum quantity of nutrient j ∈ J required

– aij : quantity of nutrient j ∈ J per unit of food of type i ∈ I

39

3 Laboratory 3.1 Introduction

• Variables

– xi: quantity of food of type i ∈ I included in the diet

• Model
min

∑
i∈I

cixi (cost)

s.t.
∑
i∈I

aijxij ≥ bj j ∈ J (min nutrients)

xi ≤ qi i ∈ I (availability)

xi ≥ 0 i ∈ I (nonnegativity)

� Diet problem implementation

1. Write the dataset specified by input:

1 # We need to import the mip package (useful later)
2 import mip
3

4 # Food
5 I = {’Bread ’, ’Milk’, ’Eggs’, ’Meat’, ’Cake’}
6

7 # Nutrients
8 J = {’Calories ’, ’Proteins ’, ’Calcium ’}
9

10 # Cost in Euro per hg of food
11 c = {
12 ’Bread ’: 0.1,
13 ’Milk’: 0.5,
14 ’Eggs’: 0.12,
15 ’Meat’: 0.9,
16 ’Cake’: 1.3
17 }
18

19 # Availability per hg of food
20 q = {
21 ’Bread ’: 4,
22 ’Milk’: 3,
23 ’Eggs’: 1,
24 ’Meat’: 2,
25 ’Cake’: 2
26 }
27

28 # Minimum nutrients
29 b = {
30 ’Calories ’: 600,
31 ’Proteins ’: 50,
32 ’Calcium ’: 0.7
33 }
34

35 # Nutrients per hf of food
36 a = {
37 (’Bread’, ’Calories ’): 30,
38 (’Milk’, ’Calories ’): 50,
39 (’Eggs’, ’Calories ’): 150,
40 (’Meat’, ’Calories ’): 180,
41 (’Cake’, ’Calories ’): 400,

40

3 Laboratory 3.1 Introduction

42 (’Bread’, ’Proteins ’): 5,
43 (’Milk’, ’Proteins ’): 15,
44 (’Eggs’, ’Proteins ’): 30,
45 (’Meat’, ’Proteins ’): 90,
46 (’Cake’, ’Proteins ’): 70,
47 (’Bread’, ’Calcium ’): 0.02,
48 (’Milk’, ’Calcium ’): 0.15,
49 (’Eggs’, ’Calcium ’): 0.05,
50 (’Meat’, ’Calcium ’): 0.08,
51 (’Cake’, ’Calcium ’): 0.01
52 }

2. Now we create an empty model and add the variables:

1 # Define a model
2 model = mip.Model ()
3

4 # Define variables
5 x = [model.add_var(name = i, lb = 0) for i in I]
6

7 # Define the objective function
8 model.objective = mip.minimize(
9 mip.xsum(x[i] * c[food] for i, food in enumerate(I))

10)
11

12 # CONSTRAINTS
13 # Availability constraint
14 for i, food in enumerate(I):
15 model.add_constr(x[i] <= q[food])
16

17 # Minimum nutrients
18 for j in J:
19 model.add_constr(
20 mip.xsum(
21 x[i] * a[food , j] for i, food in enumerate(I)
22) >= b[j]
23)

3. The model is complete. Let us solve it and print the optimal solution:

1 # Optimizing command
2 print(’Optimizing: ’ + model.optimize ())
3 # Optimizing: OptimizationStatus.OPTIMAL
4

5 # Optimal objective function value
6 print(’Optimal objective function value: {}’.format(
7 model.objective.x
8))
9 # Optimal objective function value: 3.37

10

11 # Printing the variables values
12 for i in model.vars:
13 print(i.name , i.x)
14 # Meat 1.5000000000000002
15 # Bread 3.9999999999999996
16 # Cake 0.0
17 # Milk 3.0
18 # Eggs 1.0

41

3 Laboratory 3.1 Introduction

3.1.2 Oil blending problem

A refinery has to blend 4 types of oil to obtain 3 types of gasoline. The following
table reports the available quantity of oil of each type (in barrels) and the
respective unit cost (Euro per barrel):

Oil type Cost Availability

1 9 5000
2 7 2400
3 12 4000
4 6 1500

Blending constraints are to be taken into account, since each type of gasoline
must contain at least a specific, predefined, quantity of each type of oil, as
indicated in the next table. The unit revenue of each type of gasoline (Euro per
barrel) is also indicated:

Gasoline type Requirements Revenue

A ≥ 20% of type 2 12
A ≤ 30% of type 3 12
B ≥ 40% of type 3 18
C ≤ 50% of type 2 10

) Oil blending problem formulation

• Sets

– I: set of oil types

– J : set of gasoline types

• Parameters

– ci: unit cost for oil of type i ∈ I

– bi: availability of oil of type i ∈ I

– rj : price of gasoline of type i ∈ I

– bi: minimum quantity of nutrient i ∈ I required

– qmax
ij : maximum quantity (percentage) of oil of type i ∈ I for gasoline

of type j ∈ J

– qmin
ij : minimum quantity (percentage) of oil of type i ∈ I for gasoline

of type j ∈ J

42

3 Laboratory 3.1 Introduction

• Variables

– xij : units of oil of type i ∈ I used for gasoline of type j ∈ J

– yj : units of gasoline of type j ∈ J that are produced

• Model

max
∑
j∈J

rjyj −
∑

i∈I,j∈J

cjxij (revenue)

s. t.
∑
j∈J

xij ≤ bi i ∈ I (availability)

∑
i∈I

xij = yj j ∈ J (conservation)

xij ≤ qmax
ij yj i ∈ I, j ∈ J (maximum qty)

xij ≥ qmin
ij yj i ∈ I, j ∈ J (minimum qty)

xij , yj ≥ 0 i ∈ I, j ∈ J (nonnegativity)

� Oil blending problem implementation

1. Write the dataset specified by input:

1 # Set of oil types
2 I = range (4)
3

4 # Set of gasoline types
5 J = {’A’, ’B’, ’C’}
6

7 # Unit cost for oil of type i
8 c = {0:9, 1:7, 2:12, 3:6}
9

10 # Availability of oil type i
11 b = {0:5000 , 1:2400 , 2:4000 , 3:1500}
12

13 # Price of gasoline of type j
14 r = {’A’:12, ’B’:18, ’C’:10}
15

16 # Maximum quantity (percentage) of oil
17 q_max = {}
18 for i in I:
19 for j in J:
20 q_max [(str(i), j)] = 1
21 q_max [(’2’, ’A’)] = 0.3
22 q_max [(’1’, ’C’)] = 0.5
23

24 # Minimum quantity (percentage) of oil
25 q_min = {}
26 for i in I:
27 for j in J:
28 q_min [(str(i), j)] = 0
29 q_min [(’1’, ’A’)] = 0.2
30 q_min [(’2’, ’B’)] = 0.4

2. Now we create an empty model and add the variables:

43

3 Laboratory 3.1 Introduction

1 # Define a model
2 model2 = mip.Model()
3

4 # Define variables
5 x = {
6 (str(i), j): model2.add_var(name=str(i)+’,’+j, lb=0)
7 for i in I for j in J
8 }
9 y = {

10 j: model2.add_var(name=j, lb=0) for j in J
11 }

3. Let us write the objective function: in the general case, it can be written
as a sum over the set of models.

1 # Define the objective function
2 model2.objective = mip.maximize(
3 mip.xsum(y[j]*r[j] for j in J) -
4 mip.xsum(c[i]*x[str(i), j] for i in I for j in J)
5)

4. The constraints can be generated in loops:

1 # CONSTRAINTS
2 # Availability constraint
3 for i in I:
4 model2.add_constr(mip.xsum(x[str(i), j] for j in J) <= b[i

])
5

6 # Conservation constraint
7 for j in J:
8 model2.add_constr(mip.xsum(x[str(i), j] for i in I) == y[j

])
9 # Maximum quantity

10 for i in I:
11 for j in J:
12 model2.add_constr(x[str(i), j] <= q_max[str(i),j]*y[j

])
13 # Minimum quantity
14 for i in I:
15 for j in J:
16 model2.add_constr(x[str(i), j] >= q_min[str(i),j]*y[j

])

44

3 Laboratory 3.1 Introduction

5. The model is complete. Let’s solve it and print the optimal solution.

1 # Optimizing command
2 print(model2.optimize ())
3 # OptimizationStatus.OPTIMAL
4

5 # Optimal objective function value
6 print(model2.objective.x)
7 # 96000.0
8

9 # Printing the variables values
10 for i in model2.vars:
11 print(i.name , i.x)
12 # 0,C 0.0
13 # 0,A 500.0
14 # 0,B 4500.0
15 # 1,C 0.0
16 # 1,A 2400.0
17 # 1,B 0.0
18 # 2,C 0.0
19 # 2,A 0.0
20 # 2,B 4000.0
21 # 3,C 0.0
22 # 3,A 0.0
23 # 3,B 1500.0
24 # C 0.0
25 # A 2900.0
26 # B 10000.0

45

References

References
[1] A. Abraham, L.C. Jain, and R. Goldberg. Evolutionary Multiobjective Op-

timization: Theoretical Advances and Applications. Advanced Information
and Knowledge Processing. Springer, 2005.

[2] Braz Pascoal Marta Margarida. Foundations of Operations Research. Slides
from the HPC-E master’s degree course on Politecnico di Milano, 2024.

[3] Artur Mariano, Dongwook Lee, Andreas Gerstlauer, and Derek Chiou. Hard-
ware and software implementations of prim’s algorithm for efficient minimum
spanning tree computation. In Gunar Schirner, Marcelo Götz, Achim Ret-
tberg, Mauro C. Zanella, and Franz J. Rammig, editors, Embedded Systems:
Design, Analysis and Verification, pages 151–158, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[4] Wikipedia. Operations research - Wikipedia. https://en.wikipedia.org/
wiki/Operations_research. [Accessed 08-09-2024].

46

https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Operations_research

Index
A
Adjacent nodes 18
assignment problem 6

B
Bipartite graph 19
Breadth-First Search (BFS) 23

C
Circuit in graph 19
Complete graph 19
Connected graph 18
Connected nodes 18
Cycle in graph 19

D
Decision-making problems 6
Dense graph 21
Directed path from i ∈ N to j ∈ N 18

E
Edge 17
Edge cost decreasing 37

G
Global Optima 12
Graph 17
Graph reachability problem 22
Greedy algorithm 29

I
Incident edge 18
Incoming cut 19
Integer Linear Programming (ILP) 13

L
Leaves of a tree 25
Linear Programming (LP) 13
Local Optima 13

M
Mathematical Optimization 12
Mathematical Programming 12
Maximum clique problem 7
minimum spanning tree (MST) problem 28
Model 8
Multi-objective optimization 15
Multi-objective programming 15
Multicriteria problem 7

47

Index

N
network design problem 7
Node degree 18
Node in-degree 18
Node out-degree 18
Nonlinear Programming (NLP) 13

O
Operations Research (OR) 5
Optimal Cost 28
Outgoing cut 19

P
Pareto optimization 15
Personnel scheduling problem 7
Prim’s algorithm 29
primary objective 15

S
Service management problem 7
shortest path problem 7
single objective problem 15
Spanning tree 25
Sparse graph 21
Strongly connected graph 19
Subgraph 25

T
Tree of a graph 25

48

	Introduction
	Decision-making problems
	Assignment problem
	Network design
	Shortest path
	Other problems

	Scheme of an OR study
	Mathematical programming/optimization
	Multi-objective programming
	Mathematical Programming or Simulation?

	Graph and network optimization
	Graphs
	Definitions and characteristics
	Graphical representation
	Graph reachability problem
	Description and algorithm
	Complexity of algorithm

	Trees
	Definitions and characteristics
	Properties
	Optimal cost spanning trees
	Prim's algorithm
	Implementation of Prim's algorithm in O(n2)
	Optimality condition

	Laboratory
	Introduction
	Diet problem
	Oil blending problem

	Index

