
Network Computing - Notes - v0.5.0

260236

April 2025

1

Preface
Every theory section in these notes has been taken from the sources:

• Course slides. [1]

About:

§ GitHub repository

These notes are an unofficial resource and shouldn’t replace the course mate-
rial or any other book on network computing. It is not made for commercial
purposes. I’ve made the following notes to help me improve my knowledge and
maybe it can be helpful for everyone.

As I have highlighted, a student should choose the teacher’s material or a
book on the topic. These notes can only be a helpful material.

2

https://github.com/PoliMI-HPC-E-notes-projects-AndreVale69/HPC-E-PoliMI-university-notes
https://github.com/PoliMI-HPC-E-notes-projects-AndreVale69/HPC-E-PoliMI-university-notes

Contents
1 Datacenters 4

1.1 What is a Datacenter? . 4
1.2 Datacenter Applications . 9
1.3 Network Architecture . 13
1.4 High and Full-Bisection Bandwidth 17
1.5 Fat-Tree Network Architecture 20

2 Software Defined Networking (SDN) 25
2.1 Introduction . 25
2.2 Legacy Router & Switch Architecture 26
2.3 SDN Architecture . 28
2.4 OpenFlow . 30
2.5 OpenFlow limitations . 34

3 Programmable Switches 37
3.1 Introduction . 37
3.2 Why didn’t programmable switches exist before? 39
3.3 Data Plane Programming and P4 41
3.4 PISA and Compiler Pipeline Mapping 44

4 Data Structures 46
4.1 Introduction . 46
4.2 Ternary Content Addressable Memory (TCAM) 47
4.3 Deterministic Lookup with Probabilistic Performance 50
4.4 Probabilistic Data Structures . 53

4.4.1 1-Hash Bloom Filters . 53
4.4.2 Bloom Filters . 55
4.4.3 Dimensioning a Bloom Filter 57
4.4.4 Counting Bloom Filters 58
4.4.5 Invertible Bloom Lookup Tables (IBLTs) 59
4.4.6 Count-Min Sketch . 63

5 Datacenter Monitoring 65
5.1 Why Datacenter Monitoring Matters 65
5.2 Network Monitoring . 67
5.3 Everflow . 69

5.3.1 What is Everflow? . 69
5.3.2 How it works . 70

5.4 FlowRadar . 73
5.4.1 Architecture . 73
5.4.2 Data Structure used in FlowRadar 74
5.4.3 Collector Decode . 76

5.5 In-Band Network Telemetry (INT) 80
5.5.1 What is INT? . 80
5.5.2 Modes . 81

Index 84

3

1 Datacenters

1 Datacenters

1.1 What is a Datacenter?
A Datacenter is a specialized facility that houses multiple computing re-
sources, including servers, networking equipment, and storage systems. These
resources are co-located (placed together in the same physical location) to
ensure efficient operations, leverage shared environmental controls (such as cool-
ing and power), and maintain physical security.

So the main characteristics are:

• Centralized Infrastructure: Unlike traditional computing models where
resources are scattered, datacenters consolidate thousands to millions of
machines in a single administrative domain.

• Full Control over Network and Endpoints: Datacenters operate un-
der a single administrative entity, allowing customized configurations be-
yond conventional network standards.

• Traffic Management: Unlike the open Internet, datacenter traffic is
highly structured, and the organization can define routing, congestion con-
trol, and network security policies.

Feature Datacenter Networks Traditional Networks

Ownership Fully controlled by a single
organization

Usually spans multiple inde-
pendent ISPs

Traffic High-speed internal commu-
nication (east-west traffic)

Lower-speed, external client-
based traffic (north-south)

Routing Customizable (non standard
protocols)

Uses standard internet proto-
cols (BGP, OSPF, etc.)

Latency Optimized for ultra-low la-
tency

Variable latency, dependent
on ISPs

Redundancy High redundancy to ensure
failover and fault tolerance

Often limited by ISP policies

Table 1: Difference between Datacenters and other networks (e.g., LANs).

® Why are datacenters important?

Datacenters are the backbone of modern cloud computing, large-scale data pro-
cessing, and AI/ML workloads. They provide high computational power
and storage for various applications, such as:

1. Web Search & Content Delivery. For example, when a user searches
for “Albert Einstein” on Google, the request is processed in a datacenter
where:

4

1 Datacenters 1.1 What is a Datacenter?

(a) The query is parsed and sent to multiple servers.

(b) Indexed data is retrieved.

(c) A ranked list of results is generated and sent back to the user.

2. Cloud Computing. Services like Amazon Web Services (AWS), Mi-
crosoft Azure, and Google Cloud offer computation, storage, and net-
working resources on-demand.

• Infrastructure as a Service (IaaS): Virtual machines, storage, and
networking.

• Platform as a Service (PaaS): Databases, development tools, AI mod-
els.

• Software as a Service (SaaS): Google Drive, Microsoft Office 365.

3. AI and Big Data Processing. Large-scale computations like MapRe-
duce and deep learning training rely on distributed datacenter resources.

4. Enterprise Applications. Datacenters host internal IT infrastructure
for businesses, including databases, ERP systems, and virtual desktops.

Î Evolution of Datacenters

While the concept of centralized computing dates back to the 1960s, the mod-
ern datacenter model emerged with cloud computing in the 2000s. Notable
developments include:

• 1970s: IBM mainframes operated in controlled environments similar to
early datacenters.

• 1990s: Rise of client-server computing required dedicated server rooms.

• 2000s-Present: Hyperscale datacenters by Google, Microsoft, and Amazon
revolutionized networking, storage, and scalability.

T What’s new in Datacenters?

Datacenters have been around for decades, but modern datacenters have under-
gone significant changes in scale, architecture, and service models. The primary
factors driving these changes include:

✓ The exponential growth of internet services (Google, Facebook, Ama-
zon, etc.).

✓ The shift to cloud computing and on-demand services.

✓ The need for better network scalability, fault tolerance, and effi-
ciency.

5

1 Datacenters 1.1 What is a Datacenter?

One of the most striking changes in modern data centers is their massive scale:

• Companies like Google, Microsoft, Amazon, and Facebook operate data-
centers with over a million servers at a single site.

• Microsoft alone has more than 100,000 switches and routers in
some of its datacenters.

• Google processes billions of queries per day, requiring vast compu-
tational resources.

• Facebook and Instagram serve billions of active users, with every
interaction generating requests to datacenters.

Another major change is the shift from owning dedicated computing in-
frastructure to renting scalable cloud resources. Datacenters no longer
just host enterprise applications, they now offer computing, storage, and
network infrastructure as a service. The most common cloud computing
models are:

• Infrastructure as a Service (IaaS). User rent virtual machines (VMs),
storage, and networking instead of maintaining their own physical servers
(e.g., Amazon EC2).

• Platform as a Service (PaaS). Provides a platform with pre-configured
environments for software development (databases, frameworks, etc.).

• Software as a Service (SaaS). Full software applications hosted in
datacenters and delivered via the internet (e.g., Google Drive).

The move to cloud computing has fundamentally changed datacenters, shifting
the focus to resource allocation, security, and performance guarantees. They
are also moving from multi-tenancy to single-tenancy:

• Single-Tenancy. A client gets dedicated infrastructure for their ser-
vices.

• Multi-Tenancy. Resources are shared among multiple clients
while ensuring isolation.

q Implications. But this massive scale brings new challenges:

• Scalability: The need for efficient network designs to handle rapid
growth.

Traditional datacenter topologies, such as three-based architectures, are
inefficient at scale. New designs, like Clos-based networks (Fat Tree)
and Jellyfish (random graphs), are being developed to:

✓ Ensure high bisection bandwidth (allow any-to-any communica-
tion efficiently).

✓ Provide scalable and fault-tolerant networking.

6

1 Datacenters 1.1 What is a Datacenter?

• Cost management: More machines mean higher power, cooling, and
hardware costs.

Datacenters are expensive to build and maintain, requiring:

– Efficient resource utilization (prevent idle servers from wasting
power).

– Energy-efficient cooling solutions (cooling accounts for a huge
portion of operational costs).

– Automation to reduce human intervention (e.g., AI-based net-
work optimization).

• Reliability: Hardware failures become common at scale, requiring au-
tomated fault-tolerant solutions.

At the scale of modern datacenters, hardware and software failures
are common. A key principle is: “In large-scale systems, failures are the
norm rather than the exception.” (Microsoft, ACM SIGCOMM 2015).

Thus, new automated failover mechanisms are required to:

– Detect failures quickly.

– Redirect traffic seamlessly.

– Ensure minimal service disruption.

• Performance & Isolation Guarantees: In modern datacenters, cus-
tomers expect strict performance guarantees for applications like:
low-latency financial transactions, high-bandwidth video streaming, ma-
chine learning model training.

To meet these demands, datacenters implement:

✓ Performance Guarantees: Allocating bandwidth and compute
power dynamically.

✓ Isolation Guarantees: Ensuring one user’s workload does not in-
terfere with another’s.

But this requires advanced networking techniques, such as:

– Traffic engineering to avoid congestion.

– Load balancing to distribute workloads efficiently.

– Software-defined networking (SDN) for centralized control over
traffic flows.

7

1 Datacenters 1.1 What is a Datacenter?

Key Takeaways: What is a Datacenter?

• Datacenters centralize computing resources for performance, se-
curity, and scalability.

• They differ from traditional networks by offering more con-
trol, lower latency, and higher redundancy.

• Applications include cloud services, AI, and enterprise
computing.

• Scalability is a key challenge, with hyperscale datacenters host-
ing millions of machines.

• Efficiency and cost containment are major concerns, requir-
ing innovative architectures.

8

1 Datacenters 1.2 Datacenter Applications

1.2 Datacenter Applications
Modern datacenters host a variety of applications that range from web services
to large-scale data processing. These applications can be classified based
on their traffic patterns and computational needs.

® Customer-Facing Applications (North-South Traffic)

Customer-facing applications involve direct interaction with users. This type of
traffic follows a North-South communication model, meaning that data
flows between external users and the datacenter.

Example 1: North-South Traffic

Examples include:

• Web Search (e.g., Google, Bing)

– A user submits a query (e.g., “Albert Einstein”).

– The request is routed through the datacenter’s frontend
servers.

– Backend database and indexing servers fetch relevant results.

– The response is assembled and sent back to the user.

• Social Media Platforms (e.g., Facebook, Instagram, X (ex Twit-
ter))

– Users interact with content hosted in the datacenter (e.g.,
loading a feed, liking posts).

– Each interaction requires queries to databases and caching
systems.

– Content delivery is optimized using load balancers.

• Cloud Services (e.g., Google Drive, Dropbox, OneDrive)

– Users upload, store, and retrieve files.

– Requests must be efficiently distributed across storage nodes.

® Large-Scale Computation (East-West Traffic)

Unlike customer-facing applications, backend computations do not involve direct
interaction with external users. Instead, they focus on processing massive
datasets within the datacenter. This type of traffic is known as East-West
traffic because it occurs between servers inside the datacenter rather than
between the datacenter and the external world.

9

1 Datacenters 1.2 Datacenter Applications

Example 2: East-West Traffic

Examples include:

• Big Data Processing (e.g., MapReduce, Hadoop, Spark)

– Large datasets are distributed across multiple servers.

– Each server processes a portion of the data in parallel.

– Results are combined to generate insights (e.g., web indexing,
analytics).

• Machine Learning & AI Training (e.g., Deep Learning Models)

– AI models are trained on massive datasets using clusters of
GPUs/TPUs.

– The process requires high-bandwidth, low-latency communi-
cation.

– Synchronization between nodes is critical (e.g., gradient up-
dates in distributed training).

• Distributed Storage & Backup Systems (e.g., Google File
System, Amazon S3)

– Data is replicated across multiple locations for reliability.

– Servers frequently exchange data to ensure consistency and
fault tolerance.

8 Key differences between North-South and East-West traffic

Feature N-S traffic E-W traffic

Direction External users ↔ Datacenter Within datacenter

Examples File downloads AI training

Bandwidth Needs Moderate Very High

Latency Sensitivity High Critical

Traffic Type Query-response Bulk data transfer

Table 2: Differences between North-South and East-West traffic.

In terms of latency sensitivity, North-South traffic is high because user inter-
actions must be fast. On the other hand, East-West traffic is critical because
synchronization delays affect computation.

10

1 Datacenters 1.2 Datacenter Applications

[Traffic Patterns and Their Impact on Networking

The way data moves within a datacenter heavily influences network design.
The main goal is to ensure high bandwidth, low latency, and efficient
resource utilization.

• Any-to-Any Communication Model

– In large-scale distributed applications, any server should be
able to communicate with any other server at full band-
width.

– Network congestion can severely degrade performance, es-
pecially for AI/ML workloads and big data processing.

• High-Bandwidth Requirements

– Applications like MapReduce and deep learning require high
data transfer rates.

– If bandwidth is insufficient, bottlenecks occur, leading to delays.

• Latency is a Critical Factor

– Low-latency networking is essential for interactive applications
and distributed computing.

– AI training, for example, requires nodes to synchronize frequently; a
delay in one node slows down the entire process.

• Worst-Case (Tail) Latency Matters

– It’s not enough for most requests to be fast; the slowest request
can delay the entire computation.

– Minimizing tail latency is crucial for efficient AI model training
and database queries.

. Challenges in Datacenter Traffic Management

The massive scale and complexity of modern datacenters introduce several
networking challenges, including:

• Network Congestion and Bottlenecks. When multiple servers com-
municate simultaneously, some network links become overloaded,
leading to congestion.
For example, if many AI training jobs share the same network path, it can
become a bottleneck, slowing down training.
This can be a critical issue for applications requiring real-time
performance (e.g., financial transactions, cloud gaming).

• Load Balancing and Traffic Engineering. How do we distribute traffic
efficiently across network links? The solutions are: Equal-Cost Multi-
path Routing (ECMP, spreads traffic across multiple paths); Dynamic
Traffic Engineering (adjusts paths in real time based on congestion
levels).

11

1 Datacenters 1.2 Datacenter Applications

• Avoiding Link Over-Subscription. If too many servers send data
over a single link, the available bandwidth is divided, leading to slow
performance. Modern datacenters aim for full-bisection bandwidth,
meaning any server can talk to any other server at full capacity.

• Scaling Challenges. Traditional datacenter network architectures do
not scale well beyond a certain point. New network topologies (e.g.,
Fat Tree, Jellyfish) are being adopted to address these limitations.

Key Takeaways: Datacenter Applications

• Datacenters handle two major types of applications:

1. Customer-facing applications (North-South traffic) in-
volve external users.

2. Large-scale computations (East-West traffic) occur
within the datacenter.

• Traffic patterns affect bandwidth, latency, and congestion
control.

• Managing congestion and ensuring high bandwidth is crit-
ical for performance.

• New network topologies and routing techniques help ad-
dress scaling challenges.

12

1 Datacenters 1.3 Network Architecture

1.3 Network Architecture
The primary goal of a datacenter network is to interconnect thousands
to millions of servers efficiently. Unlike traditional networks, which focus on
wide-area communication, datacenter networks emphasize:

• High throughput: Supporting massive data transfers.

• Low latency: Ensuring real-time performance for applications.

• Scalability: Accommodating rapid growth without performance degra-
dation.

• Fault tolerance: Handling hardware failures with minimal disruption.

Datacenter networks physically and logically connect servers through
a multi-tiered architecture. This hierarchical structure ensures that servers
in different racks, pods, or clusters can communicate efficiently.

[Traditional Three-Tier Datacenter Network

Most datacenter networks follow a Three-Tier design, which is optimized for
scalability and efficiency. The three tiers are:

• Edge Layer (Access Layer)

– Located at the bottom of the hierarchy, closest to the servers.

– Consists of Top-of-Rack (ToR) switches that connect servers
within a rack.

✓ Purpose: Aggregates traffic from multiple servers and forwards it
to the higher layers.

– Typically uses high-speed links (10-100 Gbps per port) to con-
nect servers.

• Aggregation Layer (Distribution Layer)

– Intermediate layer between the edge and core layers.

– Connects multiple ToR switches within a datacenter pod.

✓ Purpose: Helps distribute traffic efficiently without overwhelm-
ing core routers.

– Implements load balancing, redundancy, and failover mecha-
nisms.

• Core Layer (Backbone Layer)

– The top layer of the hierarchy.

– Composed of high-capacity, high-speed switches and routers.

✓ Purpose: Responsible for:

∗ Routing large volumes of traffic between different aggrega-
tion switches.

13

1 Datacenters 1.3 Network Architecture

∗ Connecting the datacenter to external networks (e.g., the
Internet or private backbones).

– Core switches often run at 100 Gbps or higher per port to sup-
port high aggregate bandwidth.

Key characteristics of the Three-Tier model:

• Position:

– Edge Layer: Closest to servers.
– Aggregation Layer: Intermediate between edge and core.
– Core Layer: Backbone layer.

• Primary Function:

– Edge Layer: Connects servers within racks.
– Aggregation Layer: Aggregates ToR traffic.
– Core Layer: Routes traffic between datacenters or externally.

• Switch Type:

– Edge Layer: Top-of-Rack (ToR).
– Aggregation Layer: Aggregation switches.
– Core Layer: Core routers.

• Speed (per port):

– Edge Layer: 10-100 Gbps.
– Aggregation Layer: 40-100 Gbps.
– Core Layer: 100 and more Gbps.

• Fault Tolerance:

– Edge Layer: Redundant paths to aggregation layer.
– Aggregation Layer: Load balancing across core switches.
– Core Layer: High redundancy & backup links.

. Limitations of the Traditional Three-Based Model

Although widely used, the traditional three-tier model faces scalability and
performance challenges as datacenters grow.

• Scalability Issues. Traditional networks are hierarchical, meaning
most communication must pass through the core layer. As datacen-
ters scale, core switches become bottlenecks due to increased traffic.

• Bandwidth Bottlenecks. The model assumes that the most traffic
is North-South (client to server). However, modern workloads involve
high East-West traffic (server-to-server communication).
Over-subscription occurs when the network cannot handle full-bisection
bandwidth.

14

1 Datacenters 1.3 Network Architecture

• Over-Subscription Problem. Over-Subscription refers to the ratio
of worst-case achievable bandwidth to total bisection bandwidth.
For example:

– If 40 servers per rack each have a 10 Gbps link, total demand is 400
Gbps.

– If the uplink capacity to the aggregation layer is only 80 Gbps, we
have a 5:1 over-subscription.

– This means only 20% of the potential bandwidth is available, causing
congestion.

Over-subscription ratios in large-scale networks can reach 50:1 or even
500:1, severely limiting performance.

• Performance Issues in High-Density Environments. High latency
when traffic must traverse multiple hops to reach other racks. Failures
in core routers can impact a large number of servers. Inconsistent
network performance due to congestion in aggregation switches.

¥ Modern Datacenter Network Designs

To overcome the scalability and congestion challenges of traditional three-
based networks, modern datacenters use alternative architectures.

✓ Fat Tree (Clos Network). Fat Tree is a multi-stage switching ar-
chitecture designed to:

– Ensure full-bisection bandwidth: Every server can communicate
at full capacity.

– Provide multiple paths between any two servers (high redun-
dancy).

– Balance traffic dynamically to avoid congestion.

It uses K-ary fat tree topology where each pod consists of aggregation and
edge switches, and core switches connect multiple pods. The advantages
are:

– Scalability: Expands easily by adding more pods.

– Fault Tolerance: Multiple paths prevent failures from disrupting
traffic.

– Better Load Balancing: Traffic is evenly distributed.

✓ Jellyfish: Random Graph-Based Topology. Instead of a strict hier-
archical structure, Jellyfish uses a randomized topology. The advan-
tages are:

– Higher network capacity with lower cost.

– More flexible scaling than Fat Tree.

– Better fault tolerance since the network adapts dynamically.

15

1 Datacenters 1.3 Network Architecture

✓ BCube: Datacenter Network for Cloud Computing. Designed
for high-performance cloud computing environments. It is optimized for:
multi-path communication, resilience against failures and lowe latency
compared to hierarchical models.

Key Takeaways: Network Architecture

• Traditional three-tier datacenter networks include Edge, Ag-
gregation, and Core layers.

• Core switches bottlenecks as datacenters scale.

• Over-subscription limits bandwidth, causing congestion.

• Modern topologies like Fat Tree and Jellyfish improve scal-
ability, fault tolerance, and load balancing.

16

1 Datacenters 1.4 High and Full-Bisection Bandwidth

1.4 High and Full-Bisection Bandwidth
® Why is High-Bandwidth important in Datacenters?

Modern datacenters handle massive amounts of data due to applications like
AI training, cloud services, and big data processing. These workloads require:

• High-bandwidth connections to support fast data transfers.

• Low latency to ensure real-time performance.

• Scalability to accommodate increasing workloads.

Unlike traditional networks, where traffic primarily flows between users and
servers (North-South), datacenters experience heavy East-West traffic
(server-to-server communication). This shift demands high-bandwidth and
scalable network designs.

® One step at a time: What a Bisection Bandwidth is and why
Full-Bisection Bandwidth is important

Bisection Bandwidth is a key metric that measures the total bandwidth
available between two halves of a network.

Definition 1: Bisection Bandwidth

If a network is split into two equal halves, the Bisection Bandwidth
is the total data transfer rate available between them.

Definition 2: Full-Bisection Bandwidth

The Full-Bisection Bandwidth is when every server can communicate
with every other server at full network speed.

In other words, bisection bandwidth can be thought of as cutting a data center
network in half and measuring the total capacity of the links connecting the
two halves. This tells us how much data can flow between the two sections
simultaneously.

Example 3: Understand what bisection bandwidth is

Imagine a 1000-server datacenter, where 500 servers are processing data
while 500 servers store the results. If the bisection bandwidth is low,
the data transfer between processing and storage nodes will be
delayed. This results in slow machine learning model training or delayed
database queries.

As we can imagine, the full-bisection bandwidth is a real and critical aspect:

• Prevents bottlenecks: Ensures high-throughput communication across
racks and clusters.

• Essential for AI/ML training: AI models require massive parallel
computations with continuous data exchanges.

17

1 Datacenters 1.4 High and Full-Bisection Bandwidth

• Optimized for cloud computing: Services like AWS, Google Cloud,
and Azure depend on fast, reliable inter-server communication.

. Then try to get high-bandwidth all the time! Yes, but there are
some challenges...

Ideally, high-bandwidth should be the ultimate goal, but unfortunately, there
are some problems with traditional three-based networks:

p The Problem with Traditional Three-Based Networks. The stan-
dard three-tier (core-aggregation-edge) topology struggles to scale
due to:

1. Over-subscription (definition on page 15): The ratio of available
bandwidth to required bandwidth is too high.

2. Core congestion: Core routers become bottlenecks as traffic grows.

3. Single points of failure: A failure in a core switch can affect a
large portion of the datacenter.

p Over-Subscription and Its Impact on Network Performance. A
naive solution would be to use over-subscription to solve these problems,
but this limits performance. Over-Subscription happens when the net-
work is provisioned with less bandwidth than needed to cut costs.

Over-subscription =
Total server bandwidth demand

Available bandwidth at aggregation/core layer

Common over-subscription ratios are:

– 5:1, only 20% of host bandwidth is available.

– 50:1, only 2% of host bandwidth is available.

– 500:1, only 0.5% of host bandwidth is available.

At 500:1 over subscription, congestion becomes severe, limiting network
efficiency.

p The cost problem: scaling is expensive!

– Increasing bisection bandwidth requires more high-performance
network hardware.

– Scaling traditional networks (adding more core switches) is ex-
tremely costly.

– Energy consumption rises with additional hardware.

Thus, alternative solutions are needed to achieve high-bandwidth networking
without excessive costs.

18

1 Datacenters 1.4 High and Full-Bisection Bandwidth

¥ Solutions to Achieve High and Full-Bisection Bandwidth

To overcome these challenges, researchers and engineers have designed new
network architectures.

✓ Fat Tree (Clos Network) - The Scalable Solution. Unlike traditional
three-based designs, Fat Tree provides multiple paths for traffic.

¥ Advantages

✓ Ensure full-bisection bandwidth by allowing traffic to take al-
ternative routes.

✓ Eliminates single points of failure using redundant paths.

✓ Load balancing optimizes network utilization.

✓ Jellyfish - A More Flexible Approach. Uses a randomized, non-
hierarchical topology instead of a fixed three structure.

¥ Advantages

✓ Better bandwidth scaling as new servers are added.

✓ More resilient to failures (no single critical point of failure).

✓ BCube - Optimized for Cloud Services. Designed for high-performance
cloud environments with massive inter-server communication.

¥ Advantages

✓ Fast re-routing in case of failures.

✓ Low-latency communication for cloud applications.

Key Takeaways: High and Full-Bisection Bandwidth

• High-bandwidth networking is essential for modern datacen-
ters.

• Full-bisection bandwidth ensures servers communicate at full
speed.

• Over-subscription creates bottlenecks, limiting performance.

• New network architectures (Fat Tree, Jellyfish, BCube) solve
scalability issues.

19

1 Datacenters 1.5 Fat-Tree Network Architecture

1.5 Fat-Tree Network Architecture
A Fat-Tree is a multi-layer, hierarchical network topology that provides
high scalability, full-bisection bandwidth, and fault tolerance. It is a special
type of Clos Network1, designed to overcome bandwidth bottlenecks in
traditional three-based networks.

The key idea is: Instead of a traditional tree where higher levels become bot-
tlenecks, Fat-Tree ensures equal bandwidth at every layer by increasing the
number of links as we move higher in the hierarchy.

{ Structure of a K-Ary Fat-Tree

A K-ary Fat-Tree consists of three layers:

1. Edge Layer (Top-of-Rack, ToR switches):

• Connects directly to the servers.

• Each edge switch connects k
2 servers and k

2 aggregation switches.

2. Aggregation Layer

• Connects multiple edge switches.

• Ensures local traffic routing between racks before sending to the
core.

• Each aggregation switch connects k
2 edge switches and k

2 core
switches.

3. Core Layer

• The backbone of the Fat-Tree, interconnecting multiple aggregation
layers.

• Consists of
(
k
2

)2
core switches, where each connects to k pods.

Example 4: Fat-Tree with k = 4

• Each pod contains:

–
(
4
2

)2
= 4 servers.

– 2 layers of 2 2-port switches (Edge and Aggregation).

• Each Edge Switch connects 2 servers and 2 aggregation switches.

• Each Aggregation Switch connects 2 Edge switches and 2 Core
switches.

• The Core Layer consists of
(
k
2

)2
= 4 core switches.

1A Clos Network is a type of multistage switching topology that enables high-
bandwidth and fault-tolerant communication by interconnecting multiple small
switches instead of relying on a few large ones. It is commonly used in datacenter
networks (e.g., Google Jupiter Fabric) to maximize scalability and minimize congestion.

20

1 Datacenters 1.5 Fat-Tree Network Architecture

As a result, multiple paths between servers ensure no single point of
failure and full-bisection bandwidth.

¥ Why Use Fat-Tree in Datacenters?

✓ Cost-Effective Scaling

• Can be built using cheap, commodity switches instead of expen-
sive core routers.

• All switches operate at uniform capacity, simplifying hardware
requirements.

✓ Full-Bisection Bandwidth

• Each switch and server has equal access to bandwidth, preventing
bottlenecks.

• Every packet has multiple available paths, ensuring load bal-
ancing.

✓ High Fault Tolerance

• If one switch or link fails, traffic is rerouted through alternative
paths.

• No single point of failure, unlike traditional three-based architec-
tures.

✓ Efficient Load Balancing

• Multipath Routing ensures traffic is evenly distributed.

• No congestion at higher layers, as each pod has equal bandwidth
allocation.

q Problems in Fat-Tree Networks

Fat-Tree is a highly scalable and efficient network topology, but practical chal-
lenges exist when handling real-world workloads.

• Many flows running simultaneously. In large datacenters, multi-
ple applications generate concurrent flows. Some flows are small but
latency-sensitive (mice flows), while others are large data transfers
(elephant flows). The Fat-Tree must efficiently balance all these flows
across available paths.

• Traffic locality is unpredictable. Some services (e.g., Facebook/Meta
workloads) have localized communication within a rack, while others re-
quire data exchange across the entire network. Fat-Tree must dynami-
cally adapt to different workload patterns.

21

1 Datacenters 1.5 Fat-Tree Network Architecture

• Traffic is bursty. Some applications generate sudden traffic spikes,
leading to temporary congestion. This is problematic for routing since
congestion-aware path selection is difficult.

• Too Many Paths Between a Source and Destination. Unlike tra-
ditional network that have a single best route, Fat-Tree networks offer
multiple equal-cost paths. Which path should be used? Random selection
might lead to congestion.

• Random Path Selection Leads to Collisions. If routing randomly
assigns traffic flows, two large elephant flows may end up on the same
link. This creates a congestion hotspot, even though other links remain
underutilized.

– Ideal case: Traffic should be spread evenly across all available links.
– Reality: Without congestion awareness, routing cannot react to

traffic conditions dynamically.

• Short-Lived vs. Long-Lived Flows Create Conflicts. An ideal
routing scenario would be to evenly distribute all flows. However, if
a short, latency-sensitive flow suddenly appears on a congested link, its
performance suffers. The key problem is that Fat-Tree does not inher-
ently prioritize latency-sensitive flows.

. TCP Incast: A Major Issue in Fat-Tree Datacenters

Large-scale parallel requests cause network congestion. In fact, some work-
loads (e.g., distributed storage systems, AI training) involve a single client
requesting data from multiple servers simultaneously. This means that
all servers respond at once, overwhelming the switch’s buffer capacity.
This results in packet loss and retransmissions, significantly increasing la-
tency.

Definition 3: TCP Incast

TCP Incast is a network congestion issue that occurs in datacen-
ters when multiple servers send data to a single receiver simultaneously,
overwhelming the switch’s buffer capacity and causing severe packet loss
and performance degradation.
In other words, TCP Incast happens when many-to-one communication
causes network congestion, leading to packet loss, TCP retransmissions,
and increased latency.

But in this scenario, how does TCP Incast happen?

1. A client application requests data from multiple storage servers.

2. All storage servers respond simultaneously.

3. The switch cannot handle all packets at once, causing buffer over-
flow.

22

1 Datacenters 1.5 Fat-Tree Network Architecture

4. Packet loss triggers TCP retransmissions, further slowing down per-
formance.

This involves several issues:

• Causes severe latency spikes, affecting (AI training and large-scale
cloud) workloads.

• Traditional TCP was not designed for this kind of bursty traffic.

• Fat-Tree cannot solve this issue alone, it requires transport-layer
optimizations.

¥ Google’s Approach to Solving Fat-Tree Challenges

Google faced severe scalability, congestion, and failure recovery challenges in
its datacenters. Instead of using a traditional Fat-Tree model, they developed
a Clos-based architecture known as Google Jupiter Fabric. The key
challenges that Google is addressing are:

• Scalability. Traditional networks could not handle Google’s exponential
growth. Needed a network that scales gracefully by adding more capacity
in stages.

• Failure Tolerance. A single failure should not impact traffic signifi-
cantly. Needed path redundancy to ensure seamless operations.

• Performance and Cost. High-performance custom-built switching to
support full-bisection bandwidth. Used commodity merchant silicon (off-
to-shelf networking chips) instead of proprietary network devices, reducing
costs.

The solutions adopted by Google are:

✓ Clos Topology for Scalability & Fault Tolerance. Google moved
from traditional Fat-Tree to Clos networks to improve scalability.

– Multiple layers of switches, with multiple paths between every
two endpoints.

– Graceful fault recovery: if one switch fails, traffic is rerouted
dynamically.

– Incremental scalability: new switching stages can be added with-
out network downtime.

A Clos network was chosen because, unlike Fat-Tree, which suffers from
static oversubscription, Clos networks offer more flexible bandwidth
allocation.

Note that Fat-Tree inherits the scalability and fault tolerance of Clos,
but its hierarchical and structured nature leads to congestion, routing
complexity, and TCP Incast problems. Google recognized that Fat-Tree
had structural limitations, so they modified Clos into the Jupiter Fabric.

23

1 Datacenters 1.5 Fat-Tree Network Architecture

✓ Custom Hardware: Merchant Silicon Instead of Proprietary
Switches. Google avoided vendor lock-in by using commodity hardware
(merchant silicon). The reasons are:

– Lower cost than custom ASIC-based routers.

– Faster hardware upgrade cycles.

– More control over network design and software stack.

✓ Centralized Control for Routing and Network Management. In
traditional datacenters, routing is distributed, meaning each switch makes
independent routing decisions. This approach does not scale well in Clos
networks with thousands of switches.

The solution is precomputed routing decisions. Instead of switches
making their own decisions, Google precomputes traffic flows centrally and
pushes them to switches.

¥ Advantages

✓ Improves traffic engineering: Load balancing decisions are opti-
mized globally rather than per switch.

✓ More predictable performance.

✓ Less congestion: Can react dynamically to network failures.

Key Takeaways: Fat-Tree Network Architecture

• Fat-Tree is a special type of Clos Network that overcomes
bottlenecks in traditional tree networks.

• K-ary Fat-Tree has three layers (Edge, Aggregation, Core), en-
suring equal bandwidth for all nodes.

• Fat-Tree provides multiple paths, but routing is difficult due
to unpredictable traffic patterns.

• Collisions between large flows create network hotspots.

• TCP Incast is a major issue, where too many responses at once
cause packet loss.

• Google’s Datacenter Network Strategy:

– Moved from Fat-Tree to Clos topology for better scala-
bility and failure recovery.

– Used merchant silicon instead of proprietary hard-
ware to cut costs and improve flexibility.

– Implemented centralized control for routing to opti-
mize traffic flows.

– Designed the Jupiter Fabric to handle Google-scale
workloads with incremental scalability.

24

2 Software Defined Networking (SDN)

2 Software Defined Networking (SDN)

2.1 Introduction
Software-Defined Networking (SDN) is an architectural shift in net-
working that separates the control plane from the data plane, allowing for
centralized control and programmability. Unlike traditional networks, where
control logic is embedded in individual devices, SDN introduces a central-
ized software controller that dynamically manages the entire network.

The importance of SDN lies in its ability to:

• Improve network flexibility by enabling real-time changes.

• Simplify network management through automation.

• Reduce hardware dependency by allowing software-driven policies.

• Support rapid innovation, making networks more adaptable.

8 Traditional Networking vs. SDN

In traditional networking, routers and switches contain both:

• Control Plane, decides how traffic should be forwarded (e.g., routing
decisions, firewall rules).

• Data Plane, physically forwards packets based on the control plane’s
decisions.

Challenges of traditional networking:

a. p Rigid Configuration: Any changes require manual updates on mul-
tiple devices.

b. p Vendor Lock-in: Hardware manufacturers impose proprietary limita-
tions.

c. p Slow Innovation: Implementing new networking features takes years
due to hardware constraints.

d. p Complex Management: Network engineers must configure each de-
vice individually.

How SDN differs:

a. ✓ Control Plane is centralized in an SDN controller.

b. ✓ Data Plane remains distributed across switches and routers.

c. ✓ Network logic is programmable, making updates and changes eas-
ier.

This shift makes networks more dynamic, scalable, and easier to manage.

25

2 Software Defined Networking (SDN) 2.2 Legacy Router & Switch
Architecture

2.2 Legacy Router & Switch Architecture
Legacy network devices, such as routers and switches, are built with inte-
grated control and data planes, meaning each device independently makes
forwarding decisions. These devices consist of:

1. Hardware Components

• Application-Specific Integrated Circuits (ASICs), specialized
chips for packet forwarding.

• Memory (buffers & TCAMs), stores forwarding tables and pro-
cessing queues.

• Network Interfaces (NICs, Ports), physical ports for connecting
network cables.

2. Software Components

• Router OS (Operating System), runs network protocols and
management interfaces.

• Routing Protocols (OSPF, BGP, RIP), determines paths for
packet forwarding.

• Forwarding Table, maps destination addresses to outgoing ports.

3. Management and Control Interfaces

• Command-Line Interface (CLI), used for configuring routers
manually.

• SNMP (Simple Network Management Protocol), enables
monitoring and automation.

Figure 1: Legacy router and switch architecture.

Traditional network devices have two primary operational planes:

• Control Plane: makes forwarding decisions based on routing protocols.

• Data Plane: physically forwards packets based on control plane decisions.
For example MAC lookup and IP forwarding.

26

2 Software Defined Networking (SDN) 2.2 Legacy Router & Switch
Architecture

Each router operates autonomously, using routing tables built through protocols
like OSPF and BGP. These protocols dynamically learn network paths and
update the forwarding tables, ensuring efficient packet delivery.

� Packet Processing in a Legacy Router

1. Lookup Destination IP → Find matching entry in the forwarding table.

2. Update Header → Modify packet headers if needed (e.g., TTL decre-
ment).

3. Queue Packet → Send packet to the appropriate output interface.

q Since every device handles its own control and forwarding, large-
scale changes require individual device updates, making traditional net-
working complex and inflexible.

q Challenges in Traditional Network Management

p Complex Configuration & Management. Each network device has
to be configured individually. Protocols like BGP and OSPF require
manual tuning for optimal performance. Network engineers must interact
with vendor-specific CLIs, which vary by manufacturer.

p Limited Innovation & Vendor Lock-In. New network features re-
quire firmware or software updates from vendors. Custom network-
ing solutions are difficult to implement due to proprietary hard-
ware and software.

p Slow Response to Failures & Traffic Changes. Routing adjustments
depend on distributed algorithms that can take seconds to minutes to
converge. Manual troubleshooting is often needed when failures occur.

p Scalability Issues. Growing networks require more hardware and man-
ual configurations. Updating policies across multiple routers is time-
consuming and error-prone.

Key Takeaways: Legacy Router and switch architecture

• Legacy networking relies on autonomous devices with tightly
integrated control and data planes.

• Routing is handled by protocols like OSPF and BGP, which operate
independently on each device.

• Challenges include manual configuration, vendor lock-in, slow fail-
ure response, and scalability issues.

• These limitations paved the way for SDN, which offers centralized,
programmable networking.

27

2 Software Defined Networking (SDN) 2.3 SDN Architecture

2.3 SDN Architecture
The core concept of Software-Defined Networking (SDN) is the separa-
tion of the control plane from the data plane:

• In SDN, network devices (switches/routers) become simple forward-
ing elements, executing decisions made by a centralized controller.

• The SDN Controller is a software-based system that manages, pro-
grams, and monitors the entire network.

Key architecture:

• Data Plane (Forwarding Engine) → Located on switches; handles
packet forwarding.

• Control Plane (SDN Controller) → Runs on external servers; com-
putes forwarding rules.

• Communication Channel → Allows the controller to instruct the data
plane; typically uses OpenFlow.

But why decouple? Enables centralized decision-making, consistent policy en-
forcement, and simplified management. Facilitates dynamic updates to the net-
work without hardware changes.

[The Role o the SDN Controller

The SDN Controller is the central brain of the network. It performs:

✓ Network State Monitoring: Gathers real-time information from all
forwarding devices.

✓ Decision-Making: Calculates the best routes, applies policies, and en-
forces security.

✓ Rule Installation: Pushes flow rules to switches, determining how pack-
ets should be handled.

Controllers provide a global, up-to-date view of the entire network, en-
abling smarter control than traditional distributed routing.

Ð Communication Interfaces

SDN uses two types of APIs to manage communication between layers:

• Southbound Interface: Connects the controller to the data plane de-
vices (e.g., OpenFlow protocol). It instructs switches via OpenFlow or
similar protocols, installing/removing flow rules and collecting stats.

• Northbound Interface: Allows applications to interact with the
controller via APIs (e.g., REST APIs). Applications (e.g., security mon-
itoring, load balancing) query and command the controller to implement
network policies.

28

2 Software Defined Networking (SDN) 2.3 SDN Architecture

[Network Operating System (Network OS)

The controller runs a Network OS, providing:

• Abstractions over the physical network (e.g., topology view, link status).

• Programmatic Interfaces for developing control programs.

• Consistency & Global View: All decisions are made based on coherent,
synchronized data.

The Network OS simplifies the task of writing network control logic by exposing
standardized APIs.

Key Takeaways: SDN Architecture

• Traditional networking embeds the control plane within each
device; SDN centralizes control in software.

• The SDN Controller dynamically manages the data plane de-
vices using a communication protocol.

• OpenFlow is the primary protocol used to communicate between
the controller and switches.

• Network OS provides an abstraction layer and programming
environment for writing control logic.

29

2 Software Defined Networking (SDN) 2.4 OpenFlow

2.4 OpenFlow
OpenFlow is the first and most widely adopted protocol used in Software-
Defined Networking (SDN) to enable communication between the SDN
Controller (control plane) and the data plane devices (e.g., switches, routers,
they are the forwarding engine). It allows the controller to program flow
tables in the switches and control how packets are forwarded, enabling
centralized management of traffic.

In other words, OpenFlow is the practical implementation of SDN, standardizing
how controllers manage packet forwarding.

{ How OpenFlow works

Each OpenFlow switch contains:

1. Flow Table: Contains rules in the form of Match → Action pairs.

2. Communication Interface: Connects to the SDN controller via the
OpenFlow protocol.

3. Stats Module: Collects statistics about packet flows.

Example 1: Flow Rules

1. If Header = p ⇒ send to port 5.

2. If Header = q ⇒ modify header to r, then send to ports 6 and 7.

3. If Header = p ⇒ send packet to the controller.

Flow table operation:

1. Packet arrives at the switch.

2. Switch checks for a matching rule in its flow table.

3. If matched → apply action (e.g., forward, modify, drop).

4. If no match → send packet header to controller for instructions.

Example 2: OpenFlow

1. New packet arrives at switch.

2. Match?

• Yes → forward according to rule.

• No → forward header to controller.

3. Controller analyzes packet and installs a new rule in switch.

30

2 Software Defined Networking (SDN) 2.4 OpenFlow

4. Next packets of same type → directly processed by switch using
newly installed rule.

� Actions in OpenFlow

OpenFlow supports many types of actions, such as:

• Forwarding to one or multiple ports.

• Dropping packets.

• Modifying headers (e.g., VLAN tags, IP addresses).

• Sending packets to controller.

• Statistics collection for flow monitoring.

This flexibility allows SDN to implement advanced functions like load balanc-
ing, traffic shaping, and security filtering without specialized hardware.

8 Reactive vs. Proactive Flow Rules

In OpenFlow, the controller installs flow rules into switches to determine
how packets are processed. There are two main modes of operation for rule
installation: Reactive and Proactive. These modes define when and how
flow entries are populated in the flow tables of switches.

• Reactive Mode

® How it works?

1. When a new flow (a new type of packet) arrives at a switch,
and no rule matches it, the packet header is sent to the
controller.

31

2 Software Defined Networking (SDN) 2.4 OpenFlow

2. The controller analyzes the packet and decides what rule
should be installed in the switch to handle it.

3. After the controller sends back a rule, the switch installs it and
forwards the packet accordingly.

� Key Characteristics
∗ Efficient use of flow tables - Only rules for active flows are

installed.
∗ Every new flow incurs small setup time (controller interac-

tion delay).
∗ Switch depends on the controller for flow rule installation.
∗ If the controller connection is lost, the switch has limited

utility for new flows.
¥ Advantages

✓ Dynamic and adaptive to real-time network traffic.
✓ Minimizes unused flow entries.

q Disadvantages
p Adds latency for the first packet of each flow.
p High control plane load in environments with many short

flows.

• Proactive Mode

® How it works?
1. The controller pre-installs flow rules in the switches before

any packet arrives.
2. The switch immediately processes packets using pre-defined

rules without contacting the controller.
� Key Characteristics

∗ Zero setup delay for packet processing - packets are forwarded
immediately.

∗ Requires aggregated or wildcard rules to efficiently use flow
table space.

∗ Independent of controller connectivity - continues to oper-
ate even if controller is unreachable.

¥ Advantages
✓ Fast packet forwarding with no initial delay.
✓ No dependency on controller for flow rule installation during

packet arrival.
✓ Ideal for predictable traffic patterns or mission-critical en-

vironments.
q Disadvantages

p Can waste flow table space if many pre-installed rules are
unused.

p Requires good planning of rules; less flexible to dynamic traffic
changes.

32

2 Software Defined Networking (SDN) 2.4 OpenFlow

In summary, reactive mode is adaptive, but introduces latency and higher con-
troller load; proactive mode is fast and resilient, but requires advance planning
of rules.

Key Takeaways

• OpenFlow enables the SDN controller to manage flow tables in
switches.

• Flow rules define how packets are handled, allowing centralized,
programmable networking.

• OpenFlow supports fine-grained traffic control via a wide range
of match/action rules.

• Two operation modes:

– Reactive (dynamic but with latency).

– Proactive (fast but needs good planning).

33

2 Software Defined Networking (SDN) 2.5 OpenFlow limitations

2.5 OpenFlow limitations
OpenFlow, conceived around 2007, introduced centralized control by standard-
izing how switches expose forwarding behavior to an SDN controller (as we
discussed in the previous section, page 30). The insight at that time was that
most switches perform similar tasks (Ethernet switching, IPv4 routing,
VLAN tagging, ACL enforcement) all via fixed, predictable behaviors.

OpenFlow capitalized on this fixed-function approach. Controllers could in-
stall flow rules into switches, dictating how they process known packet headers.
However, a critical limitation emerged: we couldn’t add new protocols
or processing capabilities easily. Because OpenFlow assumes a static
data plane, hardcoded to process only a predefined set of protocols
and headers.

¥ Expanding OpenFlow: pushing its limits

As networking needs evolved, particularly in virtualized environments and
cloud datacenters, operators needed more specialized packet processing.
For example, VXLAN, used to identify tenants in multi-tenant environments,
wasn’t supported in early OpenFlow.

✓ To address this, vendors and the OpenFlow community developed new ver-
sions (1.1, 1.2, 1.3, . . .). Each iteration added support for more header
types, up to 50 different header types, but the process was slow and cum-
bersome. Each new feature needed:

• New OpenFlow specification extensions.

• New ASICs in hardware to support the processing logic.

. Hardware Bottlenecks: The ASIC Development Bottleneck

Here lies the core problem: even with updated protocols, switches couldn’t
adapt until vendors redesigned and shipped new ASICs (Application-
Specific Integrated Circuits).

This hardware dependency meant:

p New features took years to reach production.

p Network owners couldn’t simply get a software upgrade.

p The result: slow innovation in data plane capabilities.

34

2 Software Defined Networking (SDN) 2.5 OpenFlow limitations

Example 3: VXLAN

Virtual Extensible LAN (VXLAN) was urgently needed by cloud providers
and datacenters to enable multi-tenant network virtualization.
Despite this high demand, hardware vendors took ≈ 4 years to support
VXLAN in switches due to ASIC development cycles and the fixed-function
nature of OpenFlow switches.
Even though vendors delayed its release, once VXLAN was available, it
became a standard requirement in data centers.
But attention! In the meantime, network operators used complex soft-
ware overlays or kludges to simulate VXLAN functionality, increasing net-
work complexity and cost.

l The Cost of Delay: Workarounds and Complexity

When vendors take years to deliver a new feature, network engineers often de-
velop complex workarounds, increasing network complexity and tech-
nical debt. Even when the vendor releases the official feature:

• The workaround may already be deeply integrated.

• The official solution may no longer solve the problem.

• Worse, it may require a forklift upgrade, replacing hardware at high cost.

This inertia locks networks into suboptimal solutions and impedes the
agility promised by SDN.

T The Missing Ingredient: Programmability at the Data Plane

The shift from fixed-function to programmable data planes mirrors other com-
puting domains:

Domain Hardware Compiler/SW Stack

General Computing CPU Java, C, OS Kernels
Graphics GPU OpenCL, CUDA
Signal Processing DSP Matlab Compiler
Machine Learning TPU TensorFlow Compiler
Networking PISA Switch P4 Language, P4 Compiler

Just as CPUs became programmable via compilers, networking needs flex-
ible data planes programmable via languages like P4, running on PISA
(Protocol Independent Switch Architecture).

35

2 Software Defined Networking (SDN) 2.5 OpenFlow limitations

Key Takeaways: OpenFlow limitations

• OpenFlow was a revolution in control plane innovation, but
its rigid data plane became a bottleneck. The industry’s re-
sponse, iterative protocol updates and ASIC redesigns, proved
slow and reactive.

• A true solution lies in programmable data planes, where software
defines packet processing, and the network evolves as fast as
the application demands.

• This transition is not trivial, it requires new hardware, new
abstractions, and operator retraining, but it’s essential to fulfill
SDN’s promise of rapid, flexible, and scalable networking.

36

3 Programmable Switches

3 Programmable Switches

3.1 Introduction
In the past, network switches were designed with fixed-function
pipelines. These switches could process packets extremely fast, but their in-
ternal logic was essentially “hardcoded” by hardware vendors. This meant that
the functionality they provided, things like Ethernet switching, IP routing, and
basic ACLs, was rigid and difficult to extend or modify.

However, as networks evolved and application demands grew more complex,
the limitations of these fixed-function switches became apparent. There was
a growing need for flexibility at the data plane, the part of the switch
responsible for real-time packet processing. Network operators started to ask:
what if we could program the switch behavior instead of relying on vendors to
update the hardware every time we needed new features? This is where the
concept of programmable switches comes into play.

® Why Programmability?

The motivation behind programmable switches stems from the increasing
complexity and dynamism of modern networks. Today’s infrastructures
must support custom protocols for emerging technologies like IoT, 5G, and
machine learning. They must also be able to adapt quickly to changing require-
ments, detect and mitigate threats in real-time, and perform network telemetry
and monitoring with high granularity.

With traditional switches, making such changes often meant waiting
months (or even years) for new hardware to be designed and released. In con-
trast, programmable switches allow network behavior to be redefined
using software, even after deployment. This ability to program the forwarding
logic gives networks a software-like agility that was previously unthinkable at
the data plane level.

8 Control Plane vs Data Plane

To understand the significance of programmable switches, it’s useful to recall
the basic architecture of a network device. Typically, a switch is divided into
two major components:

• The Control Plane, which is responsible for:

– Computing routing tables;

– Handling management tasks;

– Making decisions about where traffic should go.

• The Data Plane, which is responsible for:

– Forwarding packets at line rate, based on the decisions made by
the control plane.

37

3 Programmable Switches 3.1 Introduction

Traditionally, most of the innovation in networking happened in the control
plane, for example, with Software-Defined Networking (SDN), which centralized
and virtualized control logic (section 2, page 25). But the data plane remained
fixed and closed.

Programmable switches shift this dynamic. They open up the data plane
to innovation, allowing developers to express forwarding behavior in
a high-level language such as P4. This means we can now rethink how
packets are processed inside the switch itself.

> The Rise of PISA

A key enabler of this shift is the Protocol-Independent Switch Architec-
ture (PISA). Proposed by Barefoot Networks (later acquired by Intel), PISA
is a flexible hardware architecture that allows the structure of the
switch pipeline to be configured by software. Using PISA, one can de-
fine new packet formats, parsing rules, match-action logic, and even
custom metadata fields, all using a high-level language like P4.

With PISA-based switches, it is no longer necessary to hardcode support for
every protocol in silicon. Instead, developers can define how packets are
handled at runtime. This brings about a level of protocol independence and
reconfigurability that was previously reserved for general-purpose processors,
but with the performance and parallelism needed to operate at terabit speeds.

38

3 Programmable Switches 3.2 Why didn’t programmable switches exist
before?

3.2 Why didn’t programmable switches exist before?
In short, programmable switches didn’t make sense before because we
lacked the technical feasibility and practical justification. But now, due to ad-
vances in chip design and network complexity, it’s finally possible, and necessary,
to build them.

� In the past: Programmability was too expensive

In the past, the trade-off between programmability and cost was too high:

1. Performance was too low. Programmable hardware, like FPGAs or
general-purpose CPUs, was much slower than fixed-function ASICs.

✓ A fixed switch chip could forward billions of packets per second.
p A programmable one? Too slow for line-rate performance.

So if we wanted programmability, we had to sacrifice speed. That
was a deal-breaker for core network equipment.

2. Chip area and power cost were too high. Fixed-function logic is
compact and power-efficient. Programmable logic, by contrast, used to
take up more silicon and required more power. Result: vendors
and data center operators couldn’t justify using programmable switches,
they were too big, too hot, and too slow.

¥ What changed?

Three technological trends made programmable switches finally viable:

T Chip speed caught up. We now have programmable switch chips (like
Barefoot Tofino) that can run at line rate, just like fixed-function ones.
In other words, programmability no longer costs us speed.

. Network complexity exploded. There are now too many protocols
and features to hard-code everything into silicon:

• New protocols, encapsulations (VXLAN, GTP, QUIC, etc.)
• Monitoring, load balancing, AI, security; all need custom, real-time

logic.

Hard-coding all of this would take years, and would never be flexible
enough.

✓ Moore’s Law made logic “free” . Thanks to Moore’s Law:

• We can double the amount of logic in the same area every 2 years.
• The cost of programmability in terms of chip area and power has

become negligible.

Now, the logic that makes a switch programmable barely takes up more
space than a fixed-function design.

39

3 Programmable Switches 3.2 Why didn’t programmable switches exist
before?

Factor Before Now

Chip speed Too slow for line-rate Equal to fixed-function
Logic cost Too expensive (area + power) Basically free
Protocols Few, stable Too many to hard-code
Urgency Low High (cloud, IoT, 5G, ML)

Table 3: Why didn’t programmable switches exist before?

40

3 Programmable Switches 3.3 Data Plane Programming and P4

3.3 Data Plane Programming and P4
Traditionally, configuring a switch meant writing static forwarding rules,
usually via vendor-specific commands or protocols like OpenFlow. But this
was not true programmability. We could configure behavior, but we
couldn’t change how the switch processes packets internally. With P4
(Programming Protocol-independent Packet Processors), that changes.

[What is P4?

P4 (Programming Protocol-independent Packet Processors) is a high-
level, domain-specific programming language designed to describe how
packets should be processed by the data plane of a network device.

Unlike general-purpose languages like C or Python, P4 is not Turing-complete.
Instead, it is built to:

• Define how to parse packet headers

• Specify how to match on those headers

• Decide what actions to take

The goal of P4 is to describe the behavior of the switch pipeline, not
to implement general algorithms. Specifically, P4 was designed with four main
goals in mind:

1. Reconfigurability: We should be able to change switch behavior after
deployment.

2. Protocol Independence: The switch should not be tied to Ethernet/IP/TCP.
We define the packet format.

3. Target Independence: The same P4 program should run on different
hardware (ASICs, FPGAs, software switches).

4. Flexibility and Abstraction: Developers write in P4, and the compiler
maps it to the switch’s low-level pipeline architecture.

8 P4 is so cool, but OpenFlow is not the same?

We already discussed what OpenFlow is in Section 2.4, page 30. The short
answer is no, P4 is different.

• OpenFlow is a control protocol for configuring predefined forwarding
behavior.

• P4 is a programming language for defining the forwarding behavior
itself.

Let’s make an analogy to understand the difference.

41

3 Programmable Switches 3.3 Data Plane Programming and P4

• OpenFlow is like the driver of a regular car. The driver can:

✓ Steer left or right

✓ Press the gas or brake

✓ Use turn signals, radio, windshield wipers

But the driver can’t:

p Change how the engine works

p Reprogram how turning the wheel affects the tires

p Add a new driving mode (e.g., “turbo boost”)

That’s OpenFlow. We’re in control of what happens (where to drive, how
fast), but how the car works internally is fixed. We’re controlling pre-built
behavior, we’re not changing the system.

• P4 is like the car engineer or mechanic. The car engineer can:

✓ Redefine how the steering works (e.g., make left turn rotate only one
wheel)

✓ Change how the engine responds to the pedal

✓ Add entirely new modules (e.g., self-driving mode, rocket engine,
etc.)

That’s P4. We’re not just driving the car, we’re deciding what the car is
capable of doing in the first place. We write the “rules” for how the system
should behave.

{ Workflow

1. Before starting to write a P4 program, is necessary to know the P4
Architecture Model. The P4 Architecture Model is a logical in-
terface between:

• The P4 program written by the developer.

• The underlying hardware target (e.g., ASIC, FPGA, software switch)

This model tells the compiler: “here’s what the hardware looks like, these
are the building blocks our P4 program can use.”. This abstracts away
hardware details and makes P4 programs portable across multiple targets.

It’s pretty obvious that the P4 architecture model is defined by the hard-
ware switch we have. Because if our switch doesn’t support some feature
(e.g. packet cloning, a second pipeline), we can’t use it.

2. Write the P4 Program. The network operator or developer writes a
P4 program to describe:

• Which packet headers to parse (e.g., Ethernet, IP, or custom)

• What tables to build (match fields, actions)

42

3 Programmable Switches 3.3 Data Plane Programming and P4

• How the control flow works (pipeline logic)

• What actions to perform (forward, drop, modify, etc.)

This is written in a .p4 file.

3. Compile the P4 Program. The P4 program is passed to a P4 Com-
piler, which does two main things:

(a) Generates a device-specific binary. This is tailored to the target
hardware (e.g., Tofino, FPGA, software switch like MBv2).

(b) Produces a runtime API. This allows a controller (or CLI) to:
install rules (e.g., match on dstIP=10.0.0.1 forward to port 3),
modify tables dynamically.

The result is something the switch can understand and execute.

4. Deploy to the Switch (Target). The compiled output is loaded
onto a P4-capable target, such as: an ASIC (e.g., Barefoot Tofino),
an FPGA-based switch, a software simulator (e.g., BMv2). At this point,
the switch now knows how to: parse packets, match them in tables, take
programmed actions.

5. Runtime Table Configuration. Once the program is installed, we still
need to:

• Populate the tables with actual forwarding rules.

• This is usually done via a controller, using a runtime API (e.g.,
gRPC, Thrift, P4Runtime)

It’s like programming the switch with policy, after the logic has been
defined.

Finally, the user is only concerned with the P4 program and the controller (to
populate the tables). Instead, the P4 compiler, the P4 architecture model, and
the switch (e.g., ASIC) are provided by the vendor.

43

3 Programmable Switches 3.4 PISA and Compiler Pipeline Mapping

3.4 PISA and Compiler Pipeline Mapping
Protocol-Independent Switch Architecture (PISA) is the hardware ab-
straction used by modern programmable switches (e.g., Barefoot Tofino). The
idea behind PISA is simple but powerful: instead of building fixed-function
blocks into hardware (e.g., IP routers, firewalls), expose a generic pipeline
of programmable stages, and let software define what each stage does.

> PISA Architecture

A PISA switch consists of the following main components:

• Parser. Extracts packet headers and creates a structured represen-
tation (called a Packet Header Vector, or PHV). The PHV contains
the keys for the match-Action units.

• Multiple Match-Action Stages. A pipeline of identical stages. Each
stage:

– Matches on some fields (using SRAM or TCAM)

– Executes simple actions (via Arithmetic Logic Units - ALUs)

– Modifies the PHV (e.g., changing a header field, setting a drop flag)

• Deparser. Reassembles the packet by combining the (possibly mod-
ified) headers and payload. Every packet flows through this pipeline, so
the logic must be fully deterministic and parallelizable.

Figure 2: PISA architecture.

® Why use a pipelined architecture instead of a single processor?

A naive design would use one CPU to handle every packet: perform all lookups
(routing, ACLs, NAT, etc.), apply all rules. But this would require an unreal-
istically high frequency to process billions of packets per second.

Just like in CPUs, we divide the processing into stages, each with: local memory
(tables), local ALU, fixed resources. Each packet moves one stage forward per
clock cycle, so we can process many packets in parallel.

44

3 Programmable Switches 3.4 PISA and Compiler Pipeline Mapping

¥ Protocol Independence

One of PISA’s most powerful features is that the chip knows nothing in
advance.

• It doesn’t recognize IP, Ethernet, TCP, or any protocol at all.

• The programmer defines everything: what headers to parse, what
fields to match, what actions to perform.

This is what makes it protocol-independent, and feature-proof.

{ What does the compile do?

Here’s the key part of PISA and P4: we don’t directly program the pipeline,
the compiler does. We write a logical program in P4, and the P4 compiler:

• Analyzes dependencies between operations:

– Match dependency: A table needs data generated by a previous
match.

– Action dependency: An action needs a value produced by a pre-
vious action.

• Packs logic into stages without violating resource limits

• Ensure parallelism and no data hazards

45

4 Data Structures

4 Data Structures

4.1 Introduction
Modern network devices, particularly programmable switches (PISA, page 44),
implement a packet processing pipeline composed of three main blocks:

1. Parser: Extracts relevant headers from incoming packets.

2. Match-Action Pipeline:

• Match: Uses lookup tables to compare extracted headers against
known values.

• Action: Applies logic (e.g., modify headers, make routing decisions).

3. Deparser: Reassembles the final packet for transmission.

This flow is deterministic and must maintain constant processing latency per
stage, as switches are often implemented as hardware pipelines (one packet per
stage per clock cycle).

® Layer 3 (L3) Router

The L3 router is a classic example used to explain the packet matching process:

• Input: IP destination address from packet.

• Match Logic: Find the Longest Prefix Match (LPM) in a routing table.

• Action Logic: Forward the packet to the correct output port, and adjust
MAC address accordingly.

Longest Prefix match (LPM) is a fundamental concept in IP routing, where
the goal is to find the most specific route (i.e., the one with the longest
matching prefix) for a given IP destination address.

When a router receives a packet, it checks the destination IP address and
compares it to entries in its routing table, which typically contain IP prefixes
like:

• 192.168.0.0/16

• 192.168.1.0/24

• 192.168.1.128/25

The router selects the entry whose prefix matches the destination address
and has the longest subnet mask (i.e., most specific match).

In high-speed routers or programmable switches, LPM must be done very
quickly, ideally in constant time. The naive solution for LPM is linear search
over all routing entries. However, with thousands of entries, this is computa-
tionally infeasible at line rate. So the key questions in this section are:

• How do we efficiently implement LPM?

• Which data structures allow fast lookups in a predictable and limited
time?

46

4 Data Structures 4.2 Ternary Content Addressable Memory (TCAM)

4.2 Ternary Content Addressable Memory (TCAM)
Ternary Content Addressable Memory (TCAM) is a specialized kind
of (hardware) memory that works differently from standard RAM. Instead of
accessing data by address, TCAM lets we input data and instantly tells we if
and where it’s stored. This is called associative memory or content-
based lookup. It is built specifically for fast parallel search.

Unlike binary memories (which store 0s and 1s), TCAMs can store 0, 1,
or a third state (ternary) called “don’t care”. This third value allows flexible
and partial matching, making TCAMs very effective for operations like Longest
Prefix Match (LPM) in IP routing.

8 RAM vs TCAM

• RAM (Random Access Memory):

– Ask: “What is stored at address X?”.

– Classic address-value access.

• TCAM:

– Ask: “Where is the value X stored?”.

– The memory searches all entries in parallel and returns the matching
address in constant time. In other words, it returns the address
where the value is stored.

This associative search is very fast, which is why TCAM is often used in packet
classification and routing tables in high-speed switches. Usually these two
hardware are put together because the TCAM gives the index, we use it to
index the RAM, and we get the information.

¥ Pros

✓ Speed: Lookup happens in constant time, regardless of the number of
entries.

✓ Wildcard Matching: TCAMs handle “don’t care” bits, allowing prefix
and pattern-based lookups.

✓ Ideal for Match-Action Pipelines: TCAM is a good fit for hardware
pipelines like those found in P4-programmable switches.

q Cons

p High power consumption: Every lookup checks all entries in parallel.

p Expensive: Due to the hardware complexity and power demands.

47

4 Data Structures 4.2 Ternary Content Addressable Memory (TCAM)

Example 1: TCAM in packet routing

Imagine a TCAM storing IP prefixes:

• 0: 192.168.3.0/24

• 1: 192.168.1.0/24

• 2: 192.168.2.0/24

If an incoming packet has destination IP 192.168.2.1, the TCAM in-
stantly finds that it matches entry 2.
However, this match index alone isn’t enough to decide what to do. So,
we usually pair TCAM with a RAM block that stores the actual action:

1. TCAM gives the index

2. Use it to index RAM

3. Get forwarding info, output port, etc.

. Dealing with Multiple Matches

Sometimes a destination IP can match multiple entries. For example:

• Entry 2: 192.168.2.0/24

• Entry 3: 192.168.2.0/28

Both may match the same address, but only one result is returned. De-
pending on the hardware, this could be:

• The lowest matching index (first match)

• The highest matching index (last match)

To ensure correct behavior (e.g., always choosing the most specific prefix), en-
tries need to be carefully ordered. This introduces extra logic during con-
figuration or compile time.

> Extra Hardware: SRAM

Alongside TCAM, each pipeline stage may also have SRAM. It’s used for:

• Storing values linked to TCAM matches.

• Keeping state (e.g., counters, flags).

• Performing fast value retrieval during match-action processing.

SRAM is faster and cheaper than TCAM, but does not supper associative
lookup, so it complements TCAM rather than replacing it.

48

4 Data Structures 4.2 Ternary Content Addressable Memory (TCAM)

Key Takeaways

• TCAM is fast, parallel, and supports wildcards, great for network-
ing.

• It’s costly and power-hungry, so it’s used sparingly and care-
fully.

• Works in tandem with SRAM for decision and action pipelines.

• Entry ordering matters to get correct behavior (e.g., longest
prefix match).

49

4 Data Structures 4.3 Deterministic Lookup with Probabilistic Performance

4.3 Deterministic Lookup with Probabilistic Performance
® Problem Setup

We want to store a collection of elements (a set) in memory, and be able to:

• Insert new elements.

• Check if an element exists.

• Do it fast, ideally in constant time.

There are two broad strategies:

• Deterministic (this section):

✓ Always gives the correct answer (deterministic lookup, answer is
always correct).

p Slower or require more memory (probabilistic performance, time
depends on insertion history).

With this type of data structures, we always get the correct answer
(true if present, false if not), but the number of steps (e.g. in Separate
Chaining, explained below, the steps are determined by traversing a chain)
is not fixed because it depends on: collisions, load factory, quality of the
hash function.

• Probabilistic (section 4.4, page 53):

✓ Uses less memory or is faster (deterministic performance, always
the same number of operations).

p Might give false positives/negatives (probabilistic lookup, result
might be wrong with some small probability).

With this type of data structures, the time is constant, we have a fixed
number of bit checks (usually one or a few), but the answer can be
wrong. We can get a false positive (return true if the element isn’t in
the set), or we never get a false negative (if it says false, the element
definitely wasn’t inserted).

In this section we analyze the deterministic approach, so an output that we know
what is, but the number of operations required is unknown (probabilistic). This
is not suitable for network computing because it is detached from the PISA
idea, but we present it for academic purposes.

[Hash Table

A Hash Function maps data of arbitrary size (e.g., strings like “hello”) into
a fixed-size integer space. This integer is then used as an index in an
array called a Hash Table.

Pseudo-code:

1 index = hash("hello")
2 hash_table[index] = "hello"

50

4 Data Structures 4.3 Deterministic Lookup with Probabilistic Performance

But collisions can occur, multiple inputs may hash to the same index. To
handle this, we use separate chaining.

¥ Separate Chaining: The Basic Idea

The basic idea of Separate Chaining is as follows. If two values hash to the
same index, we chain them together in a list:

Index 10 → “hello” → “port” → “fire”

So instead of storing just one value per index, we allow each index to store
a linked list (or vector, or queue).

T Performance Analysis

Let’s say we’re inserting N elements into a table with M buckets.

• Average list size:
N

M

• Best case (uniform distribution): All chains are of similar length → fast
lookups.

• Worst case: All N elements hash to the same bucket → one long chain
→ O (N) lookup time.

So the load factor
N

M
is key to understanding performance.

. Collision Probability

How likely is it to avoid collisions at all?

• 1st insertion: no collision.

• 2nd: no collision with probability 1− 1

M

• 3rd: no collision with probability 1− 2

M

• ...

• N -th: no collision with probability 1− N − 1

M

Multiply all together to get the probability of zero collisions:

P (N,M) =

N−1∏
i=0

(
1− i

M

)
(1)

This means that even if M = 10000 and N = 100, the chance of having at least
one collision is about 40%! In other words, collisions are almost inevitable
unless M ≫ N .

51

4 Data Structures 4.3 Deterministic Lookup with Probabilistic Performance

¥ Pros and q Cons of Separate Chaining

✓ Output deterministic and accurate, no false positives/negatives.

✓ Simple and well-understood.

✓ Performs well if load factor is low.

p Memory usage can grow if many chains form.

p Slower when many elements are inserted and collisions increase.

p Not ideal for extremely large-scale or memory-constrained environments.

52

4 Data Structures 4.4 Probabilistic Data Structures

4.4 Probabilistic Data Structures
4.4.1 1-Hash Bloom Filters

We’ve just seen Separate Chaining, which gives accurate answers but has
unpredictable performance, not ideal for hardware pipelines. Now we flip
the perspective.

This section introduces probabilistic data structures, where:

✓ Insertions and lookup have a fixed, deterministic number of opera-
tions, typically 1.

p However, the lookup result is probabilistic, so it can produce false
positives with a small probability.

Why this trade-off? Because in networking hardware (e.g., PISA architecture),
we care more about fixed latency tan occasional inaccuracies.

¥ A simple bit-based Data Structure

Let a set implemented as a simple bit array:

• An array of M 1-bit cells, all initially set to 0.

• To insert an element:

1. Compute a hash function hash(x)

2. Set the bit of the result of the hash function to 1: bit[hash(x)] =
1

• To check if x is in the set, we simply: bit[hash(x)] == 1

This data structure is often called a 1-hash Bloom Filter because it has only
one hash function and only one bit per element.

Example 2: Single-Hash Bloom Filter

Let an array of M 1-bit cells, all initially set to 0, we insert:

1. “Rust” → sets 1 bit of the array to 1

2. “Hello” → sets another bit to 1

3. “Fine” → sets another bit to 1. Now 3 bits are set

Now we will try some lookups.

• “Hello” → bit[hash(Hello)] == 1? YES−−−→ ✓ return true

• “Bye” → bit[hash(Bye)] == 1? NO−−→ p return false

• “P4” → bit[hash(P4)] == 1? YES−−−→ ✓ return true, but we never
inserted it. It is a false positive

53

4 Data Structures 4.4 Probabilistic Data Structures

% Probabilistic Analysis

Let:

• N : number of inserted elements

• M : number of bit cells

Probability that an element maps to a particular bit is:

1

M

So:

• Probability that an element doesn’t map to a bit:

1− 1

M
(2)

• Probability that a bit stays 0 after N insertions:(
1− 1

M

)N

(3)

• Probability that a bit becomes 1, called False Positive Rate (FPR):

FPR = 1−
(
1− 1

M

)N

(4)

• Finally, the False Negative Rate is 0. Bloom filters (1-hash or multi-
ple hashes) guarantee that they cannot return a false negative.
Suppose our hash function returns a value of 3 when we put in the
string “Rust” (hash(Rust) = 3); if we put the word “Rust” into the
bit array, we have bit[hash(Rust)] = 1 ⇒ bit[3] = 1. Later, when
we query “Rust”, the data structure will always return true, because
bit[hash(Rust)] = bit[3] == 1 ? true.

¥ Pros

✓ Simple

✓ Fast, constant-time insertion and query

✓ Deterministic performance, perfect for hardware pipelines

q Cons

p Not always accurate, there can be false positives.

p To keep FPR low (e.g. 1%), we need 100× more memory than ele-
ments.

54

4 Data Structures 4.4 Probabilistic Data Structures

4.4.2 Bloom Filters

A Bloom Filter is a space-efficient probabilistic data structure used for mem-
bership queries:

• Fast insertions lookups.

• No false negatives, but may return false positives.

• This trade-off is ideal for fixed-latency, high-speed systems (like pro-
grammable switches).

T Generalization of the 1-hash Bloom filter to k-hash

To reduce false positives, we extend the 1-hash Bloom Filter:

• Instead of just 1 hash function, we use K different hash functions.

• Each function maps the input element to a different positions in the bit
array.

{ How Insertion Works

Let’s say we want to insert “Rust”:

1. Compute K hash functions in parallel:

h1 (x) h2 (x) . . . hK (x)

2. For each hi (x), set the bit at position h1 (x) to 1.

• h1 (x) = 1

• h2 (x) = 1

• . . .

• hK (x) = 1

Û How Lookup Works

To check whether an element is in the set:

• Compute all K hashes

• If all corresponding bits are set to 1, we return true (element may
be present)

• If at least one bit is 0, we return false (element is definitely not
present)

55

4 Data Structures 4.4 Probabilistic Data Structures

. False Positives

Let’s say “Fire” is not inserted but happens to have all its hash bits already
set by “Rust”, “Hello”, or “Fine”. The filter will wrongly return true, a false
positive. Still, no false negatives can occur: if an element was inserted, all
bits are set, and it will always return true.

% Probability Analysis

Let:

• N : number of inserted elements

• M : number of bits in the filter

• K: number of hash functions

Then:

• Probability a particular cell is still 0 after inserting N elements:(
1− 1

M

)(K·N)

(5)

• Probability of a false positive (all K bits set for a non-inserted element),
the False Positive Rate (FPR):

FPR =

(
1−

(
1− 1

M

)(K·N)
)K

(6)

Just as an idea, with 1′000 elements inserted, 10′000 bits in the filter (cells),
and 7 hash computations, we get a probability of FPR of only 0.82%. And if
we increase the bits in the filter (M) to 100′000, the FPR is about 0%! So,
with a moderate increase in memory and hash computations, we can
get extremely low FPRs.

¥ Pros

✓ Very memory-efficient, uses up to 10× less memory than separate
chaining.

✓ Lookup and insertions are predictable and fast, constant time with K
steps.

✓ Still no false negatives.

q Cons

p Requires more computation than the single-hash version (e.g., 7 hash
functions).

p Slightly more complex to implement in hardware.

56

4 Data Structures 4.4 Probabilistic Data Structures

4.4.3 Dimensioning a Bloom Filter

We want to design a Bloom Filter that:

• Stores N elements

• Uses M bits (memory size)

• Applies K hash functions

But we also to control the False Positive Rate (FPR) and avoid unneces-
sary computation.

There are three parameters in play:

1. Memory M : more bits ⇒ lower FPR

2. Number of Hashes K: more hashes ⇒ lower FPR, but higher compu-
tational cost

3. False Positive Rate (FPR): we want this to be as low as possible.

Improving one usually worsens another. This is the classic space/time/error
trade-off.

¥ Asymptotic Approximation for FPR

In our case, the Asymptotic Approximation is a simplified mathematical ex-
pression that estimates the False Positive Rate (FPR) of a Bloom Filter
when the number of cells M is large. It’s derived from the exact expression
but uses limits and approximations that hold when M ≫ N . It’s much easier
to work with and very accurate in practice.

If we insert N elements into a Bloom filter with M bits and use K hash functions,
the exact False Positive Rate (FPR):

Exact FPR =

(
1−

(
1− 1

M

)(K·N)
)K

(7)

This expression can be tedious to compute, especially for large values of M , N ,
and K. By using the approximation:(

1− 1

M

)K·N

≈ e(−K· N
M) when M ≫ 1

The Asymptotic Approximation of False Positive Rate (FPR) is:

FPR ≈
(
1− e(−K· N

M)
)K

(8)

This approximation is easier to analyze and is widely used in practice.

® Finding the Optimal Number of Hash Functions

The optimal number of hash functions K minimizes the FPR for given M
and N . We can find it by minimizing the FPR formula:

Kopt =
M

N
· ln (2) (9)

57

4 Data Structures 4.4 Probabilistic Data Structures

4.4.4 Counting Bloom Filters

In the standard Bloom Filter:

• Inserting an element means setting multiple bits to 1.

• But we never know which element caused a bit to be 1, because
multiple elements may share the same hash outputs.

. What happens if we try to delete?

Let’s say we inserted: “Rust” and “Hello”. And now we want to delete “Rust”.
If “Rust” and “Hello” both caused a bit (say, index 9) to be set to 1, and we
reset it to 0 to delete “Rust”, now:

• When we query “Hello”, it might show a 0 in one of its position.

• This creates a false negative, which violates one of the core guarantees
of Bloom filters!

So, manually unsetting bits can remove evidence of other elements.

¥ Solution: Counting Bloom Filters

To enable deletion, we upgrade each bit into a counter, this structure is
called a Counting Bloom Filter. It works like this:

• Instead of a bit array, we use an array of small integers.

• When inserting, for each hash hi (x), increment counter[hi (x)].

• When deleting, for each hash hi (x), decrement counter[hi (x)].

We can safely decrement counters, knowing that only when the last element
that hashed to that index is deleted will the counter reach zero. All
previous analyses about false positives, FPR formula and K optimal are still
valid, but now we use more memory and add increment/decrement logic.

. Risk: Counter Overflow

Counters must be large enough:

• If they overflow (e.g., go above 255 for 8-bit counters), the filter can
become corrupted.

• Worse, if a counter underflows (e.g., we delete too many times), we
might accidentally remove bits for elements still in the set ⇒ false
negatives.

58

4 Data Structures 4.4 Probabilistic Data Structures

4.4.5 Invertible Bloom Lookup Tables (IBLTs)

With Count Bloom Filters, we can:

• Insert elements

• Delete them

• But we can’t list what’s inside, or retrieve keys/values, the infor-
mation is “smeared” across the structure.

Now we want something more powerful that can also list all entries or recover
a specific key-value pair.

[What is an IBLT?

An Invertible Bloom Lookup Table is a data structure that:

• Stores key-value pairs

• Supports deletion and enumeration (listing)

• Is inspired by Bloom Filters, but has a richer cell structure.

Each cell contains three values:

1. Count: how many key-value pairs map to this cell.

2. KeySum: XOR (or sum) of all keys that mapped here.

3. ValueSum: XOR (or sum) of all values that mapped here.

We hash the key using multiple hash functions, just like a Bloom filter, and
update each corresponding cell.

+ Insertion

To insert a key-value pair:

1. Use K hash functions to map the key to K cells.

2. For each cell:

(a) Increment the count

(b) Add the key to KeySum

(c) Add the value to ValueSum

59

4 Data Structures 4.4 Probabilistic Data Structures

− Deletion

To delete a key-value pair:

1. Use the same K hash functions.

2. For each cell:

• Decrement the count

• Subtract the key from KeySum

• Subtract the value from ValueSum

If the key was inserted, this will perfectly remove it.

Û Lookup and Recovery

To find a value for a key:

1. Try to find a cell where count == 1 and the KeySum == input key

2. If found, then ValueSum gives the value associated with that key

But:

• If the key is mixed with other keys in all K cells, recovery is hard.

• That’s why some keys may not be recoverable immediately.

® Enumerate everything stored in it

Once the structure is filled with multiple key-value pairs, we may want to enu-
merate everything stored in it, not just individual lookups. This process is
known as decoding or peeling the IBLT. This restore operation is often used
in real-world scenarios, for example, when we want to compare two sets of two
different devices.

The decoding algorithm is:

1. Scan the table for a cell where:

• count == 1

• KeySum and ValueSum correspond to an actual key-value pair

2. When found:

• Add the pair to output

• Simulate deletion: subtract this key and value from all corresponding
cells

• Update the IBLT

60

4 Data Structures 4.4 Probabilistic Data Structures

For example:

1. Initial IBLT contains:

Count KeySum ValueSum

1 7 98
2 202 48
3 209 146
2 159 101
1 50 45

2. First, a cell with count = 1 reveals:

• (7, 98) ⇒ added to output

• Remove it from the IBLT (as if deleting it)

Count KeySum ValueSum

0 0 0
2 202 48
2 202 48
1 152 3
1 50 45

3. After update:

(a) Next, find (152, 3) ⇒ decode and remove

Count KeySum ValueSum

0 0 0
1 50 45
1 50 45
0 0 0
1 50 45

(b) Finally, we can easily retrieve the last one which is 50, 45.

4. The final result is:

{(7, 98) , (152, 3) , (50, 45)}

This process works only if at least one of the key-value pairs is initially
recoverable, and then the remaining pairs become recoverable as the IBLT
gets simplified.

61

4 Data Structures 4.4 Probabilistic Data Structures

. Decoding problems

Sometimes, the decoding process gets stuck:

• All cells have count > 1, or are tangled with other keys

• We cannot isolate any key-value pair

When this happens:

• Listing fails

• The IBLT is said to be in a non-decodable state

• This usually happens when the load factor is too high (i.e., too many
elements for the number of cells)

So IBLTs are powerful because allowing insertion, deletion, lookup and enumer-
ation; but we need to allocate enough space, because if we overloaded, we risk
failure to decode.

Feature Standard Bloom Counting Bloom IBLT

Insert ✓ ✓ ✓ (key-value)
Delete p ✓ ✓
Membership Test ✓ (yes/no) ✓ ✓ (via decoding)
False Negatives p p p (unless corrupted)
False Positives ✓ ✓ p (when decoding works)
Listing Elements p p ✓ (if decodable)
Memory Efficiency Very high Moderate Lower (more fields)

Table 4: IBLT vs Bloom Filters.

62

4 Data Structures 4.4 Probabilistic Data Structures

4.4.6 Count-Min Sketch

The Count-Min Sketch is a probabilistic data structure used to estimate
the frequency of elements in a stream.

• We don’t store each element individually.

• Instead, we use a compat structure to maintain approximate
counts.

• It’s designed for efficiency, especially when tracking millions of elements
would be too memory-intensive.

{ How does it work?

We create a 2D array of counters with:

• d rows (one per hash function)

• w columns (size of each hash domain)

This gives a table of size w × d, much smaller than a full hash table for all
possible items. Each row has a different hash function.

+ Insertion

To insert an element (e.g. ip.dest1):

1. Hash the element with each of the d hash functions.

2. Each hash gives we a column index in its row.

3. Increment the corresponding counters.

So we increment 1 counter per row, total d counters updated.

Û Querying the Frequency

To estimate the count of an element:

1. Hash it again with the same d hash functions.

2. Get the counter values from the same positions.

3. Return the minimum of those d counters.

The minimum because:

• Collisions with other elements can cause overestimation (counters get in-
flated).

• But the minimum is never less than the true count, so it’s a safe
lower bound.

63

4 Data Structures 4.4 Probabilistic Data Structures

That’s where the name comes from: count, because it estimates the frequency,
and min, because it takes the minimum over multiple counters.

¥ Advantages

• Sublinear space: uses much less memory than a full table.

• Fast: insertions and queries are both O (d) time (constant if d is fixed).

• Suitable for high-speed data streams (e.g., network flows, telemetry,
monitoring).

Feature Value

Use case Approximate frequency counts
Memory Sublinear (w × d)
Insertion time O(d)

Query time O(d), returns minimum
Overestimates Possible
Underestimates Never
Similar to Counting Bloom Filter

Table 5: Count-Min Sketch summary.

64

5 Datacenter Monitoring

5 Datacenter Monitoring

5.1 Why Datacenter Monitoring Matters
Image we’re running a distributed application in a datacenter, and performance
suddenly degrades. The possible root causes can be multiple:

• A software bug in the application logic.

• Network congestion between the servers.

• A broken fiber cable disrupting communication.

• A hardware failure, e.g. broken switch.

• A network misconfiguration that reroutes traffic inefficiently.

• A bug in the routing protocol.

• And many more...

There is a huge space of possible issues, and pinpointing the root cause
without visibility is extremely difficult.

Many papers describe the importance of monitoring in datacenters.

• In the Pingmesh [3] article, they point to research that has begun to
investigate how to distinguish network problems from application-
level bugs. They highlights the diagnostic ambiguity in complex systems.
Without monitoring, it’s extremely hard to tell whether a slowdown is due
to:

– Software bugs;
– Application overload;
– Or actual network failures.

Monitoring systems must disambiguate the root cause across
layers, application vs network.

• In the “Understanding and Mitigating Packet Corruption in Data Center
Networks” [7] article, they showing how minor misconfiguration or
failures (e.g., wrong routing entry) can ripple through a system, creating
major outages. It stresses that even low-level, seemingly unimportant
events mu be visible to prevent or debug large-scale issues. For example,
a single corrupted forwarding rule in a switch might cause traffic loss
affecting thousands of users.
Monitoring must include fine-grained data (like per-packet or per-
flow telemetry) to detect these small but critical problems.

• In the “Flow Event Telemetry on Programmable Data Plane” [6] article,
they show that performance degradation often happens silently,
with no clear immediate failures. These “gray failures” don’t crash systems
but hurt performance. They’re invisible without high-resolution monitor-
ing (latency histograms, queue lengths, retransmits, etc.).
Monitoring should detect subtle deviations, not just crashes or time-
outs.

65

5 Datacenter Monitoring 5.1 Why Datacenter Monitoring Matters

• In the CloudCluster [5] article, they push toward deep programmability
and visibility withing the network. This points to the evolution of mon-
itoring tools:

– From passive logs and SNMP stats;

– To programmable packet tracing and real-time telemetry;

– That help pinpoint network issues quickly and accurately.

Visibility must be deep, dynamic, and distributed across the
system.

66

5 Datacenter Monitoring 5.2 Network Monitoring

5.2 Network Monitoring
Network Monitoring is the continuous observation of a computer net-
work to detect slowdowns or failures in components. Its purpose is to
detect, localize and respond to faults before they impact users.

® Monitoring Scope

Monitoring spans the entire network path. Each router (or switch/server) is
a point where failures or slowdowns can occur:

• A switch could drop the packet silently.

• A routing issue could cause the packet to loop.

• A delay could occur due to congestion in queues.

To effectively detect and diagnose problems, the monitoring system must
observe not just endpoints, but the entire path, or at least enough of it to:
detect where things go wrong, or understand why a packet failed to reach its
destination. This is why datacenter monitoring often tries to trace or mirror
packets at different points in the network, to reconstruct the packet’s journey
and find anomalies.

{ Monitoring Techniques

There are many ways to monitor a network. It can be done:

1. From Switches:

(a) Built-in Features (section 5.3, page 69)

• NetFlow : collects IP traffic statistics.
• Mirroring : duplicates selected packets for analysis.
• SNMP (Simple Network Management Protocol): polls device

stats.

(b) Programmable Switches

• Use data plane programmability (e.g., P4 language) to define cus-
tom monitoring behaviors.

• Enables custom counters, tagging, filtering, or tracing at wire
speed.

2. From Servers:

(a) Standard Tools

• netstat: network connections and stats.
• tcpdump: packet capture and inspection.
• traceroute: path tracing and latency.

(b) Ad-hoc Monitoring Services

• Lightweight daemons or agents tailored for the datacenter.
• Export performance metrics or send alerts.

67

5 Datacenter Monitoring 5.2 Network Monitoring

There is no single way to monitor, a mix of passive and active, centralized
and distributed methods is used. Monitoring systems must collect data
from multiple vantage points to build a full picture of the network’s health.

. Why traditional monitoring isn’t enough

In large-scale datacenters many failures are subtle and effect only specific flows
of packets:

• Silent packet drops. Packets are dropped but not reported by switches.
The causes are software bugs or faulty hardware.

• Silent blackholes. Traffic is blackholed without showing in forwarding
tables. The causes are corrupted TCAM entries.

• Inflated end-to-end latency. Packet flow experiences unexpected de-
lays. The causes are congestion or queuing.

• Loops. Packets circulate endlessly. The causes are middleboxes modify
headers or breaking routing logic.

These failures are:

• Not visible in flow-level stats.

• Not logged by switches.

• Hard to localize with only endpoint observations.

¥ We need per-packet visibility to detect and understand them.

® So can we monitor every packet on the network?

Tracing all packets in large datacenters is not scalable:

• Aggregate traffic can exceed 100 terabit per seconds.

• Microsoft estimated 3200 servers needed just to collect and analyze th
data (in 2015).

To make packet-level telemetry practical, some strategies are required:

1. Monitoring must be selective and smart (e.g., sample important flows).

2. Diagnosing problems often requires correlating behaviors across mul-
tiple hops.

3. Passive tracing alone is insufficient:

• It may miss transient problems.

• It lacks the context to localize root causes effectively.

68

5 Datacenter Monitoring 5.3 Everflow

5.3 Everflow
5.3.1 What is Everflow?

Everflow [2] is Microsoft’s system for packet-level telemetry in production
datacenters, and it is built around three key concepts:

1. Match and Mirror on the Switch. Everflow leverages the match-
action capability of commodity switches. It defines rules to match
specific packets and then mirror (copy) them to a monitoring
collector. Three matching rules:

• TCP SYN / FIN / RST: to trace connection setup/teardown.

• Special debug bit: used to flag packets for tracing.

• Protocol traffic: such as BGP or other control plane packets.

This allows the system to monitor important or suspicious traffic
patterns without touching every packet.

2. Switch-Based Reshuffler. Mirroring packets from all switches generates
huge data volumes. A single analysis server can’t handle this load. The
solution is to use one or more intermediate switches (reshuffler) that:

(a) Receive mirrored packets.

(b) Distribute them intelligently across multiple collectors.

This balances load and scales the telemetry infrastructure.

3. Guided Probing. The system can inject specific test packets into
the network. These packets are crafted to explore or verify behaviors
(e.g., path correctness, loss, latency). They are useful because:

• Helps when match and mirror alone misses packets (e.g., for complete
TCP flow analysis).

• Can reproduce or test suspected failures.

• Distinguishes between persistent and transient issues.

Uses DSCP bits (in IP headers) and parts of the IPID field to mark and
sample packets.

Idea Purpose Key Technique

Match and Mirror Capture relevant packets Matching on SYN / FIN / debug
bits; mirroring to collectors.

Reshuffler Scale analysis Distribute mirrored packets across
servers.

Guided Probing Actively test network behavior Inject custom packets using special
bit fields.

Table 6: Summary of Everflow concepts.

69

5 Datacenter Monitoring 5.3 Everflow

5.3.2 How it works

Everflow isn’t just a single-purpose tool, it’s an extensible framework that sup-
ports different debugging applications, all coordinated through a central con-
troller.

1. Everflow is Application-Driven. Operators use Everflow to run spe-
cific troubleshooting tasks, such as:

• Latency profiling

• Packet drop debugging

• Loop detection

Each task is handled by an Everflow application tailored to that goal.

2. The Controller as the Central Brain. The controller coordinates
the full debugging process:

• It receives:

(a) The operator’s request (e.g., trace all flows to a web server).
(b) The expected network routing.

• It then:

(a) [init] Installs match-and-mirror rules in selected switches.
(b) [config] Configures the analyzers to process mirrored traf-

fic.
(c) [debug] Sets the debug bits (e.g., using DSCP or IPID) in

custom probes if needed.

This modular design allows Everflow to adapt to the operator’s intent
dynamically.

3. Data Collection via Reshuffler and Analyzers. Once rules are de-
ployed:

• Mirrored packets from the switches go to a Reshuffler.

• The Reshuffler distributes the traffic to multiple analyzers (to
balance the load).

• The analyzers inspect the packet streams for signs of abnormal
behavior.

4. Smart Storage: Only Save What’s Important. Even with match-
and-mirror, the system can generate a massive amount of trace data.
For optimization, the analyzers write to memory only packets with
the debug bit set, or packets that show anomalies (e.g., unusual
delays, missing responses). This filtering prevents overload and ensures
only useful diagnostic data is saved.

70

5 Datacenter Monitoring 5.3 Everflow

Figure 3: Summary of Everflow’s End-to-End operation:

• Operator Request. Chooses a debugging goal (e.g., latency analysis).

• Controller. Interprets request, maps it to rules and config.

• Switch Configuration. Match and mirror rules installed.

• Probing (Optional). Probes injected with debug bits.

• Data Reshuffling. Mirrored packets routed to analyzers.

• Analysis. Analyzers check for problems.

• Selective Storage. Only suspicious packets are saved.

Example 1: Real episode

Internal users reported that some connections to a web service were
timed out. This violated the service level agreement (SLA). The root
cause was suspicious: packet drops were occurring, but where exactly?

The service architecture involved multiple components: clients, load bal-
ancers, web servers, databases. All interconnected over the datacen-
ter network. But the datacenter is huge, with many possible failure
points.

The investigation begins.

1. Load Balancers showed no errors in their counters.

2. Some switches were checked manually, no issue found.

3. But the problem persisted, random connection timeouts were still

71

5 Datacenter Monitoring 5.3 Everflow

happening.

This is where Everflow comes in.

1. Everflow was used to mirror TCP SYN packets (which initiate
connections) across the network.

2. Through its trace analysis, it was observed that:

• Many SYN packets never reached the destination web
server.

• This only happened for one specific web server.

3. Further analysis reveled:

• All SYN packets to that web server were dropped at one
switch.

• The switch showed no error counters, completely silent.

The root cause has been identified. The TCAM (Ternary Content Ad-
dressable Memory) on that switch was corrupted (TCAM stores for-
warding table entries, used to decide where packets go). Because the
corruption was silent:

1. The switch dropped packets silently.

2. No logs, no alarms, no metrics, traditional monitoring failed.

After a reboot of the switch, the issue disappeared.

72

5 Datacenter Monitoring 5.4 FlowRadar

5.4 FlowRadar
5.4.1 Architecture

FlowRadar [4] is a scalable, low-overhead solution for per-flow monitoring
in datacenter networks. Its goal is to track how much traffic each flow
generates, using programmable switches with fixed, minimal resources.

® Why FlowRadar?

Monitoring networks at flow-level granularity is valuable but expensive:

p Packet mirroring. Every interesting packet is copied and sent to an
external analyzer.

. Problem: way too much traffic. In datacenters with 100 terabit
per seconds, this would flood our monitoring system.

p Per-flow counters at switches. Maintain one counter per flow inside
the switch.

. Problem: switches have very limited memory. With millions of
flows, we run our of space fast.

So FlowRadar sits in the sweet spot:

✓ It avoids mirroring massive amounts of data.

✓ It doesn’t require full flow counters in the switches.

✓ It works with fixed, limited operations per packet, suitable for
programmable hardware.

The main idea is to encode information compactly in the switch, then decode
it later at the collector.

{ How it works

The FlowRadar works in three different ways:

1. In the Switch. Each switch maintains a compressed data structure
to track flows and their counters. The structure is similar to an In-
vertible Bloom Lookup Table (IBLT, page 59), it records flow IDs
and counters in a space-efficient way. Operations per packet are fixed
and fast (ideal for hardware).

2. Periodic Reports. Switches periodically export their encoded flow
data to central collectors.

3. At the Collector. Collectors receive the compressed data. Using mul-
tiple switch reports, they correlate and decode per-flow information.
This allows the network operator to recover flow ID, and packet or byte
count per flow.

73

5 Datacenter Monitoring 5.4 FlowRadar

5.4.2 Data Structure used in FlowRadar

Switches have very limited memory, but we want to count how many
packets are part of each individual flow. Instead of using a separate counter
per flow, which would consume too much space, FlowRadar stores compressed
aggregate information in a fixed-size structure.

Each switch maintains three tables of m cells:

• FlowXOR. XOR2 of all flow IDs hashed into each cell.

• FlowCount. Number of flows that map to each cell.

• PacketCount. Total number of packets from those flows.

For example, assume flows A, B, and C are all seen by the switch. Each flow is
hashed into multiple cells. The tables get updated like this:

• FlowXOR: a⊗ b, b⊗ c, etc.

• FlowCount: how many flows are hashed into each cell (1, 2, etc.)

• PacketCount: total packets seen in each cell (e.g., S(a) + S(b))

So each cell contains a mix of data from different flows.

® Why use XOR?

Because the XOR operation is reversible. If we know the XOR of two values
and one of them, we can recover the other. This allows the collector to
decode the original flows by:

1. Getting reports from multiple switches.

2. Iteratively solving the system of XOR equations.
2XOR (Exclusive OR) is a binary operation denoted by ⊗, where the result is 1 if the two

input bits are different, and 0 if they are the same.

74

5 Datacenter Monitoring 5.4 FlowRadar

. What is Flow Filter and why do we need it?

The Flow Filter is a small data structure (like a Bloom Filter) used inside the
switch to remember which flows the switch has already seen.

Let’s say flow a sends 10 packets. All those packets will pass through the
switch. But we don’t want to treat each packet like a new flow, we only want
to register flow a once in the compressed counters. If we update the
XOR and FlowCount on every packet:

• The FlowXOR would get corrupted.

• The FlowCount would become too high.

• We’d lose the ability to decode the flows correctly later.

So the Flow Filter helps us avoid this.

® What does Flow Filter actually do?

For each packet:

1. The switch looks at the Flow ID (e.g., source IP + dest IP + ports).

2. It checks the Flow Filter:

• If the flow is new (not in the filter yet):

(a) It updates:
– FlowXOR: add this flow’s ID via XOR.
– FlowCount: increment the count.
– PacketCount: add 1.

(b) It marks this flow as seen in the filter.

• If the flow is already known:

(a) It updates only PacketCount.

Figure 4: Correct representation of the data structure used in FlowRadar.

75

5 Datacenter Monitoring 5.4 FlowRadar

5.4.3 Collector Decode

Once the switch sends its tables (FlowXOR, FlowCount, PacketCount) to the
collector, there are two stages of decoding:

1. Single Decode (local), performed at the collector level, recovers flows
where the data structure is clean enough.

2. Network-Wide Decode (distributed), performed across multiple col-
lectors/switches, combines views from many switches to fully decode the
remaining flows.

[Step 1 - Single Decode

Single Decode is the local decoding stage, it happens at one switch (or
collector handling one switch’s data). The goal is to recover as many flows as
possible using only the local FlowXOR, FlowCount, and PacketCount
tables collected from that switch. The key idea is to find “pure” cells (cells
containing information from only one stream) and start the decoding process:

1. Find a Pure Cell. A cell is pure if FlowCount = 1. It means only one
flow was hashed to that cell. For example, let the following FlowRadar
table, this step identifies the first row:

FlowXOR FlowCount PacketCount

a 1 5
a⊗ b 2 12

b⊗ c⊗ d 3 13
0 0 0
0 0 0

b⊗ c⊗ d 3 13
0 0 0
a 1 5
0 0 0

c⊗ d 2 6

76

5 Datacenter Monitoring 5.4 FlowRadar

2. Remove the Flow’s Contribution from Other Cells. Flow a was
hashed to multiple cells. So now we remove a’s effect from all its associated
cells:

FlowXOR FlowCount PacketCount

0 0 0
b 1 7

b⊗ c⊗ d 3 13
0 0 0
0 0 0

b⊗ c⊗ d 3 13
0 0 0
0 0 0
0 0 0

c⊗ d 2 6

3. Removal may produce purer cells. By removing flow a, other cells
might now have FlowCount = 1 (pure cell). Repeat the previous steps
until everything is decoded.

. Possible Stall. Some flows are mixed together in such a way that
no cell has FlowCount = 1. The solution here is to apply the second
decoding stage, called network-wide decode.

¥ Step 2 - Network-Wide Decode

In the previous stage, each switch tries to decode as many flows as it can locally,
by identifying pure cells. But sometimes decoding gets stuck because:

• Flow cells contain multiple flow mixed.

• No pure cells remain.

To solve this, we use network-wide redundancy: packets of the same flow
traverse multiple switches, and those switches may store different parts
of the encoded data. By combining these views, we can solve flows that are
undecodable at any single switch.

For example, image the following situation:

Switch 1 Switch 2

FlowXOR FlowCount PacketCount FlowXOR FlowCount PacketCount

a 1 − a⊗ d 2 −
a⊗ c⊗ d 3 − a⊗ c 2 −
b⊗ c⊗ d 3 − b⊗ c⊗ d 3 −
a⊗ b⊗ c 3 − a⊗ b⊗ c 3 −
b⊗ d 2 − b⊗ d 2 −

77

5 Datacenter Monitoring 5.4 FlowRadar

In both switches, single decode fails. But when merged, we have enough con-
straints to decode all flows. This is similar to solving a system of equations with
more equations that unknowns. In other words, we don’t need massive memory
in each switch, we can use small, compressed flow encodings per switch
and decode everything later by combining views across the network.

® But how do we know which switch saw which flow?

To decode accurately, we must know which switch processed which flow, be-
cause otherwise we might combine FlowXORs from switches that didn’t see a
particular flow (wrong result). The solution is the Flow Filter. Each switch
has a Flow Filter, so we can:

1. Query the flow filter: “Did you see the flow a?”

2. If yes, we use that switch’s data for decoding flow a.

This guarantees correctness in multi-switch decoding.

Step Description

1. Each switch reports its compressed counters (FlowXOR, FlowCount, PacketCount)
2. Some flows decoded via Single Decode
3. Remaining flows are solved by combining equations from multiple switches
4. Use Flow Filters to determine which switch saw which flows
5. Network-wide correlation fully decodes the remaining flows

Table 7: Network-Wide Decode summary.

. What if Switches Disagree Due to Packet Loss?

Image that:

• A packet of flow f passes through Switch A and Switch B.

• Due to transient issue, one of the switches misses that packet (e.g.,
due to mirroring loss or memory overwrite).

Now, when both switches report their Flow Radar data structure:

• The values for flow f might not match across switches.

• This creates inconsistencies when trying to decode.

¥ Solution: Redundancy. Even if packet counts differ, the set of flows seen
by each switch can still be decoded. And more importantly, once we know
which flows each switch saw, we can treat each switch’s data as a system of
linear equations and solve for the actual packet counts.

1. We use the Flow Filter to determine which flows each switch saw.

78

5 Datacenter Monitoring 5.4 FlowRadar

2. We decode flow IDs using the FlowXOR and FlowCount tables.

3. We set up a linear system of equations per switch:

• Each cell gives us an equation:

XOR (f1, f2, . . .) ⇒ total packet count = P

• We solve for the unknown packet counts of individual flows.

4. If the same flow has different counts across switches:

• It signals a possible packet loss;

• Or a measurement inconsistency

79

5 Datacenter Monitoring 5.5 In-Band Network Telemetry (INT)

5.5 In-Band Network Telemetry (INT)
5.5.1 What is INT?

In-Band Network Telemetry is a framework where the data plane itself
collects telemetry information as packets traverse the network. Instead of
relying on mirrored copies or external probes (like Everflow or FlowRadar), INT
embeds telemetry instructions directly into packets. This means that
the packet asks switches along its path to record certain metadata
(e.g., delay, queue size, switch ID).

INT demonstrated the power and usefulness of programmable switches. It was
one of the first real-world use cases where P4 offered something no traditional
switch could do.

{ How it works?

1. Packets carry INT headers.

2. INT-capable devices read the instructions in those headers.

3. They collect specific network state and append it to the packet as
it moves.

4. The telemetry data is delivered in-band, alongside the normal traffic.

The data collected cloud include: switch ID, input and output ports, queue
occupancy, timestamp (arrival and departure), packet latency per hop.

® Why INT?

INT solves key limitations of older monitoring tools:

✓ No need for mirrored traffic (like Everflow).

✓ Real-time per-packet information.

✓ High visibility into what happens at every hop.

This is especially useful for: fine-grained performance monitoring; diagnostic
congestion, jitter, and path problems; dynamic traffic engineering.

80

5 Datacenter Monitoring 5.5 In-Band Network Telemetry (INT)

5.5.2 Modes

Telemetry data can be collected and exported in different ways, depend-
ing on:

• Whether packets are modified or untouched

• Whether data is inserted in packets or sent to collectors separately

• How much pressure is put on switches vs collectors.

Each mode offers trade-offs between performance, visibility, and system
overhead. There are three different modes:

1. INT-XD (eXport Data). Switches do not modify the packet. In-
stead, they send telemetry data directly to the collector based on
local configuration.

¥ Pros
✓ No changes to the packet ⇒ avoids MTU issues.
✓ Easier for legacy packet flows.

q Cons
p Heavy pressure on collectors (they must gather data from all

switches).
p Telemetry query is based on switch config, not what the packet

asks.

2. INT-MX (eMbed instruct(X)ions). The packet is marked to in-
dicate it wants telemetry. Switches send telemetry data out-of-band
(to a collector), but based on the packet’s mark.

¥ Pros
✓ Telemetry is packet-driven, more dynamic than INT-XD.

q Cons
p Still puts pressure on collectors.
p Requires modifying packets, could affect headers, MTU.

3. INT-MD (eMbed Data). The packet itself is modified to carry
Telemetry metadata in-band. Each switch inserts data into the
packet as it passes through.

¥ Pros
✓ No extra pressure on collectors.
✓ Telemetry query is packet-dependent, enabling full visibility

along the path.
q Cons

p Packets are modified, which may:
(a) Break some applications;
(b) Exceed MTU (Maximum Transmission Unit);
(c) Require special handling at end hosts.

81

5 Datacenter Monitoring 5.5 In-Band Network Telemetry (INT)

• Use INT-XD if we want no packet modifications and can tolerate heavy
collector load.

• Use INT-MK for moderate flexibility but still out-of-band.

• Use INT-MD if we want maximum in-path visibility and can handle
packet growth.

Figure 5: INT modes.

=

Mode Packet Modified Collector Load Query Driven By Pros Cons

INT-XD p No p High Switch Config MTU-safe Inflexible, collector-heavy
INT-MK ✓ Yes p High Packet Mark Flexible MTU risk, collector-heavy
INT-MD ✓ Yes ✓ Low Packet No collector pressure MTU impact, complex parsing

Table 8: Summary of INT modes.

82

References

References
[1] Antichi Gianni. Network Computing. Slides from the HPC-E master’s degree

course on Politecnico di Milano, 2024.

[2] Albert Greenberg, Dave Maltz, Guohan Lu, Jiaxin Cao, Ratul Mahajan,
and Yibo Zhu. Packet-level telemetry in large datacenter networks. In
SIGCOMM’15, August 2015.

[3] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang,
Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and
Varugis Kurien. Pingmesh: A large-scale system for data center network
latency measurement and analysis. SIGCOMM Comput. Commun. Rev.,
45(4):139–152, August 2015.

[4] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: a better
netflow for data centers. In Proceedings of the 13th Usenix Conference on
Networked Systems Design and Implementation, NSDI’16, page 311–324,
USA, 2016. USENIX Association.

[5] Weiwu Pang, Sourav Panda, Jehangir Amjad, Christophe Diot, and Ramesh
Govindan. CloudCluster: Unearthing the functional structure of a cloud ser-
vice. In 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), pages 1213–1230, Renton, WA, April 2022. USENIX
Association.

[6] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong
Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, Pengcheng Zhang, Dennis
Cai, Ming Zhang, and Mingwei Xu. Flow event telemetry on programmable
data plane. In Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIGCOMM ’20,
page 76–89, New York, NY, USA, 2020. Association for Computing Machin-
ery.

[7] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Förster,
Arvind Krishnamurthy, and Thomas Anderson. Understanding and mit-
igating packet corruption in data center networks. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 362–375, New York, NY, USA, 2017. Association for
Computing Machinery.

83

Index
Symbols
1-hash Bloom Filter 53

A
Aggregation Layer (Distribution Layer) 13
Asymptotic Approximation of False Positive Rate (FPR) 57

B
Bisection Bandwidth 17
Bloom Filter 55

C
Clos Network 20
Control Plane 37
Core Layer (Backbone Layer) 13
Count-Min Sketch 63
Counting Bloom Filter 58

D
Data Plane 37
Datacenter 4

E
East-West traffic 9
Edge Layer (Access Layer) 13
Everflow 69

F
False Negative Rate 54
False Positive Rate (FPR) 54, 56
Fat-Tree 20
Flow Filter 75
FlowCount 74
FlowRadar 73
FlowXOR 74
Forwarding Engine 28
Full-Bisection Bandwidth 17

G
Google Jupiter Fabric 23

H
Hash Function 50
Hash Table 50

I
In-Band Network Telemetry 80
INT-MD (eMbed Data) 81
INT-MX (eMbed instruct(X)ions) 81
INT-XD (eXport Data) 81

84

Index

Invertible Bloom Lookup Table 59

L
Longest Prefix match (LPM) 46

M
Multi-Tenancy 6

N
Network Monitoring 67
North-South traffic 9

O
OpenFlow 30
Over-Subscription 15, 18

P
P4 (Programming Protocol-independent Packet Processors) 41
P4 Architecture Model 42
P4 Compiler 43
Packet Header Vector 44
PacketCount 74
Proactive Mode 32
Protocol-Independent Switch Architecture (PISA) 38, 44

R
Reactive Mode 31

S
SDN Controller 28
Separate Chaining 51
Single Decode 76
Single-Tenancy 6
Software-Defined Networking (SDN) 25, 28

T
TCP Incast 22
Ternary Content Addressable Memory (TCAM) 47
Three-Tier design 13

85

	Datacenters
	What is a Datacenter?
	Datacenter Applications
	Network Architecture
	High and Full-Bisection Bandwidth
	Fat-Tree Network Architecture

	Software Defined Networking (SDN)
	Introduction
	Legacy Router & Switch Architecture
	SDN Architecture
	OpenFlow
	OpenFlow limitations

	Programmable Switches
	Introduction
	Why didn't programmable switches exist before?
	Data Plane Programming and P4
	PISA and Compiler Pipeline Mapping

	Data Structures
	Introduction
	Ternary Content Addressable Memory (TCAM)
	Deterministic Lookup with Probabilistic Performance
	Probabilistic Data Structures
	1-Hash Bloom Filters
	Bloom Filters
	Dimensioning a Bloom Filter
	Counting Bloom Filters
	Invertible Bloom Lookup Tables (IBLTs)
	Count-Min Sketch

	Datacenter Monitoring
	Why Datacenter Monitoring Matters
	Network Monitoring
	Everflow
	What is Everflow?
	How it works

	FlowRadar
	Architecture
	Data Structure used in FlowRadar
	Collector Decode

	In-Band Network Telemetry (INT)
	What is INT?
	Modes

	Index

