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Preface
Every theory section in these notes has been taken from the sources:

• Course slides. [1]

About:

§ GitHub repository

These notes are an unofficial resource and shouldn’t replace the course material
or any other book on numerical linear algebra. It is not made for commercial
purposes. I’ve made the following notes to help me improve my knowledge and
maybe it can be helpful for everyone.

As I have highlighted, a student should choose the teacher’s material or a
book on the topic. These notes can only be a helpful material.
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1 Preliminaries

1 Preliminaries
This section introduces some of the basic topics used throughout the course.

1.1 Notation
We try to use the same notation for anything.

• Vectors. With R is a set of real numbers (scalars) and Rn is a space of
column vectors with n real elements.

x =


x1
x2
x3
...

xn


Vectors with all zeros and all ones:

0 =


0
0
0
...
0

 1 =


1
1
1
...
1


• Matrices. With Rm×n is a space of m× n matrices with real elements:

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
am,1 am,2 · · · am,n


Identity matrix I ∈ Rn×n:

I =


1 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1

 =
[
e1 e2 en

]

Where ei, i = 1, 2, . . . , n are the canonical vectors.

ei =
[
0 0 · · · 1 · · · 0 0

]T
Where 1 is the i-th entry.
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1 Preliminaries 1.2 Matrix Operations

1.2 Matrix Operations
Some basic matrix operations:

• Inner products. If x, y ∈ Rn then:

xT y =
∑

i=1,...,n

xiyi

For real vectors, the commutative property is true:

xT y = yT x

Furthermore, the vectors x, y ∈ Rn are orthogonal if:

xT y = yT x = 0

And finally, some useful properties of matrix multiplication:

1. Multiplication by the identity changes nothing.

A ∈ Rn×m ⇒ InA = A = AIm

2. Associativity:
A (BC) = (AB) C

3. Distributive:
A (B + D) = AB + AD

4. No commutativity:
AB ̸= BA

5. Transpose of product:

(AB)T = BT AT

• Matrix powers. For A ∈ Rn×n with A ̸= 0:

A0 = In Ak = A · · ·A︸ ︷︷ ︸
k times

= AAk−1 k ≥ 1

Furthermore, A ∈ Rn×n is:

– Idempotent (projector) A2 = A

– Nilpotent Ak = 0 for some integer k ≥ 1

• Inverse. For A ∈ Rn×n is non-singular (invertible), if exists A−1 with:

AA−1 = In = A−1A (1)

Inverse and transposition are interchangeable:

A−T ≜
(
AT
)−1 =

(
A−1)T

Furthermore, an inverse of a product for a matrix A ∈ Rn×n can be
expressed as:

(AB)−1 = B−1A−1

Finally, remark that if 0 ̸= x ∈ Rn and Ax = 0, then A is singular.
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1 Preliminaries 1.2 Matrix Operations

• Orthogonal matrices. Given a matrix A ∈ Rn×n that is invertible, the
matrix A is said to be orthogonal if:

A−1 = AT ⇒ AT A = In = AAT

• Triangular matrices. There are two types of triangular matrices:

1. Upper triangular matrix:

U =


u1,1 u1,2 · · · u1,n

0 u2,2 · · · u2,n

... · · ·
. . .

...
0 0 · · · un,n


U is non-singular if and only if uii ̸= 0 for i = 1, . . . , n.

2. Lower triangular matrix:

L =


l1,1 0 · · · 0
l2,1 l2,2 · · · 0
... · · ·

. . .
...

ln,1 ln,2 · · · ln,n


L is non-singular if and only if lii ̸= 0 for i = 1, . . . , n.

• Unitary triangular matrices. Are matrices similar to the lower and
upper matrices, but they have the main diagonal composed of ones.

1. Unitary upper triangular matrix:

U =


1 u1,2 · · · u1,n

0 1 · · · u2,n

... · · ·
. . .

...
0 0 · · · 1


2. Unitary lower triangular matrix:

L =


1 0 · · · 0

l2,1 1 · · · 0
... · · ·

. . .
...

ln,1 ln,2 · · · 1
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1 Preliminaries 1.3 Basic matrix decomposition

1.3 Basic matrix decomposition
In the Numerical Linear Algebra course, we will use three main decomposition:

• LU factorization with (partial) pivoting. If A ∈ Rn×n is a non-
singular matrix, then:

PA = LU

Where:

– P is a permutation matrix
– L is an unit lower triangular matrix
– U is an upper triangular matrix

Note that the linear system solution:

Ax = b

Can be solved directly by calculation:

PA = LU

This way the complexity is equal to O
(
n3). So a smarter way to reduce

complexity is to use the divide et impera (or divide and conquer) technique.
Then solve the system:{

Ly = Pb → unit lower triangular system, complexity O
(
n2)

Ux = y → upper triangular system, complexity O
(
n2)

• Cholesky decomposition. If A ∈ Rn×n is a symmetric1 and positive
definite2, then:

A = LT L

Where L is a lower triangular matrix (with positive entries on the diago-
nal). Also note that the linear system solution:

Ax = b

Can be solved directly by calculation:

A = LT L

This way the complexity is equal to O
(
n3). So a smarter way to reduce

complexity is to use the divide et impera (or divide and conquer) technique.
Then solve the system:{

LT y = b → lower triangular system, complexity O
(
n2)

Lx = y → upper triangular system, complexity O
(
n2)

1AT = A
2zT Az > 0 ∀z ̸= 0
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1 Preliminaries 1.3 Basic matrix decomposition

• QR decomposition. If A ∈ Rn×n is a non-singular matrix, then:

A = QR

Where:

– Q is an orthogonal matrix
– R is an upper triangular

Note that the linear system solution:

Ax = b

Can be solved directly by calculation:

A = QR

This way the complexity is equal to O
(
n3). So a smarter way to reduce

complexity is to use the divide et impera (or divide and conquer) technique.
Then:

1. Multiply c = QT b, complexity O
(
n2)

2. Solve the lower triangular system Rx = c, complexity O
(
n2)
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1 Preliminaries 1.4 Determinants

1.4 Determinants
We will assume that the determinant topic is well known. However, in the
following enumerated list there are some useful properties about the determinant
of a matrix:

1. If a general matrix T ∈ Rn×n is upper- or lower-triangular, then the
determinant is computed as:

det (T ) =
n∏

i=1
ti,i

2. Let A, B ∈ Rn×n, then is true:

det (AB) = det (A) · det (B)

3. Let A ∈ Rn×n, then is true:

det
(
AT
)

= det (A)

4. Let A ∈ Rn×n, then is true:

det (A) ̸= 0 ⇐⇒ A is non-singular

5. Computation. Let A ∈ Rn×n be non-singular, then:

(a) Factor PA = LU

(b) det (A) = ± det (U) = ±u1,1 . . . un,n
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1 Preliminaries 1.5 Sparse matrices

1.5 Sparse matrices
A sparse matrix is a matrix in which most of the elements are zero; roughly
speaking, given A ∈ Rn×n, the number of non-zero entries of A (denoted
nnz (A)) is O (n), we say that A is sparse.

Sparse matrices are so important because when we try to solve:

Ax = b

The A matrix is often sparse, especially when it comes from the discretization
of partial differential equations.

Finally, note that the iterative methods (explained in the next section) only use
a sparse matrix A in the context of the matrix-vector product. Then we only
need to provide the matrix-vector product to the computer.

1.5.1 Storage schemes

Unfortunately, storing a sparse matrix is a waste of memory. Instead of storing
a dense array (with many zeros), the main idea is to store only the non-zero
entries, plus their locations.

This technique allows to save data storage because it will be from O
(
n2) to

O (nnz).

The most common sparse storage types are:

• Coordinate format (COO). The data structure consists of three arrays
(of length nnz (A)):

– AA: all the values of the non-zero elements of A in any order.
– JR: integer array containing their row indices.
– JC: integer array containing their column indices.

For example:

A =


1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.


AA = [12. 9. 7. 5. 1. 2. 11. 3. 6. 4. 8. 10.]
JR = [ 5 3 3 2 1 1 4 2 3 2 3 4 ]
JC = [ 5 5 3 4 1 4 4 1 1 2 4 3 ]
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1 Preliminaries 1.5 Sparse matrices

Figure 1: Graphical representation of the coordinate format (COO) technique.
From the figure we can see the representation of the AA array, called values, the
JR, called row indices, and finally the JC, called column indices. The algorithm
is very simple. The figures are taken from the NVIDIA Performance Libraries
Sparse, which is part of the NVIDIA Performance Libraries.

• Coordinate Compressed Sparse Row format (CSR). If the elements
of A are listed by row, the array JC might be replaced by an array that
points to the beginning of each row.

– AA: all the values of the non-zero elements of A, stored row by row
from 1, . . . , n.

– JA: contains the column indices.
– IA: contains the pointers to the beginning of each row in the arrays

A and JA. Thus IA(i) contains the position in the arrays AA and JA
where the i-th row starts. The length of IA is n + 1, with IA (n + 1)
containing the number A (1) + nnz (A). Remember that n is the
number of rows.
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1 Preliminaries 1.5 Sparse matrices

For example:

A =


1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.


AA = [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]
JA = [1 4 1 2 4 1 3 4 5 3 4 5 ]
IA = [1 3 6 10 12 13 ]

To retrieve each position of the matrix, the algorithm is quite simple.
Consider the IA arrays.

1. We start at position one of the array, then the value 1:

AA = [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]
JA = [1 4 1 2 4 1 3 4 5 3 4 5 ]
IA = [ 1⃝ 3 6 10 12 13 ]

2. We use the value one to see the first (index one) position of the array
JA, and the value is 1:

AA = [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]
JA = [ 1⃝ 4 1 2 4 1 3 4 5 3 4 5 ]
IA = [1 3 6 10 12 13 ]

3. But with the same index of IA, you also check the array AA, which
has a value of 1:

AA = [1.⃝ 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]
JA = [1 4 1 2 4 1 3 4 5 3 4 5 ]
IA = [1 3 6 10 12 13 ]

4. Now we can check the next row of the matrix. So we check the array
IA at position 2 and get the value 3. But be careful! From 1 (the
previously calculated value) to 3 (the value just taken) there is the
value 2 in between. So we can assume that the value 2 is also in the
first row.

AA = [1. 2.⃝ 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]
JA = [1 4⃝ 1 2 4 1 3 4 5 3 4 5 ]
IA = [1 3 6 10 12 13 ]
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1 Preliminaries 1.5 Sparse matrices

Figure 2: View an illustration of the CRS technique using colors to improve
readability.

Figure 3: Graphical representation of the coordinate compressed sparse row
(CSR) technique. From the figure we can see the representation of the AA
array, called values, the IA, called row offset, and finally the JA, called column
indices. It’s interesting to see how the empty line case is handled. It copies the
previous value of the array. The figures are taken from the NVIDIA Performance
Libraries Sparse, which is part of the NVIDIA Performance Libraries.
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2 Iterative methods for linear systems of equations

2 Iterative methods for linear systems of equa-
tions

2.1 Why not use the direct methods?
Let us considering the following linear system of equations:

Ax = b

Where A ∈ Rn×n, b ∈ Rn, x ∈ Rn and det (A) ̸= 0. In general, direct methods
are not very suitable whenever:

• n is large. Typically, the average cost of direct methods scales as n3,
except in selected cases. As a trivial example, if peak performance is 1
PetaFLOPS (1015 floating point operations per second), then

n = 107 →≈ 106 seconds ≈ 11 days

• Matrix A is sparse. Direct methods suffer from the fill-in phenomenon3

(see later). Unfortunately, sparse matrices are very popular in many ap-
plication problems and we cannot consider them.

Definition 1: Sparse Matrix

Let A ∈ Rn×n we say that A is sparse the number of non-zero ele-
ments (abbreviated as nnz (A)) is approximately equal to the number of
rows/columns n, i.e. nnz (A) ∼ n.

® What is an iterative method?

It is clear that iterative methods are usually better than direct methods. An
iterative method is a mathematical procedure that uses an initial value
to generate a sequence of improving approximate solutions to a class
of problems, where the i-th approximation (called an “iteration”) is derived
from the previous ones.

More precisely, we introduce a sequence x(k) of vectors determined by a recursive
relation that identifies the method.

x(0) → x(1) → · · · → x(k) → x(k+1) → · · ·

To “initialize” the iterative process, it is necessary to provide a starting point
(initial vector, also called initial guess) x(0), e.g. based on physical/engineering
applications.

3The fill-in of a matrix are those entries that change from an initial zero to a non-zero value
during the execution of an algorithm. To reduce the memory requirements and the number
of arithmetic operations used during an algorithm, it is useful to minimize the fill-in.
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2 Iterative methods for linear systems of equations 2.1 Why not use the
direct methods?

After initialization, the core of the process should, sooner or later, produce
a result. It is a very complex and long topic, but in general it refers to the
process by which an iterative algorithm approaches a fixed point or a solution
to a problem after several iterations. An iterative method must satisfy the
convergence property:

lim
k→+∞

x(k) = x (2)

It is important to note that the convergence does not depend on the
choice of the initial vector x(0).

From the property 2, it should be clear that convergence is guaranteed only
after an ∞ number of iterations. From a practical point of view, we need
to stop the iteration process after a finite number of iterations when we are
sufficiently close to the solution.

In addition to the problem of convergence and “when should we stop our conver-
gence method”, we have to deal with the numerical error inevitably introduced
by our method.

These topics will be explained and faced in the following pages.
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2 Iterative methods for linear systems of equations 2.2 Linear iterative
methods

2.2 Linear iterative methods
2.2.1 Definition

In general, we consider linear iterative methods of the following form:

x(k+1) = Bx(k) + f k ≥ 0

Where B ∈ Rn×n, f ∈ Rn and the matrix B is called iteration matrix. The
choice of the iteration matrix and f uniquely identifies the method.

The question is now automatic. How to choose an intelligent iteration matrix
and f? There are two main factors to consider:

• Consistency. This is a necessary condition, but not sufficient to guaran-
tee the convergence. If x(k) es the exact solution x, then x(k+1) is again
equal to x (no update if the exact solution is found):

x = Bx + f −→ f = (I −B) x = (I −B) A−1b

The former identity gives a relationship between B and f as a function of
the data.

• Convergence. To study the convergence we need the error and the spec-
tral radius:

– Error. Let us introduce the error at step (k + 1):

e(k+1) = x− x(k+1)

And an appropriate vector norm, such as the Euclidean norm ||·||.
Then we have:∣∣∣∣e(k+1)

∣∣∣∣ =
∣∣∣∣x− x(k+1)

∣∣∣∣
=

∣∣∣∣x− (Bx(k) + f
)∣∣∣∣

=
∣∣∣∣x−Bx(k) − f

∣∣∣∣
=

∣∣∣∣x−Bx(k) − (I −B) x
∣∣∣∣

=
∣∣∣∣x−Bx(k) − Ix + Bx

∣∣∣∣
=

∣∣∣∣x−Bx(k) − x + Bx
∣∣∣∣

=
∣∣∣∣−Bx(k) + Bx

∣∣∣∣
=

∣∣∣∣B (x− x(k))∣∣∣∣
=

∣∣∣∣Be(k)
∣∣∣∣

≤ ||B|| ·
∣∣∣∣e(k)

∣∣∣∣
Note that ||B|| is the matrix norm induced by the vector norm ||·||.
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2 Iterative methods for linear systems of equations 2.2 Linear iterative
methods

Using recursion, we get:∣∣∣∣e(k+1)
∣∣∣∣ ≤ ||B|| ·

∣∣∣∣e(k)
∣∣∣∣

≤ ||B|| · ||B|| ·
∣∣∣∣e(k−1)

∣∣∣∣
≤ ||B|| · ||B|| · ||B|| ·

∣∣∣∣e(k−2)
∣∣∣∣

≤ · · ·

≤ ||B||(k+1) ·
∣∣∣∣e(0)

∣∣∣∣
lim

k→∞

∣∣∣∣e(k+1)
∣∣∣∣ ≤ (

lim
k→∞

||B||(k+1)
)
·
∣∣∣∣e(0)

∣∣∣∣
And here is the key. The sufficient condition for convergence is
to choose a matrix B that has the norm less than 1:

||B|| < 1 =⇒ lim
k→∞

∣∣∣∣∣∣e(k+1)
∣∣∣∣∣∣ = 0

We recall that the Euclidean norm (commonly used) of a matrix
is calculated by taking the square root of the sum of the absolute
squares of its elements. Let A be a matrix of size m×n, the Euclidean
norm:

||A||2 ≡

√√√√ m∑
i=1

n∑
j=1
|aij |2

– Spectral radius. The spectral radius of a matrix is the largest
absolute value of its eigenvalues. We define:

ρ (B) = max
j
|λj (B)|

Where λj (B) are the eigenvalues of B.
Why is the spectral radius useful? Well, if the matrix B is symmet-
ric positive definite (SPD)4, then the spectral radius is equal to the
Euclidean norm of the matrix.

B is SPD ⇒ ||B||2 = ρ (B) ∧ ρ (B) < 1 ⇐⇒ method convergences

And this is a very big help to us for many reasons.
∗ Balance and Predictability. When the norm is equal to the

spectral, it means that the influence of the matrix is well dis-
tributed. In other words, this uniformity can help make our
iterative methods more predictable, reducing the possibility of
non-convergence.

∗ Efficiency. It avoids scenarios where the matrix might have
hidden large entries affecting convergence or stability.

4SPD (Symmetric Positive Definite) is a matrix:
∗ Symmetric: A = AT

∗ Positive Definite: xT AX > 0, ∀x ∈ Rn \ {0}
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2 Iterative methods for linear systems of equations 2.2 Linear iterative
methods

Let C ∈ Rn×n then the spectral radius of a matrix is equal to the infimum
(lower bound) of its matrix norm:

ρ (C) = inf {||C|| ∀ induced matrix norm ||·||} (3)

It follows from this property that:

ρ (B) ≤ ||B|| ∀induced matrix norm ||·|| (4)

Note that thanks to 4 we can observe that if:

∃ ||·|| such that ||B|| < 1 =⇒ ρ (B) < 1

The convergence of the method is guaranteed by the following theorem.

Theorem 1 (necessary and sufficient condition for convergence). A
consistent iterative method with iteration matrix B converges if and only if
ρ (B) < 1.

19
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2 Iterative methods for linear systems of equations 2.2 Linear iterative
methods

2.2.2 Jacobi method

Let the problem of solve Ax = b, where A is a square matrix, x is the vector of
unknowns, and b is the result vector.

We start from the i-th line of the linear system:
n∑

j=1
aijxj = bi → ai1x1 + ai2x2 + · · ·+ ainxn = bi

Formally the solution xi for each i si given by:

xi =

bi −
∑
j ̸=i

aijxj

aii
(5)

Obviously the previous identity cannot be used in practice because we do not
know xj , for j ̸= i. And here is the magic idea of Jacobi: we could think of
introducing an iterative method (Jacobi) that updates x

(k+1)
i step k+1 using

the other x
(k)
j obtained in the previous step k.

xi =

bi −
∑
j ̸=i

aijxj

aii

as xj is not well known
===============⇒ x

(k+1)
i =

bi −
∑
j ̸=i

aijx
(k)
j

aii
(6)

Where ∀i = 1, . . . , n.

{ Algorithm

1. Start with an initial guess x(0), also zero.

2. Update each component x(k+1)
i using the equation 6.

3. Repeat until the changes are less than a specified tolerance or
we haven’t found the exact solution (in practice very difficult, almost
impossible).

� How much does it cost?

It depends on the matrix used:

• Dense matrix (bad choice). Each iteration costs ≈ n2 operations, so the
Jacobi method is competitive if the number of iteration is less than n.

• Sparse matrix (good choice). Each iteration costs only ≈ n operations.

Z Can it be parallelized?

The parallelization of the Jacobi method is actually one of its main advan-
tages on modern computers. Each update of xi depends only on the previous
values of the other xj , not on the current iteration values. This independence
makes it easy to distribute the work across multiple processors.

20



2 Iterative methods for linear systems of equations 2.2 Linear iterative
methods

2.2.3 Gauss-Seidel method

Given the Jacobi method, the Gauss Seidel method is similar, but with one
clever difference: it uses the latest available values during iterations.

x
(k+1)
i =

bi −
∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

aii
(7)

At iteration (k + 1), let’s consider the computation of x
(k+1)
i . We observe that

for j < i (with i ≥ 2), x
(k+1)
j is known (we have already calculated it). We can

therefore think of using the quantities at step (k + 1) if j < i and, as in the
Jacobi method, those at the previous step k if j > i.

{ Algorithm

1. Start with an initial guess x(0), also zero.

2. Iteration. For each row i from 1 to n calculate the value of the equation
7.

3. Repeat until the changes are less than a specified tolerance.

� How much does it cost?

The cost is comparable to the Jacobi method explained on page 20.

Z Can it be parallelized?

Unlike the Jacobi method, the Gauss-Seidel method relies on the most recent
updates within the same iteration. This sequential dependency makes it more
difficult to parallelize, as each update depends on the previous ones.

While it’s harder to parallelize due to its inherent sequential nature, we can
still achieve some degree of parallelism with clever strategies such as red-black
ordering. This makes the Gauss-Seidel method less straightforward to parallelize
than Jacobi, but not impossible.

21



2 Iterative methods for linear systems of equations 2.2 Linear iterative
methods

2.2.4 Convergence of Jacobi and Gauss-Seidel methods

Let be a general matrix A, and :

• D the diagonal part of A

• −E lower triangular part of A

• −F upper triangular part of A

A =


. . . −F

D

−E
. . .


The previous Jacobi and Gauss-Seidel methods can be rewritten as:

• Jacobi:

– Method:
Dx(k+1) = (E + F ) x(k) + b

– Iteration matrix:

BJ = D−1 (E + F ) = D−1 (D −A) = I −D−1A

• Gauss-Seidel

– Method:
(D − E) x(k+1) = Fxk + b

– Iteration matrix:
BGS = (D − E)−1

F

We present a theorem which gives us the sufficient condition for conver-
gence of the Jacobi and Gauss-Seidel methods.

Theorem 2 (sufficient condition for convergence of Jacobi and Gauss–
Seidel). The following conditions are sufficient for convergence:

• If a matrix A is strictly diagonally dominant by rows:

|aii| >
∑
j ̸=i

|aij | i = 1, . . . , n

Then Jacobi and Gauss-Seidel converge.

• If a matrix A is strictly diagonally dominant by columns:

|aii| >
∑
j ̸=i

|aji| i = 1, . . . , n

Then Jacobi and Gauss-Seidel converge.

• If a matrix A is SPD (symmetric positive and definite), then the Gauss-
Seidel method is convergent.
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• If a matrix A is tridiagonal5, then the square spectral value of the Jacobi
iteration matrix is equal to the spectral value of the Gauss-Seidel iteration
matrix.

ρ2 (BJ) = ρ (BGS)

5A matrix is tridiagonal when it has non-zero elements only on the main diagonal, the
diagonal above the main diagonal, and the diagonal below the main diagonal.

A =

a1,1 a1,2 0 0
a2,1 a2,2 a2,3 0

0 a3,2 a3,3 a3,4
0 0 a4,3 a4,4



23



2 Iterative methods for linear systems of equations 2.2 Linear iterative
methods

2.2.5 Stationary Richardson method

The stationary Richardson method is a way of refining a guess for solving the
general problem Ax = b. We start with an initial guess for the solution,
then we keep adjusting that guess based on how far it is from the
actual answer. The adjustments depend on a parameter we choose,
which can speed up or slow down how quickly we get to the right answer. We
keep doing this until our guess is close enough to the actual solution.

Mathematically, given x(0) ∈ Rn, α ∈ R, the stationary Richardson method is
based on the following recursive update:

x(k+1) = x(k) + α ·
(

b−Ax(k)
)

︸ ︷︷ ︸
residual r(k)

(8)

The idea is to update the numerical solution by adding a quantity proportional
to the residual. Indeed, it is expected that if the residual is large (small), the
solution at step k should be corrected much (little). Where α is a weighted
version of the residual.

• Iteration matrix Bα:
Bα = I − αA

• f :
f = αb

We now ask ourselves which value of the parameter α, among those that
guarantee convergence, maximizes the speed of convergence. We in-
troduce the following A-induced norm where A is SPD:

||z||A =

√√√√ n∑
i,j=1

aijzizj ⇐⇒ ||z||A =
√

(Az, z) =
√

zT Az

We look for 0 < αopt <
2

λmax(A)
such that ρ (Bα) is minimum. That is:

αopt = argmin
0<α< 2

λmax(A)

{
max

i
|1− αλi (A)|

}
To understand which α to choose, we plot the problem. On the x-axis are the
values of α and on the y-axis is the spectral radius equal to |1− αλi (A)|, with
i = 1, . . . , n.

In the figure 4 we can see that the upper bound of the spectral radius is equal
to 1 (no convergence). Each line represents the possible value of the spectral
radius for different values of α. In green we see the spectral radius equal
to ρ (Bα); it is important because its intersection with the upper bound of ρ
represents the right bound of the interval where the values of α guarantee
convergence. It can also be seen by the red arrow. The lowest point of
the curve is where the spectral radius is minimized, indicating the
best α for convergence.
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In other words, the optimal value is given by the intersection between the curves:

|1− αλ1 (A)| ∩ |1− αλn (A)|

That gives us the perfect formula:

αopt = 2
λmin (A) + λmax (A) (9)

Figure 4: Graphical representation of the optimal alpha to choose in the sta-
tionary Richardson method.

If A is SPD, the eigenvalues of A (real and positive) are:

λmax (A) = λ1 (A) ≥ λ2 (A) ≥ · · · ≥ λn (A) = λmin (A) > 0

Theorem 3. Let A be a symmetric and positive definite matrix. The station-
ary Richardson method is convergent if and only if:

0 < α <
2

λmax (A) (10)

Since there is a strong correlation between the optimal α and the optimal spec-
tral radius, we can obtain

ρopt = ρ
(
Bαopt

)
= −1 + αoptλmax (A)
= 1− αoptλmin (A)

= λmax (A)− λmin (A)
λmax (A) + λmin (A)
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Finally, since A is SPD, we have the Euclidean norm equal to the maximum
eigenvalue of A: ||A||2 = λmax (A). Moreover, λi

(
A−1) = 1

λi(A) , i = 1, . . . , n:

ρopt = K (A)− 1
K (A) + 1 (11)

{ Algorithm

1. Start with an initial guess x(0) and select a parameter α.

2. Iteration. For each k calculate the value of the equation 8.

3. Repeat until the changes are less than a specified tolerance.

� How much does it cost?

The cost of each iteration depends by type of matrix:

• Dense matrix: the cost of each iteration is about n2 operations, where
n is the number of unknowns in the linear system.

• Sparse matrix: the cost of each iteration is only about n operations.

Z Can it be parallelized?

The stationary Richardson method is not as easily parallelizable as the Jacobi
method. Richardson uses the entire solution vector from the previous iteration
in each step. This dependency makes it more difficult to parallelize.
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2.3 Stopping Criteria
A practical test is needed to determine when to stop the iteration. The main
idea is that we stop iterations when:∣∣∣∣x− x(k)

∣∣∣∣∣∣∣∣x(k)
∣∣∣∣ ≤ ε

Where ε is a user defined tolerance. Meanwhile, the error (left side of the
equation) is unknown! There are two criteria we can use to replace it:

• Residual-based stopping criteria. It looks at the residual, which is the
difference between the current solution and the one obtained by reapplying
the method’s equation:

r(k) = b−Ax(k)

This residual gets smaller as the solution gets closer to the exact answer.
When it’s small enough, the iteration stops. This approach works be-
cause the residual essentially tracks the behaviour of the error. When the
residual is small, the error is usually small.
From a mathematical point of view:∣∣∣∣x− x(k)

∣∣∣∣∣∣∣∣x(k)
∣∣∣∣ ≤ K (A)

∣∣∣∣r(k)
∣∣∣∣

||b|| =⇒
∣∣∣∣r(k)

∣∣∣∣
||b|| ≤ ε

Where K (A) is the condition number of A. It is a measure of how
sensitive the solution of a system of linear equations is to errors
in the data or errors in the solution process.

– A low condition number (close to 1) means that the matrix is well
conditioned, and small errors in the data will cause only small
errors in the solution.

– A high condition number indicates that the matrix is poorly con-
ditioned, and even small errors in the data can lead to large
errors in the solution.

To reduce the condition number and the error, we need to use a precon-
ditioner on the main matrix A. So instead of solving the general problem
Ax = b directly, we choose a preconditioner P and solve P −1Ax = P −1b:∣∣∣∣x− x(k)

∣∣∣∣∣∣∣∣x(k)
∣∣∣∣ ≤ K

(
P −1A

) ∣∣∣∣z(k)
∣∣∣∣

||b|| =⇒
∣∣∣∣z(k)

∣∣∣∣
||b|| ≤ ε z(k) = P −1r(k)

• Distance between consecutive iterates criteria. It looks at how
much the current iterate (solution) changes compared to the
previous one. When this difference becomes small enough, it’s
a signal that the method is converging and can be stopped.
Mathematically, define:

δ(k) = x(k+1) − x(k) =⇒
∣∣∣∣∣∣δ(k)

∣∣∣∣∣∣ ≤ ε =⇒
∣∣∣∣∣∣x(k+1) − x(k)

∣∣∣∣∣∣
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With some manipulation, we can also demonstrate the relation between
the true error and δ(k):∣∣∣∣∣∣e(k)

∣∣∣∣∣∣ ≤ 1
1− ρ (B) ·

∣∣∣∣∣∣δ(k)
∣∣∣∣∣∣

Indeed: ∣∣∣∣e(k)
∣∣∣∣ =

∣∣∣∣x− x(k)
∣∣∣∣

=
∣∣∣∣x− x(k+1) + x(k+1) − x(k)

∣∣∣∣
=

∣∣∣∣e(k+1) + δ(k)
∣∣∣∣

≤ ρ (B) ·
∣∣∣∣e(k)

∣∣∣∣+
∣∣∣∣δ(k)

∣∣∣∣
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2.4 Preconditioning techniques
Preconditioning techniques are used to improve the convergence rate of
iterative methods for solving linear systems.

The optimal spectral radius ρopt (equation 11, page 26) expresses the max-
imum convergence speed that can be achieved with a stationary Richardson
method. Unfortunately, badly conditioned matrices (where K (A)≫ 1) are
characterized by a very low convergence rate. So how can we improve the
convergence rate?

The main idea is to introduce a symmetric positive definite matrix P −1, called
a preconditioner. Then the solution of the general problem is equivalent to
the following preconditioned system:

Ax = b ≡ P − 1
2 AP − 1

2 z = P − 1
2 b (12)

Where x = P − 1
2 z. In general, the rule of thumb is to use a P −1 such that

K
(

P − 1
2 AP − 1

2

)
≪ K (A).

Suppose that P −1A has real and positive eigenvalues. We apply the stationary
Richardson method to P −1A:

x(k+1) = x(k) + αP −1
(

b−Ax(k)
)

= x(k) + αP −1r(k) (13)

We obtain the same convergence results as in the non-preconditioned case, pro-
vided we replace A with P −1A:

• Preconditioned convergence:

0 < α <
2

λmax (P −1A) (14)

• Preconditioned optimal values:

– Optimal alpha:

αopt = 2
λmin (P −1A) + λmax (P −1A) (15)

– Optimal spectral radius:

ρopt =
K
(
P −1A

)
− 1

K (P −1A) + 1 (16)

Since K
(
P −1A

)
≪ K (A) we obtain a higher convergence rate, we can con-

clude that the preconditioner method is faster than the non-preconditioned case?
Well, the topic is little more complicated. Preconditioning usually makes
iterative methods converge faster because it improves the condition num-
ber of the system. However, the effectiveness of preconditioning depends on
the specific problem and the preconditioner chosen. In some cases, the over-
head of applying the preconditioner can offset its benefits, so while
preconditioning generally helps, it’s not a guaranteed speedup every time.
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2.4.1 Preconditioned Richardson method

The stationary Richardson method explained on page 24 is the same in this
case, but we also choose to apply a preconditioner.

Remember that:

• The core of the stationary Richardson method defined on page 29 is:

x(k+1) = x(k) + αP −1
(

b−Ax(k)
)

= x(k) + αP −1r(k)

• The preconditioned residual:

z(k) = P −1r(k)

We define the pseudo-algorithm as follows. For any k = 0, 1, 2, . . . :

1. Compute
αopt = 2

λmin (P −1A) + λmax (P −1A)

2. Update
r(k) = b−Ax(k)

3. Solve
Pz(k) = r(k)

4. Update
x(k+1) = x(k) + αoptz(k)
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2.5 Gradient method
The Gradient method uses the gradient to find the most efficient path
to the minimum. Although the gradient of a function gives the direction to
the maximum of a function, if we go the opposite way, we find the minimum.
This is the most basic and general idea.

{ Algorithm

1. Start with an initial guess x(0) and an initial residual as r(0) =
b−Ax(0).

2. Iteration. For each k calculate:

(a) The parameter αk:

αk =
(
r(k))T r(k)(

r(k)
)T

Ar(k)
(17)

(b) The step k + 1:
x(k+1) = x(k) + αkr(k) (18)

(c) The next residual:

r(k+1) = (I − αkA) r(k) (19)

3. Repeat until the changes are less than a specified tolerance.

Where the convergence rate is:∣∣∣∣∣∣e(k)
∣∣∣∣∣∣

A
≤
(

K (A)− 1
K (A) + 1

)k

·
∣∣∣∣∣∣e(0)

∣∣∣∣∣∣
A

(20)

� How much does it cost?

The cost of each iteration depends by type of matrix:

• Dense matrix: the cost of each iteration is about n2 operations.

• Sparse matrix: the cost of each iteration is only about n operations.

Z Can it be parallelized?

Parallelizing the gradient method involves distributing the computation of gra-
dients and their applications across multiple processors. Then, yes, it is possible.
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2.6 Conjugate Gradient method
The Conjugate Gradient method (GC) is essentially an iterative algorithm
used to solve large linear systems. It is similar to the gradient method,
but instead of just following the steepest path, it chooses directions that
are conjugate to each other. This avoids backtracking and converges more
quickly.

Theorem 4. In exact arithmetic the Conjugate Gradient method (GC) con-
verges to the exact solution in at most n iterations. At each iteration k, the
error e(k) = x− x(k) can be bounded by:∣∣∣∣∣∣e(k)

∣∣∣∣∣∣
A
≤ 2ck

1 + c2k
·
∣∣∣∣∣∣e(0)

∣∣∣∣∣∣
A

(21)

With:

c =
√

K (A)− 1√
K (A) + 1

(22)

{ Conjugate Gradient Algorithm

1. Start with an initial guess x(0), an initial residual as r(0) = b −
Ax(0), and the initial direction d(0) = r(0).

2. Iteration. For each k calculate:

(a) The parameter αk:

αk =
(
d(k))T r(k)(

d(k)
)T

Ad(k)
(23)

(b) The step k + 1 along the direction k:

x(k+1) = x(k) + αkd(k) (24)

(c) The next residual k + 1:

r(k+1) = r(k) − αkAd(k) (25)

(d) The parameter βk:

βk =
(
Ad(k))T r(k+1)(
Ad(k)

)T d(k)
(26)

(e) The new direction k + 1:

d(k+1) = r(k+1) − βkd(k) (27)

3. Repeat until the changes are less than a specified tolerance.

Each new direction is orthogonal (or conjugate) to all previous directions. This
orthogonality ensures that each step optimally reduces the error without undo-
ing the progress made in previous steps.
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{ Preconditioned Conjugate Gradient Algorithm

The CG method is modified by introducing A and P as symmetric, positive and
definite matrices. The preconditioned system is:

P −1AP −T︸ ︷︷ ︸
Â

P T x︸︷︷︸
x̂

= P −1b︸ ︷︷ ︸
b̂

1. Start with an initial guess x(0), an initial residual as r(0) = b −
Ax(0), and the initial direction d(0) = r(0).

2. Iteration. For each k calculate:

(a) The parameter αk:

αk =
(
z(k))T r(k)(

Ad(k)
)T

Ad(k)
(28)

(b) The step k + 1 along the direction k:

x(k+1) = x(k) + αkd(k) (29)

(c) The next residual k + 1:

r(k+1) = r(k) − αkAd(k) (30)

(d) Compute the action of the preconditioner P on r(k+1):

Pz(k+1) = r(k+1) (31)

(e) The parameter βk:

βk =
(
Ad(k))T z(k+1)(
Ad(k)

)T d(k)
(32)

(f) The new direction k + 1:

d(k+1) = z(k+1) − βkd(k) (33)

3. Repeat until the changes are less than a specified tolerance.

With the equations 21 and 22, the preconditioner is considered good if :√
K (P −1A)− 1√
K (P −1A) + 1

<

√
K (A)− 1√
K (A) + 1

(34)
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� How much does it cost?

The cost of each iteration depends by type of matrix:

• Dense matrix: the cost of each iteration is about n2 operations.

• Sparse matrix: the cost of each iteration is only about n operations.

Z Can it be parallelized?

The Conjugate Gradient method has some parts that can be parallelized, such
as: matrix-vector products, dot products, and vector updates. However, some
operations (such as dot products) require global synchronization, which
can limit the efficiency of parallelization. So while we can parallelize parts
of it, the method as a whole isn’t perfectly parallelizable.
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2.7 Krylov-space
Krylov space methods are a group of iterative techniques used to solve large
linear systems or eigenvalue problems. These methods construct a sequence of
subspaces, called Krylov subspaces, which are iteratively expanded to approxi-
mate the solution.

Definition 2: Krylov (sub)space

Given a nonsingular A ∈ Rn×n and y ∈ Rn, y ̸= 0, the kth Krylov
(sub)space Kk (A, y) generated by A from y is:

Kk (A, y) = span
(
y, Ay, . . . , Ak−1y

)
(35)

Clearly, it holds:
K1 (A, y) ⊆ K2 (A, y) ⊆ · · ·

It seems clever to choose the kth approximate solution x(k):

x(k) ∈ x(0) +Kk

(
A, r(0)

)
But can we expect to find the exact solution x of Ax = b in one of those affine
space?

Lemma 5. Let x be the solution of Ax = b and let x(0) be any initial approx-
imation of it and r(0) = b − Ax(0) the corresponding residual. Moreover, let
v = v

(
r(0), A

)
be the so called grade of r(0) with respect to A. Then:

x ∈ x(0) +Kv

(
A, r(0)

)
Lemma 6. There is a positive integer ν = ν

(
r(0), A

)
called grade of y with

respect to A, such that:

dim (Ks (A, y)) = s if s ≤ ν

dim (Ks (A, y)) = ν if s ≥ ν

Kν (A, y) is the smallest A-invariant subspace that contains y.

Lemma 7. The nonnegative integer ν = ν (y, A) of y with respect to A satisfies:

ν (y, A) = min
{

s
∣∣A−1y ∈ Ks (A, y)

}
The idea behind Krylov space solvers is to generate a sequence of approxi-
mate solutions x(k) ∈ x(0) +Kk

(
A, r(0)) of Ax = b so that the corresponding

residuals r(k) ∈ Kk+1
(
A, r(0)) converge to the zero vector 0.

The converge may also mean that after a finite number of steps, r(k) = 0,
so that x(k) = x and the process stops. This is especially true (in exact arith-
metic) if a method ensures that the residuals are linearly independent:
then r(ν) = 0. In this case, we say that the method has the property of
finite termination.
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Definition 3: (standard) Krylov space

A (standard) Krylov space method for solving a linear system Ax = b
or, briefly, a Krylov space solver is an iterative method starting from
some initial approximation x(0) and the corresponding residual r(0) and
generating for all, or at least most k, until it possibly finds the exact
solution, iterates x(k) such that:

x(k) = x(0) + pk−1 (A) r(0) (36)

With a polynomial pk−1 (A) of exact degree k− 1. For some k, x(k) may
not exist or pk−1 (A) may have lower degree.

The conjugate gradient method is a Krylov space solver.

Solving nonsymmetric linear systems iteratively with Krylov space
solvers is considerably more difficult and costly than symmetric sys-
tems. There are two different ways to generalize the Conjugate Gradient:

• Maintain the orthogonality of the projection and the related minimality
of the error by constructing either orthogonal residuals x(k). Then, the
recursions involve all previously constructed residuals or search directions
and all previously constructed iterates.

• (Preferred) Maintain short recurrence formulas for residuals, direction vec-
tors and iterates (BiConjugate Gradient (BiCG) method, Lanczos-type
product methods (LTPM)). The resulting methods are at best oblique
projection methods. There is no minimality property of error or residuals
vectors.

36



2 Iterative methods for linear systems of equations 2.7 Krylov-space

2.7.1 BiConjugate Gradient (BiCG) and BiCGSTAB method

The BiConjugate Gradient (BiCG) method is an iterative algorithm used
to solve non-symmetric linear systems of equations, Ax = b. It extends
the Conjugate Gradient (CG) method to handle matrices that are not
symmetric or positive definite.

BiCG has the peculiarity of simultaneously solving the original system Ax =
b (where A is a square matrix and x, b are column vectors) and a dual system
x̂AT = b̂ (where the AT ̸= A and x̂, b̂ are row vectors).

While CG has mutually orthogonal residual r(k), BiCG constructs in the same
spaces residuals that are orthogonal to a dual Krylov space spanned by “shadow
residuals”:

r̃(k) = pk

(
AT
)

r̃(0) ∈ span
{

r̃(0), AT r̃(0), . . . ,
(
AT
)k r̃(0)

}
= Kk+1

(
AT , r̃(0)) ≡ K̃k+1

(37)

The initial shadow residual r̃(0) can be chosen freely. So, BiCG requires two
matrix-vector multiplications to extend Kk and K̃k: one multiplication by A
(the original system) and one by AT (the dual system).

{ BiCG Algorithm

1. Initial guess. Start with an initial guess x(0) (column vector), x̂(0), b̂
(row vectors).

2. Compute initial residual. Define the residual r(0) = b−Ax(0) (column
vector) and the shadow residual r̂(0) = b̂− x̂(0)AT (row vector).

3. Initial direction. The direction is equal to the residual d0 = r(0) (column
vector), and the shadow direction is equal to the shadow residual d̂0 = r̂(0)

(row vector).

4. Iteration. Continue to iterate until the stopping criteria is met:

(a) Parameter αk:

αk = r̂(k)r(k)

d̂kAdk

(b) Update the solution for both systems:

x(k+1) = x(k) + αkdk

x̂(k+1) = x̂(k) + αkd̂k

(c) Update the residual for both systems:

r(k+1) (≡ b−Ax(k+1)) = r(k) + αkAdk

r̂(k+1)
(
≡ b̂− x̂(k+1)AT

)
= r̂(k) − αkd̂kAT
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2 Iterative methods for linear systems of equations 2.7 Krylov-space

(d) Parameter βk:

αk = r̂(k+1)r(k+1)

r̂(k)r(k)

(e) Update the direction:

dk+1 = r(k+1) + βk + dk

d̂k+1 = r̂(k+1) + βk + d̂k

In practice the x̂(0) =
[
x(0)]T and b̂ = bT . We also need to make sure that

r̂(0)r(0) ̸= 0.

� How much does it cost and why do we need to use BiCGSTAB?

Each iteration costs twice as much as a CG iteration:

• Dense matrix: the cost of each iteration is about 2n2 operations.

• Sparse matrix: the cost of each iteration is only about 2n operations.

It also has a big problem: numerical stability. BiCG uses duality, which
introduces a level of complexity that can lead to numerical instability, especially
because of the multiplication of A and AT . Fortunately, the BiConjugate
Gradient Stabilized (BiCGSTAB) method is a variant of BiCG and has
faster and smoother convergence than the original BiCG. The main
idea in BiCGSTAB is not to keep track of residuals and search directions, but
to use techniques to stabilize the convergence and improve the robustness of the
method.

Z Can it be parallelized?

BiCGSTAB can be implemented on GPUs using frameworks like CUDA.
This allows for massive parallelism, as GPUs have thousands of cores that can
perform computations simultaneously. BiCGSTAB can also be parallelized on
distributed memory systems using MPI (Message Passing Interface). This
involves partitioning the matrix and distributing the computations across mul-
tiple processors. The communication between processors is managed efficiently
to minimize overhead and maximize performance.

38
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2.7.2 Generalized Minimum Residual (GMRES) method

The Generalized Minimum Residual (GMRES) method is an iterative
technique used to solve non-symmetric linear systems of the form Ax = b.
It is particularly effective for systems where A is non-symmetric or even
non-square.

This method is a projection method. It approximates the solution by the vec-
tor in a Krylov subspace with minimal residual. It uses the Arnoldi process to
generate an orthonormal basis for the Krylov subspace. This process involves
a modified Gram-Schmidt orthogonalization to ensure the basis vectors are or-
thogonal. The main idea is that approximates the exact solution of Ax = b by
the vector:

x(k) ∈ x(0) +Kk

(
A, r(0)

)
(38)

That minimizes the Euclidean norm of the residual r(k).

{ GMRES Algorithm

1. Initialization. Choose an initial guess x(0) and the initial residual r(0) =
b−Ax(0).

2. Initialize orthonormal vector. Set q1 = r(0)∣∣∣∣r(0)
∣∣∣∣

2
.

3. Iteration. Continue to iterate until the stopping criteria is met:

(a) Compute the orthonormal k vector qk with a suitable method.
(b) Form Qk as the n× k matrix formed by q1, q2, . . . , qk.
(c) Find y(k) which minimize

∣∣∣∣r(k)
∣∣∣∣

2.

(d) Compute the result x(k+1) = x(0) + Qky(k).

About the convergence:

• If AS =
(
A + AT

)
2 is SPD, then:

∣∣∣∣∣∣r(k)
∣∣∣∣∣∣

2
≤
[
1− λ2

min (AS)
λmax (AT A)

] k
2 ∣∣∣∣∣∣r(0)

∣∣∣∣∣∣
2

(39)

• If A is SPD, then:

∣∣∣∣∣∣r(k)
∣∣∣∣∣∣

2
≤

[
[K2 (A)]2 − 1

[K2 (A)]2

] k
2 ∣∣∣∣∣∣r(0)

∣∣∣∣∣∣
2

(40)
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2 Iterative methods for linear systems of equations 2.7 Krylov-space

� How much does it cost?

The cost of each iteration depends by type of matrix:

• Dense matrix: the cost of each iteration is about n2 operations.

• Sparse matrix: the cost of each iteration is only about n operations.

In addition to the matrix-vector product, k · n operations must be computed
at the k-th iteration. Furthermore, the k-th iterate minimize the residual in
the Krylov subspace Kk

(
A, r(0)). In exact arithmetic, since every subspace is

contained in the next subspace, the residual does not increase. Therefore, after
n = size (A) iterations, the Krylov space Kn

(
A, r(0)) is the whole of Rn, hence

the GMRES method has finite termination property. This, unfortunately,
does not happen in practice.

Z Can it be parallelized?

GMRES can be parallelized on multi-core and many-core architectures, such
as CPUs and GPUs.
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3 Solving large scale eigenvalue problems

3 Solving large scale eigenvalue problems
3.1 Eigenvalue problems
Eigenvalue problems involve finding scalar values (eigenvalues) and cor-
responding vectors (eigenvectors) that satisfy the equation Ax = λx,
where A is a square matrix, x is the eigenvector, and λ is the eigenvalue.

Mathematically, the algebraic eigenvalue problem reads as follows. Given a
matrix A ∈ Cn×n, find (λ, v) ∈ C× Cn \ {0} such that:

Av = λv (41)

Where:

• λ is an eigenvalue of A

• v (non-zero) is the corresponding eigenvector

Thus, equation 41 represents the equation that must be satisfied to solve
the eigenvalue problem. Some features:

• The set of all the eigenvalues of a matrix A is called the spectrum of
A and is represented as σ (A)

• The maximum modulus of all the eigenvalues is called the spectral
radius of A:

ρ (A) = max {|λ| : λ ∈ λ (A)} (42)

) Mathematical background

Here is a list of some mathematical concepts that are useful for studying the
following chapter.

• The problem (equation 41) Av = λv is equivalent to (A− λI) v = 0.

• The equation 41 has a nonzero solution v if and only if its matrix is singu-
lar, that is the eigenvalues of A are the values λ such that det (A− λI) = 0.

• The det (A− λI) = 0 is a polynomial of degree n in λ. It is called the
characteristic polynomial of A and its roots are the eigenvalues of A.

• From the Fundamental Theorem of Algebra, an n × n matrix A always
has n eigenvalues λi, i = 1, . . . , n.

• Each λi may be real but in general is a complex number.

• The eigenvalues λ1, λ2, . . . , λn may not all have distinct values.

• Rayleigh quotient: let (λi, vi) be an eigenpair of A, then:

λi = vH
i Avi

vH
i vi
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3 Solving large scale eigenvalue problems 3.1 Eigenvalue problems

T Similarity transformations to simplify eigenvalue problems

Similarity transformations are crucial in eigenvalue problems because they sim-
plify matrices, making it easier to find eigenvalues. Of course, they don’t change
the fundamental nature of the original matrix.

Definition 1: Similar matrices

The matrix B is similar to the matrix A if there exists a nonsingular
matrix T such that B = T −1AT . Note that a matrix is nonsingular if
there exists another matrix C such that TC = CT = I.

Proof. The above definition is indeed true:

By = λy
=⇒ T −1ATy = λy
=⇒ A (Ty) = λ (Ty)

So that A and B have the same eigenvalues, and if y is an eigenvector of B,
then v = Ty is an eigenvector of A. QED

A square matrix A is called diagonalizable if it is similar to a diagonal matrix.

. Similarity transformations limitations

The similarity transformations preserve only the eigenvalues but not
the eigenvectors. This is not so bad because they can be easily recovered.

Furthermore, the eigenvalue problems using the similarity transformation are
simplified when we use diagonal matrices. Unfortunately, some matrices can-
not be transformed into diagonal form by a similarity transformation.

However, the similarity transformation is only a small tool. In the following
pages, we present three powerful methods that attempt to simplify the eigen-
value problem.
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3 Solving large scale eigenvalue problems 3.2 Power method

3.2 Power method
The Power method is an iterative technique used to find the largest eigen-
value (in absolute value) of a matrix and its corresponding eigenvector.

{ Algorithm

Assume that the matrix A has a unique eigenvalue λ1 of maximum modulus:

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|

With corresponding eigenvector v1. The algorithm is:

1. Start with an initial guess, a nonzero vector x(0) such that its norm is
one

∣∣∣∣x(0)
∣∣∣∣ = 1.

2. Iteration. For each k ≥ 0:

(a) Multiply the current vector by the matrix:

y(k+1) = Ax(k)

(b) After each multiplication, normalize the vector to prevent it from
growing too large:

x(k+1) = y(k+1)∣∣∣∣y(k+1)
∣∣∣∣

(c) Computes the Rayleigh quotient. It is computed to approximate the
eigenvalue corresponding to the eigenvector x(k+1). It provides an
estimate of the eigenvalue associated with the current eigenvector
approximation.
We can think of it as a checkpoint that tells us how close our cur-
rent vector is to being an actual eigenvector, and thus how close our
estimate is to the actual eigenvalue. This helps us understand the
convergence of the iterative process, and ensures that we are on the
right track.

ν(k+1) =
[
x(k+1)

]H

Ax(k+1)

3. Repeat until we meet a specific stopping criteria.

It can be shown that the iteration scheme converges to a multiple of v1,
the eigenvector corresponding to the dominant eigenvalue λ1.

The convergence rate of the power method depends on the ratio of the largest
absolute eigenvalue |λ1| to the second largest absolute eigenvalue |λ2|.

• λ2

λ1
≫ 1, convergence rate high, the method converges quickly.

• λ2

λ1
≈ 1, convergence rate low, the method converges slowly.
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3 Solving large scale eigenvalue problems 3.2 Power method

� How much does it cost?

It depends on the matrix used:

• Dense matrix. Each iteration costs ≈ n2 operations,.

• Sparse matrix. Each iteration costs only ≈ n operations.

Z Can it be parallelized?

The power method can be parallelized to increase its efficiency, espe-
cially for large matrices. This is one of the reasons it is used to solve large
eigenvalue problems. A simple introduction to parallelization:

• Matrix-Vector Multiplication. The main computational task, multiplying
the matrix A by the vector x, can be distributed across multiple processors.
Each processor handles a portion of the matrix and vector and performs
the multiplication in parallel.

• Normalization. Vector norming and scaling can also benefit from parallel
processing. The norm calculation is a sum of squares that can be computed
in parallel.

• Rayleigh Quotient. Computing the Rayleigh quotient for eigenvalue ap-
proximation can be parallelized similarly to matrix-vector multiplication.
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3.2.1 Deflation method

Deflation is a technique used in conjunction with the Power Method to find
multiple eigenvalues and eigenvectors of a matrix. This approach helps
isolate and find successive eigenvalues by progressively "deflating" the influence
of previously found eigenpairs.

) Mathematical point of view

Suppose we have computed an eigenvalue λ1 and corresponding eigenvector v1
(eigenpair) for a matrix A. We can compute additional eigenvalues λ2, . . . , λn

of A using deflation, which removes the known eigenvalue. The main idea is:
construct a new matrix B with eigenvalues λ2, . . . , λn, i.e. deflate the matrix A
by removing λ1. Then λ2 can be obtained by the power method.

Now the interesting question is, how can we compute the new matrix B? We
help us the similarity transformation. Let S be any nonsingular matrix such that
Sv1 = αe1, that is S is a scalar multiple of the first column e1 of the identity
matrix I. Then, the similarity transformation determined by S transforms A
into the form:

SAS−1 =
[
λ1 bT

0 B

]
(43)

We use B to compute next eigenvalue λ2 and eigenvector z2. Given z2 eigen-
vector of B, we want to compute the second eigenvector v2 of the matrix A.
We need to add an element to vector z2 (that consist of n− 1 elements), that is

v2 = S−1
(

α
z2

)
α = bHz2

λ1 − λ2

Hence, v2 is an eigenvector corresponding to λ2 for the original matrix A. The
process can be repeated to find additional eigenvalues and eigenvectors.

{ Algorithm

1. Find the Dominant Eigenvalue. We use the Power Method to find
the largest eigenvalue λ1 and its corresponding eigenvector v1.

2. Deflate the Matrix. We modify the matrix to remove the influence of
the found eigenvalue and eigenvector.

3. Repeat. Apply the Power Method to the deflated matrix to find the next
largest eigenvalue.
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3.3 Inverse power method
The Inverse Power method is used to find the smallest eigenvalues of a
matrix, rather than the largest as its brother the Power Method does.

{ Algorithm

We use the fact that the eigenvalues of A−1 are the reciprocals of those of
A. Hence the smallest eigenvalue of A is the reciprocal of the largest
eigenvalue of A−1.

1. Start with an initial guess, nonzero vector q(0) such that its norm is
one

∣∣∣∣q(0)
∣∣∣∣ = 1.

2. Iteration. For each k ≥ 0:

(a) Solve the system:
Az(k+1) = q(k)

(b) After each system solution, normalize the vector to prevent it from
growing too large:

q(k+1) = z(k+1)∣∣∣∣z(k+1)
∣∣∣∣

(c) Computes the Rayleigh quotient (see page 43 for more details).

σ(k+1) =
[
q(k+1)

]H

Aq(k+1)

3. Repeat until we meet a specific stopping criteria.

� How much does it cost?

It depends on the matrix used:

• Dense matrix. Each iteration costs ≈ n3 operations.

• Sparse matrix. Each iteration costs only ≈ n ·m, where n is the number
of rows or columns of the square matrix and m the number of non-zero
elements.

Z Can it be parallelized?

The overall convergence of the method may be sequential because the result of
one iteration is needed to compute the next. Therefore, while some components
of the algorithm can be parallelized, the entire method isn’t inherently parallel.
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3.3.1 Inverse power method with shift

The Inverse Power method with shift extends the standard inverse power
method by improving convergence to certain eigenvalues near a chosen shift
value µ. This is particularly useful for finding the eigenvalues closest to a
given value.

{ Algorithm

1. Start with an initial guess, nonzero vector q(0) such that its norm is
one

∣∣∣∣q(0)
∣∣∣∣ = 1.

Choose a shift µ close to the desired eigenvalue.
Compose shifted matrix:

Mµ = A− µI (44)

2. Iteration. For each k ≥ 0:

(a) Solve the system:
Mµz(k+1) = q(k)

(b) After each system solution, normalize the vector to prevent it from
growing too large:

q(k+1) = z(k+1)∣∣∣∣z(k+1)
∣∣∣∣

(c) Computes the Rayleigh quotient (see page 43 for more details).

ν(k+1) =
[
q(k+1)

]H

Aq(k+1)

3. Repeat until we meet a specific stopping criteria.

We observe that the eigenvalue λ of A which is the closes to µ is the minimum
eigenvalue of Mµ.

� How much does it cost?

It depends on the matrix used, the system to solve (Mµz(k+1) = q(k)) is the
main cost:

• Dense matrix. Each iteration costs ≈ n3 operations.

• Sparse matrix. Each iteration costs only ≈ n ·m, where n is the number
of rows or columns of the square matrix and m the number of non-zero
elements.

Z Can it be parallelized?

The inverse power method with shift can be difficult to parallelize efficiently
due to the nature of its iterative steps, but there are parts of the algorithm that
can benefit from parallel processing. These include solving the linear system,
normalization, and the Rayleigh quotient.
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3.4 QR Factorization
QR Factorization is a method to decompose a matrix into two simpler
matrices: an orthogonal matrix Q and an upper triangular matrix R. We use
this method when we want to find the eigenvalues and the corresponding
eigenvectors of a matrix A.

. Required prerequisites

• The rank of a matrix is the maximum number of linearly inde-
pendent rows or columns in the matrix. Essentially, it tells us the
dimension of the vector space spanned by the rows or columns. When
we do Gaussian elimination, the number of non-zero rows represents the
rank!

• An orthogonal matrix is a square matrix Q with the property that
its transpose is also its inverse. This means that QT Q = QQT = I,
where I is the identity matrix. In simpler terms, the rows and columns
of an orthogonal matrix are orthonormal vectors, each row and column is
orthogonal to the others, and each has a length of 1 (norm equal to one).

• A vector is orthogonal to another vector if their dot product is
zero. If this is true, we say that the orthogonal vectors are perpendicular
to each other.

• An orthonormal vector is a vector that is both orthogonal to other
vectors in a set and normalized (meaning it has a unit length of 1, norm
equal to one). In a collection of orthonormal vectors, each vector is per-
pendicular to the others, and each has a length of one.

• The span of a set of orthonormal vectors is the set of all possible
linear combinations of those vectors. If we have a set of orthonormal
vectors {v1, v2, . . . , vk}, their span is every vector that can be written
as:

c1v1 + c2v2 + · · ·+ ckvk

Where c1, c2, . . . , ck are scalar coefficients.

) Mathematical point of view

Find orthonormal vectors [q1, q2, . . . , qn] that span the successive spaces
spanned by the columns of A = [a1, a2, . . . , an]:

< a1 >⊆< a1, a2 > . . . ⊆< a1, a2, . . . , an >

This means that (for full rank A):

< a1, a2, . . . , aj > = < q1, q2, . . . , qj > ∀j = 1, . . . , n

A matrix of the previous form will appear:

[a1 | a2 | · · · | an] = [q1 | q2 | · · · | qn] ·


r11 r12 · · · r1n

0 r22 · · ·
...

0 0
. . . rnn
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3 Solving large scale eigenvalue problems 3.4 QR Factorization

That is:
A = Q̂R̂

This is called the reduced QR factorization.

Let A be an m×n matrix. The full QR factorization of A is the factorization
A = QR, where:

• Q is m×m orthogonal QQT = I

• R is m× n upper-trapezoidal

Figure 5: Full QR Factorization.

Let A be an m × n matrix. The reduced QR factorization of A is the
factorization A = Q̂R̂, where:

• Q̂ is m×m

• R̂ is m× n upper-trapezoidal

Figure 6: Reduced QR Factorization.

Every matrix A ∈ Cm×n (m ≥ n) has a full QR factorization and a reduced
QR factorization. Also, every A of full rank has a unique reduced QR
factorization with rjj > 0, j = 1, . . . , n.
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® What is Gram-Schmidt orthogonalization and why is it
important?

After a long mathematical introduction to the full and reduced QR factoriza-
tion methods, the question is how can we apply this in practice? Well, finding
a special set of vectors that satisfies some properties cannot be very easy. For-
tunately, Gram-Schmidt orthogonalization is one of the primary methods
used to find the orthogonal (or orthonormal) vectors necessary for QR
factorization.

The Gram-Schmidt orthogonalization takes as:

• Input. A set of vectors (typically the columns of the matrix A).

• Output. An orthogonal set of vectors, which can then be normalized to
form an orthonormal set.

Mathematically, the Gram-Schmidt orthogonalization works as follows. Given
the columns of A a1, a2, . . . , an; find new qj (the j-th column of Q̂) orthogonal
to q1, . . . , qj−1 by subtracting components along previous vectors:

wj = aj −
j−1∑
k=1

(
qT

k aj

)
qk

Normalize to get qj = wj

||wj ||
, we then obtain a reduced QR factorization with:

rij = qT
i aj i ̸= j (45)

And:

rjj =

∣∣∣∣∣
∣∣∣∣∣aj −

j−1∑
i=1

rijqi

∣∣∣∣∣
∣∣∣∣∣

Since the previous equation rij is numerically unstable because it is too sensi-
tive to rounding errors, the following modification ensures more stability. The
previous one is called Classical Gram-Schmidt (CGS, or simply GS), and
the following one is called Classical Gram-Schmidt (CGS, or simply GS):

rij = qT
i wj (46)
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3.4.1 Schur decomposition applied to QR algorithm

Instead of analyzing the classical QR algorithm, which is very general and ap-
plicable to any mathematical problem, here we present the powerful Schur
decomposition, which is applied with the aim of finding a QR decomposition.

® Why do we need a variant of the QR decomposition algorithm?

Before presenting and explaining how to apply it, we think that the motivations
are fundamental:

• What is the purpose of using the QR algorithm with the Schur variant?
To transform a matrix into an upper triangular form with eigenvalues on
the diagonal.

• And why should this be useful? We could get the same result using the
theoretical QR decomposition (e.g. Gram-Schmidt). Obviously, but the
Schur decomposition provides more numerical stability. In addition,
it is very useful for analyzing eigenvalues and eigenvectors, and it simplifies
the computation of matrix functions.

• So the Schur decomposition is the best! We will only use that. Not at
all. After explaining the algorithm, we will see why there are other better
alternatives.

. Required prerequisites

• Schur decomposition is a mathematical concept used to transform a
square matrix into a quasi-upper triangular form. If A ∈ Cn×n then there
is a unitary matrix U ∈ Cn×n such that:

UHAU = T

And U is upper triangular. The diagonal elements of T are the eigenvalues
of A. The Schur vectors are U = |u1, u2, . . . , un| and they are in general
not eigenvectors.

• The k-th column of UHAU = T read:

Auk = λkuk +
k−1∑
i=1

tikui

That is:
Auk ∈ span {u1, . . . , uk} ∀k

The first Schur vector u1 is an eigenvector of A. The first k Schur vectors
u1, . . . , uk form an invariant subspace for A. The Schur decomposition is
not unique.

51



3 Solving large scale eigenvalue problems 3.4 QR Factorization

{ Algorithm

Goal: let A ∈ Cn×n, the QR algorithm computes an upper triangular matrix
T and a unitary matrix U such that A = UTUH is the Schur decomposition of
A.

1. Initialization. A is the original matrix we start with; at the beginning,
the initial guess A(0) is equal to the original A(0) = A. It is transformed
iteratively by the QR decompositions and updates. Meanwhile, U is the
accumulation of orthogonal transformations applied to A. Initially, U is
set to the identity matrix U (0) = I.

A(0) = A

U (0) = I

2. Iteration. For each k ≥ 1:

(a) QR Decomposition. Decompose the matrix A(k−1) into the prod-
uct of an orthogonal matrix Q(k) and an upper triangular matrix
R(k):

A(k−1) = Q(k)R(k)

(b) Update the matrix A to be used in next iteration by multiplying
R(k) and Q(k):

A(k) = R(k)Q(k)

(c) Update the Transformations matrix U to keep track of the cu-
mulative orthogonal transformations:

U (k) = U (k−1)Q(k)

3. Repeat until we meet a specific stopping criteria.

4. Results. If a certain stopping criterion is met, we have the upper triangu-
lar matrix A(k) and the orthogonal matrix U (k). The Schur decomposition
gives us an important result:

T = A(k) ∧ U (k) = U =⇒ A = UTUH ≡ UHAU = T

In other words, in the end we get:

• The unitary matrix U (UHU = I), where the columns are the
orthonormal eigenvectors of the original matrix A.

• The upper triangular matrix T , where the elements of the diag-
onal are the eigenvalues of the original matrix A.

About the convergence, we need to show some interesting details. Let us assume
that all the eigenvalues are isolated:

|λ1| > |λ2| > · · · > |λn|

Then the elements of A(k) below the diagonal converge to zero:

lim
k→∞

a
(k)
ij = 0 ∀i > j
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Moreover, it can be shown that:

a
(k)
ij = O

(∣∣∣∣λi

λi

∣∣∣∣k
)

i > j

Thus, convergence is low when the eigenvalues are close.

� How much does it cost?

The QR algorithm enhanced with Schur decomposition is powerful for finding
eigenvalues and eigenvectors, but the high iteration cost of ≈ n3 operations
is a tradeoff for its robustness and accuracy.

Z Can it be parallelized?

The Schur decomposition applied to the QR algorithm is difficult to parallelize
due to its sequential dependencies.
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3.4.2 Hessenberg applied to QR algorithm

A matrix H ∈ Cn×n is called a Hessenberg matrix if its elements below the
lower off-diagonal are zero:

hij = 0 i > j + 1

For example:

H =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗



® Why do we use Hessenberg?

Apply the QR method to a Hessenberg matrix can be decrease the number of
operations from n3 (Schur decomposition, page 51) to n2 operations.

{ Algorithm

Goal: compute a Hessenberg matrix H and an orthogonal matrix U such that
A = UHUH is the QR decomposition of A. Such a reduction can be done with
a finite number of operations.

1. Initial Transformation to Hessenberg Form. Take as input the ma-
trix A, we convert A to a Hessenberg matrix H using similarity transfor-
mations techniques.

2. Initial guess and initial accumulation of orthogonal transforma-
tions. The first guess is the first Hessenberg form we got from the previous
step, and for the U (0) we take the identity as always:

H(0) = H

U (0) = I

3. Iteration. For each k ≥ 1:

(a) Hessenberg QR Decomposition. Decompose the matrix H(k−1)

into the product of an orthogonal matrix Q(k) and an upper triangu-
lar matrix R(k):

H(k−1) = Q(k)R(k)

(b) Update the Hessenberg matrix H to be used in next iteration
by multiplying R(k) and Q(k):

H(k) = R(k)Q(k)

(c) Update the Transformations matrix U to keep track of the cu-
mulative orthogonal transformations:

U (k) = U (k−1)Q(k)
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4. Repeat until we meet a specific stopping criteria.

5. Results. If a certain stopping criterion is met, we have the upper triangu-
lar matrix H(k) and the orthogonal matrix U (k). The Schur decomposition
using the Hessenberg matrix gives us an important result:

H = H(k) ∧ U (k) = U =⇒ A = UHUH ≡ UHAU = H

In other words, in the end we get:

• The unitary matrix U (UHU = I), where the columns are the
orthonormal eigenvectors of the original matrix A.

• The upper triangular matrix H, where the elements of the diag-
onal are the eigenvalues of the original matrix A.

� How much does it cost?

As we have already said, the Hessenberg matrix reduces the computational
cost to n2, which is more competitive than the Schur decomposition (n3).

Z Can it be parallelized?

As we have seen with the other QR methods, parallelization is still difficult. It
can be achieved with some very optimized libraries, but in general it is compli-
cated due to its dependencies.
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3.5 Lanczos method
The Lanczos algorithm is an iterative method for finding the eigenval-
ues and eigenvectors of a large, sparse, symmetric (or Hermitian) matrix.
It’s particularly useful for computing the extremal (largest or smallest)
eigenvalues and their corresponding eigenvectors. The algorithm gen-
erates a sequence of vectors, called Lanczos vectors, which are used to form a
tridiagonal matrix that approximates the original matrix. Finally, this method
is also used to find a low-rank approximation of the input matrix; by low-
rank, we mean a technique used in numerical linear algebra to simplify a matrix
while preserving its most important properties. It is particularly useful for re-
ducing the complexity of large data sets, compressing information,
and speeding up computations.

✓ Good prerequisites of the matrix

Some good prerequisites necessary to get the best performance with the Lanczos
algorithm are:

• Sparse matrix;

• Symmetric (or Hermitian) matrix;

• Square matrix, then a size of n× n.

) Mathematical point of view

Let a symmetric matrix A of size n × n, the Lanczos algorithm is based on
computing the following decomposition of A:

A = QTQT (47)

Where Q is an orthonormal basis of vectors q1, . . . , qn and T is tri-diagonal:

Q = [q1, q2, . . . , qn] T =



α1 β1 0 · · · 0
β1 α2 β2 · · · 0

0
. . . . . . . . . 0

0
. . . . . . . . . βn−1

0 · · · 0 βn−1 αn


The decomposition always exists and is unique if q1 was specified.

Since we know that T = QT AQ which gives:

αk = qT
k Aqk βk = qT

k+1Aqk

The full decomposition is obtained by imposing AQ = QT :

[Aq1, Aq2, . . . , Aqn] =
[α1q1 + β1q2︸ ︷︷ ︸

1st row

, β1q1 + α2q2 + β2q3︸ ︷︷ ︸
2nd row

, . . . , βn−1qn−1 + αnqn︸ ︷︷ ︸
n row

]
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{ Algorithm

Note that at iteration k, the algorithm generates intermediate matrices Qk and
Tk satisfying Tk = QT

k AQk.

1. Residual, Lanczos vector and scalar initialization. We set the resid-
ual to the value of the lanczos vector q1 which is set randomly; the Lanczos
vector is set to zero and finally the scalar β is set to one.

r0 = q1 q0 = 0 β = 1

2. Iteration. For each k = 1, . . . , n:

(a) Check if the previously calculated β is zero. If zero, stop the
algorithm, otherwise continue the iteration.

(b) Compute Lanczos vector qk:

qk = rk−1

βk−1

(c) Compute scalar αk:
αk = qT

k Aqk

(d) Compute the residual rk:

rk = (A− αk) qk − βk−1qk−1

(e) Compute scalar βk:
βk = |rk|

3. Results. It produces the tridiagonal symmetric matrix T that is an ap-
proximation of the original matrix A and the orthonormal basis Qk.

At iteration k, the k-th Lanczos vector qk is proven to maximize the left hand
side of:

max
y̸=0

yT
(
QT

k AQk

)
y

yT y = λ1 (Tk) ≤ λ1 (A) = λ1 (T )

And to simultaneously minimize the left hand side of:

min
y̸=0

yT
(
QT

k AQk

)
y

yT y = λn (Tk) ≤ λn (A) = λn (T )

Where:

• λ1 (A) is the maximum eigenvalue of A;

• λn (A) is the minimum eigenvalue of A.
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� How much does it cost?

Although the algorithm is quite complex to understand, the computational cost
is very competitive. If we respect all the prerequisites that we have said, then
for large, symmetric, sparse and square matrices, the primary cost is pro-
portional to the number of non-zero elements in the matrix. Thus, the cost
of each iteration is only ≈ nnz (A) operations (where A is the input matrix).

The reasoning changes for dense matrices, although still feasible, the cost can
be higher due to the ≈ n2 operations.

Z Can it be parallelized?

The Lanczos method is widely used in practice, and obviously it fits very well
with parallel patterns. The Lanczos parallelization focuses on matrix-vector
multiplication and orthogonalization steps. If the reader wants to delve deeper
into this parallelization, we suggest an interesting scientific paper:

Parallelization of the Lanczos Algorithm on Multi-core Platforms

Link to the paper
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4 Numerical methods for overdetermined linear
systems and SVD

4.1 Overdetermined systems and Least Squares
An Overdetermined linear system is a system of linear equations in
which there are more equations than unknowns. In other words, there
are more constraints than variables, which often makes it impossible to satisfy
all the equations simultaneously. This often happens in practical applications
where we have more measurements or constraints than variables.

The solution method is Least Squares; it finds an approximate solution by
minimizing the sum of the squares of the residuals (the differences be-
tween the left and right sides of the equations). A practical implementation is
Singular Value Decomposition (SVD).

) Mathematical point of view

The mathematical problem reads: given A ∈ Rm×n, with m ≥ n and b ∈ Rm,
find x ∈ Rn such that: Ax = b.

Note that the above problems generally have no solution unless the right side
b is an element of range (A) (all possible linear combinations of the columns of
A). So the basic approach is to look for a x that makes Ax “close” to b.

We compute the solution using least-squares. Given A ∈ Rm×n, m ≥ n, we
say that x∗ ∈ Rn is a solution of the linear system Ax = b in the least-squares
sense if:

Φ (x∗) = min
y∈Rn

Φ (y) (48)

Where:
Φ (y) = ||Ay− b||22 (49)

The problem thus consists of minimizing the Euclidean norm of the residual.
The solution x∗ can be found by imposing the condition that the gradi-
ent of the function Φ (·) must be equal to zero at x∗. From the definition
we have:

Φ (y) = (Ay− b)T (Ay− b)
= yT AT Ay− 2yT Ab + bT b
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Therefore:
∇Φ (y) = 2AT Ay− 2AT b

From which it follows that x∗ must be the solution of the square system:

AT Ax∗ = AT b (50)

The system of normal equations is nonsingular if A has full rank and, in such
a case, the least-squares solution exists and is unique.

Theorem 8. Let A ∈ Rm×n, with m ≥ n, be a full rank matrix. Then the
unique solution in the least-square sense x∗ of Ax∗ = b is given by x∗ =
R̂−1Q̂T b, where R̂ ∈ Rn×n and Q̂ ∈ Rm×n are the matrices of the reduced QR
factorization of A. Moreover, the minimum of Φ (·) is given by:

Φ (x∗) =
m∑

i=n+1

[(
QT b

)
i

]2
If A has full rank, then since the solution exists in the least squares sense and
is unique, it must necessarily have minimal Euclidean norm:

||Ax∗ − b||22 ≤ min
x∈Rn

||Ax− b||22 (51)

In other words, given an overdetermined system Ax = b, the least squares
method finds x that minimizes the quantity ||Ax− b||22. These problems can
be solved using the SVD method.
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4.2 Singular Value Decomposition (SVD)
Singular Value Decomposition (SVD) method is a factorization of a ma-
trix into three other matrices. For any m × n matrix A, the SVD is given
by:

A = UΣV T (52)

It provides a solution to Least Squares techniques. Where:

• U is an m ×m orthogonal matrix, called left singular vectors. These
vectors form an orthonormal basis for the column space of A.

• Σ is a m × n diagonal matrix with non-negative real numbers on the
diagonal, called singular values. These values are sorted in descending
order (from largest to smallest), and the number of values is guaranteed
by the minimum between the number of columns and the number of rows;
if A is m× n, there are min (m, n) singular values.
These values are important because keeping only the largest singular val-
ues can reduce the dimensions of the data while preserving important
features. It also compresses the image, if the matrix represents an image,
and filters out noise.

• V is an n × n orthogonal matrix, called right singular vectors. These
vectors form an orthonormal basis for the row space of A.

Theorem 9. Let A ∈ Rm×n. There exist two orthogonal matrices U ∈ Rm×m

and V ∈ Rn×n such that:

UT AV = Σ = diag (σ1, . . . , σp) ∈ Rm×n (53)

With p = min (m, n) and σ1 ≥ · · · ≥ σp ≥ 0.

This method is a robust mathematical tool commonly employed in machine
learning for tasks such as dimensionality reduction, data compression and fea-
ture extraction. It is especially effective in handling high-dimensional datasets,
helping to lower computational complexity and enhance the efficiency of ma-
chine learning algorithms.

✓ Singular Value Decomposition (SVD) is an alternative to Eigenvalue
Decomposition, which is generally better for rank-deficient and ill-
conditioned matrices.

✓ Computing the SVD is always numerically stable for any matrix but
is typically more expensive than other decompositions.

✓ SVD can be used to compute low-rank approximations to a matrix
via Principal Component Analysis (PCA has many practical applications,
and usually large sparse matrices arise).
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) SVD features

• If A is a real-valued matrix, U and V will also be real-valued and in the
equation 53, UT must be written instead of UH .

• The singular values holds:

σi (A) =
√

λi (AT A) i = 1, . . . , p (54)

• Since AAT and AT A are symmetric matrices, the columns of U turn out to
be the eigenvectors of AT A and, therefore, they are not uniquely defined.
The same holds for the columns of V , which are the right singular vectors
of A.

• As far as the rank (A) is concerned, if:

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σp = 0

Then the rank of A is r, the kernel of A is the span of the column vectors
of V , {vr+1, . . . , vn}, and the range of A is the span of the column vectors
of U , {u1, . . . , up}.

] Generalized inverse

The Generalized Inverse of a matrix A is a matrix that can provide solu-
tions to systems of linear equations that may not have unique solutions or
may not be solvable using the regular inverse (such as least squares problems).
There are different types of generalized inverses, but one of the most commonly
used is the Moore-Penrose pseudo-inverse, denoted as A†.

Definition 1: Moore-Penrose

Suppose that A ∈ Rm×n has rank equal to r and that it admits a SVD
of the type UT AV = Σ. The matrix:

A† = V Σ†UT (55)

Is called the Moore-Penrose pseudo-inverse matrix, being:

Σ† = diag
{

1
σ1

, . . . ,
1
σp

, 0, . . . , 0
}

(56)

The matrix A† is also called the generalized inverse of A. Also, if
n = m = rank (A), then A† = A−1.

The Moore-Penrose pseudo-inverse matrix is used in the SVD method to solve
the overdetermined systems using the least squares technique.

Theorem 10. Let A ∈ Rm×n with SVD given by A = UΣV T . Then the unique
solution to the equation 51 is:

x∗ = A†b (57)
Where A† is the pseudo-inverse of A.
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{ How to calculate SVD

The Householder reflection (or Householder transformation) is a method
used in linear algebra to zero out the subdiagonal elements of a matrix, trans-
forming it into a simpler form such as an upper triangular matrix or a bidiagonal
matrix.

The use of Householder reflections is recommended because they provide a
numerically stable and efficient way to reduce a matrix to bidiagonal
form. This reduction makes the subsequent steps of the SVD calculation
easier and more computationally efficient.

UT
1 AV1 = B =



d1 f1 · · · · · · 0n

0 d2 f2 · · ·
...

...
...

. . . . . .
...

...
...

... dn−1 fn−1
0 0 · · · 0 dn


It follows that T = BT B is symmetric and tridiagonal. We could then apply
the QR algorithm directly to B.
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5 Multigrid methods
5.1 Idea of MG methods
The Multigrid (MG) methods are efficient algorithms for solving large
systems of linear equations, particularly those arising from the dis-
cretization of partial differential equations (PDEs). They’re especially
useful for problems that exhibit behavior on multiple scales.

A multigrid (MG) method is an iterative algorithm of the form:

x(k+1) = MG
(

x(k)
)

k ≥ 0 (58)

For solving the (typically) sparse linear systems of equations stemming from
the numerical discretization of differential equations. The MG methods are
based on:

• Hierarchy of levels (associated with a hierarchy of discretization):

– Fine Grid. The finest grid captures the most detailed features
of the problem. This is where the original problem is defined and
where the final solution needs to be accurate.

– Coarse Grids. They are lower resolution versions of the fine grid.
They capture broader, large-scale features of the problem. The
coarser the grid, the fewer the details, but computations are
cheaper and faster.
Coarse grids help in correcting the errors that are hard to eliminate
on finer grids due to their global nature.

• MG cycles reduce all error components by a fixed amount (bounded well
below one), regardless of the dimension n of the system.

The main idea of MG is to accelerate the convergence of a basic iter-
ative method by a global correction of the fine grid solution approximation
accomplished by solving a coarse problem. The coarse-level problem should be
similar to the fine grid problem. The cost of (direct) solution of the coarse
problem should be negligible compared to the cost of one relaxation sweep on
the fine grid.

In other words, the main goal of the multigrid method is to speed up the con-
vergence of an iterative method for solving systems of linear equations. This
acceleration is achieved by globally correcting the solution approximation on
the fine grid by solving a similar problem on a coarser grid.
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5.2 How it works
The multigrid method is divided into seven parts that make the MG method
work.

1. Coarse Grids (page 66)

2. Correction (page 69)

3. Interpolation Operator (page 70)

4. Restriction Operator (page 74)

5. Two-Grid Scheme (page 76)

6. V-Cycle Scheme (page 78)

These elements work together to handle errors at different scales, making
the method highly effective for solving large and complex systems of
linear equations.

Note that this is not an algorithm! We can think of the MG method as a
toolbox filled with powerful tools, each designed to address different aspects of
solving complex problems efficiently.

) Notation used in MG methods

We will use the subscript h to indicate the Grid Spacing. The variable h repre-
sents the distance between two successive grid points on the fine grid.
For example, if the domain is divided into N intervals, the grid spacing h is
typically 1

N .

• Residual rh represents the residual calculated on the fine grid with spac-
ing h. It’s the difference between the current solution and the exact solu-
tion on this grid.

• Solution xh indicates the approximate solution on the fine grid. This
solution is updated iteratively using the Multigrid method.

• Operator Ah is the matrix or operator that represents the system of
equations on the fine grid. This operator acts on the solution xh.

• Right-Hand Side bh is the right-hand side vector of the system of equa-
tions on the fine grid. It’s what the solution xh should ideally satisfy when
acted upon by Ah.

• Error on the Fine Grid eh is the error estimate or correction term
calculated on the fine grid. It represents the difference between the true
solution and the current approximate solution on the fine grid with spacing
h.

What’s more, if we move to a coarser grid, the grid spacing will be greater,
indicated by 2h or even 4h if we make a significant jump to a coarser level.
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5.2.1 Coarse Grids

Purpose. Simplifies the problem by reducing the number of grid points,
capturing broad features, and addressing low-frequency errors. In other words,
reduce the grids with fewer points and greater spacing between them compared
to the fine grid.

Before we go any further, we need to understand the difference between
Coarse and Fine Grid. This can be done from an image point of view, for
example, an image where we can see the simplification of details:

Figure 7: Difference between Coarse and Fine Grid.

But to understand frequency, we have to look at the problem from a one-
dimensional point of view, looking at frequencies.

• Fine Grid has a high resolution, then many closely spaced points.

0 1 2 3 4 5 6 7 8 9 10

• Coarse Grid has a lower resolution, then fewer points spaced farther
apart.

0 2 4 6 8 10
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As we move from the fine grid to the coarse grid, the mode becomes
more oscillatory because the same error pattern spans fewer points,
increasing its apparent frequency. The term “mode” refers to the different
error patterns or components in the solution. See the following illustration for
a 100% understanding.

Consider a wave function on the fine grid wj = sin
(

jπ

n + 1 i

)
(where j deter-

mines the frequency, n is the number of points, and i is the index of the grid
point), its 1D representation, and the signal:

0 1 2 3 4 5 6 7 8 9

i
0

w10 = sin
(

10π

11 i

)
n = 10j = 10

If we pass from the Fine Grid to Coarse Grid reducing the number of points,
for example from 10 to 6, we obtain an increase of the oscillatory and also the
same error pattern is repeated several times:

0 2 4 6 8 9

i
0

w10 = sin
(

10π

7 i

)
n = 6j = 10
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0 4 9

i
0

w10 = sin
(

10π

4 i

)
n = 3j = 10

Obviously, smooth modes on a Fine Grid will look less smooth on a
Coarse Grid.
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5.2.2 Correction

Purpose. It is a critical part of the process that ensures efficient error
reduction across multiple grid levels. The steps are as follows:

1. Pre-Smoothing. Relax ν1 times on Ahxh = bh to obtain an approxima-
tion x(k+ν1)

h .
This step aims to reduce high frequency errors on the fine grid.
Smoothing (relaxation) techniques such as Gauss-Seidel or Jacobi itera-
tions are typically used.

2. Compute Residual. Compute r(k+ν1)
h = bh −Ahx(k+ν1)

h

The residual represents the error in the current solution and is used to
determine the correction required.

3. Restriction to Coarse Grid. Move the residual r(k+ν1)
h from (the fine

grid) Fh to (the coarse grid) F2h to obtain r(k+ν1)
2h .

This step transfers the error information to a coarser grid where it is easier
to handle low frequency errors.

4. Solve on Coarse Grid. Solve the residual equations A2he2h = r(k+ν1)
2h

on F2h. Where e2h is the error estimate.
Coarse grid solving addresses the lower frequency errors that are more
difficult to smooth on the fine grid.

5. Prolongation to Fine Grid. Move the error calculated previously e2h

from (the coarse grid) F2h to (the fine grid) Fh to obtain eh.
This step transfers the correction back to the fine grid, where it can be
applied to improve the solution.

6. Correction. Correct the approximation obtained on (the fine grid) Fh

with the error estimate obtained on (the coarse grid) F2h, i.e., x(k+1)
h =

x(k+ν1)
h + eh.

Applying this correction refines the solution on the fine grid, reducing the
overall error.

We can summarize these steps as follows:

1. Pre-Smoothing. Reduces high-frequency errors on the fine grid.

2. Compute Residual. Identifies remaining errors.

3. Coarse Grid Correction. Targets lower-frequency errors by solving on
a coarser grid.

4. Prolongation and Correction. Transfers and applies corrections to
refine the fine grid solution.

5. Post-Smoothing. Further smooths any remaining errors.
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5.2.3 Interpolation Operator

Purpose. The Interpolation Operator transfers corrections from the coarse grid
back to the fine grid, refining the fine grid solution with broader adjustments.
In other words, it is a powerful operator for mapping values from a coarse
grid F2h to a fine grid Fh. This process is essential to transfer the error
corrections or residuals from a coarse grid back to a fine grid, thereby increasing
the accuracy of the solution.

Mathematically, the interpolation operator is a linear operator and it is denoted
as a matrix Ih

2h:
Ih

2h : F2h −→ Fh

Rn −→ Rm
(59)

And it is multiplied by the coarse grid v2h to get the fine grid with the inter-
polated values vh:

Ih
2hv2h = vh (60)

It isn’t a simply multiplication, because each position of the fine grid is given
by:

vh,i =


v2h,i if the node i is common node of both Fh and F2h

v+
2h,i + v−

2h,i

2 if the node i in Fh is not a node in F2h

Perhaps this discussion is easier to understand graphically. As we can see, for
nodes that exist only in the fine grid and not in the coarse grid, the value is
interpolated as the average of the neighboring coarse grid nodes.
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8 Smooth vs Oscillatory errors

To fully understand the MG method, it is important to understand when to
use it. The interpolation operator highlights when and why the method can be
effective or ineffective. If the exact error on the fine grid Fh is:

¥ Smooth: an interpolation of the coarse grid error e2h should give a good
representation of the exact error.
The smooth errors are errors that change gradually over the grid. So if
we interpolate a smooth error from a coarse grid to a fine grid (using the
interpolation operator), the interpolation will be accurate. This is because
the changes in the error are well captured by the averaging, so that the
interpolated fine grid values are very similar to the original smooth error.
See the Figure 8 to see why this is a good representation of the exact error.

0 2 4 6 8 10
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Smooth Error

Coarse Grid
Fine Grid (Interpolated)

Figure 8: The figure shows what happens when we encounter a smooth error.
As we can see, the coarse grid error gives a good representation of the exact
error of the fine grid. As the error changes gradually, the application of the
interpolation from the coarse grid to the fine grid guarantees the preservation
of the smoothness, so that the interpolated values accurately represent the true
error.
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q Oscillatory: an interpolation of the coarse grid error e2h should give a
poor representation of the exact error.
The oscillatory errors are errors that change rapidly and frequently over
the grid. So if we interpolate an oscillatory error from a coarse grid to a
fine grid (using the interpolation operator), the interpolation might not
be accurate. This is caused because the rapid changes in the error are not
captured well by simple averaging, leading to a less accurate representa-
tion. See the Figure 9 to see why this is a poor representation of the exact
error.
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Figure 9: The figure shows what happens when we encounter an oscillatory
error. As we can see, the coarse grid error is a very poor representation of the
exact fine grid error. This is because the oscillatory errors are smoothed out
when interpolating from the coarse grid. The averaging process inherent in the
interpolation can’t fully capture the high frequency changes, resulting in a loss
of accuracy in representing the true error.
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The Python code used to generate the plots. It requires numpy and matplotlib
to be installed:

pip install numpy matplotlib

1 import numpy as np
2 import matplotlib . pyplot as plt
3

4 # Coarse grid
5 coarse_x = np. linspace (0, 10, 6)
6 smooth_coarse_y = np.sin( coarse_x )
7 oscillatory_coarse_y = np.sin (5 * coarse_x )
8

9 # Fine grid
10 fine_x = np. linspace (0, 10, 50)
11 smooth_fine_y = np.sin( fine_x )
12 oscillatory_fine_y = np.sin (5 * fine_x )
13

14 plt. figure ( figsize =(12 , 6))
15

16 # Smooth error
17 plt. subplot (1, 2, 1)
18 plt.plot(coarse_x , smooth_coarse_y , ’o-’, label =’Coarse Grid ’)
19 plt.plot(fine_x , smooth_fine_y , ’x-’, label =’Fine Grid (

Interpolated )’)
20 plt. title (’Smooth Error ’)
21 plt. legend (loc=’lower center ’, bbox_to_anchor =(0.5 , -0.25))
22

23 # Oscillatory error
24 plt. subplot (1, 2, 2)
25 plt.plot(coarse_x , oscillatory_coarse_y , ’o-’, label =’Coarse Grid ’)
26 plt.plot(fine_x , oscillatory_fine_y , ’x-’, label =’Fine Grid (

Interpolated )’)
27 plt. title (’Oscillatory Error ’)
28 plt. legend (loc=’lower center ’, bbox_to_anchor =(0.5 , -0.25))
29

30 plt. tight_layout ()
31 plt.show ()
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5.2.4 Restriction Operator

Purpose. The Restriction Operator transfers data from a fine grid to a
coarse grid. It can be thought of as the opposite of the interpolation operator
(page 70).

Mathematically, the restriction operator is a linear operator and it is denoted
as a matrix I2h

h :
I2h

h : Fh −→ F2h

Rn −→ Rm
(61)

Unlike the interpolation operator, we have more problems here. Because to
apply this tool and to guarantee that the coarse grid construction reflects the
fine grid problem, we cannot use a simple system. There are two ways to
apply the restriction operator:

• Injection. It is the simple form of restriction where coarse grid values
are directly taken from the corresponding fine grid values. It
transfers the value without any averaging. Mathematically it is expressed
with the equation:

I2h
h wh = w2h (62)

✓ Pros

– Very simple.
– Computationally inexpensive.

p Cons

– It can miss fundamental details of the solution.
– Less accurate error correction.
– Very poor overall results.
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• Galerkin condition. It ensures that the coarse grid operator A2h accu-
rately represents the fine grid operator Ah. This means that the solution
on the coarse grid is a reasonable approximation of the solution
on the fine grid. The Galerkin condition is expressed by the following
equation:

A2h = I2h
h AhIh

2h (63)

Where:

– I2h
h is the interpolation operator (page 70);

– Ih
2h is the restriction operator ;

– Ah is the fine grid;
– A2h is the result coarse grid that we obtain.

The Galerkin condition can be viewed as a scaled transpose of the inter-
polation operator:

I2h
h = c

(
Ih

2h

)T (64)

Where c is a scalar factor in the real numbers R, it adjusts the magnitude
of the values when the restriction operator is applied.

✓ Pros

– Ensures mathematical consistency.
– Ensures accurate representation of the fine grid problem on the coarse

grid.
– Leads to effective error correction and greater accuracy in solutions.

p Cons

– Slightly more complex and computationally intensive than injection.
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5.2.5 Two-Grid Scheme

Purpose. The Two-Grid Scheme is a simple strategy that uses only two
levels (a fine grid and a coarse grid) to iteratively improve the solution.
The general idea is:

1. Given an initial guess x(0)
h ;

2. While the stopping criteria is met:

(a) Compute:
x(k+1)

h = MG
(

x(k)
h , bh, ν1, ν2

)
(65)

The MG method is invoked and the algorithm is:

1. Apply our favorite method for ν1 times. Do ν1 iterations using a
chosen method (e.g. Jacobi) on the system Ahxh = bh starting with the
initial guess x(k)

h . The solution after these iterations is y(ν1)
h .

y(ν1)
h ← Relax ν1 times on Ahxh = bh

2. Compute Fine Grid Residual. Calculate the residual on the fine grid
r(ν1)

h = bh −Ahy(ν1)
h :

r(ν1)
h ← bh −Ahy(ν1)

h

3. Restriction to Coarse Grid. Move the residual r(ν1)
h from the fine grid

to the coarse grid to obtain the residual r(ν1)
2h = I2h

h r(ν1)
h :

r(ν1)
2h = I2h

h r(ν1)
h

4. Solve on Coarse Grid. Solve the residual equations A2he2h = r(ν1)
2h on

the coarse grid. Where e2h is the error estimate. This can be helpful
because lower frequency errors are harder to smooth on the fine grid.

A2he2h = r(ν1)
2h (66)

5. Return to Fine Grid. Move the error calculated previously e2h from
the coarse grid to the fine grid to obtain eh:

eh = Ih
2he2h

6. Update and apply correction. Correct the approximation obtained on
the fine grid with the error estimate obtained on the coarse grid. Applying
this correction refines the solution on the fine grid, reducing the overall
error:

y(ν1+1)
h ← y(ν1)

h + eh

7. Apply ν2 smoothing iterations. Do ν2 iterations using a chosen
smoother (e.g. Jacobi) on the system Ahxh = bh starting with the up-
dated solution (initial guess) y(ν1+1)

h . The solution after these iterations
is y(ν1+1+ν2)

h .
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These additional smoothing iterations are essential to refine the solution
and ensure that both high and low frequency errors are adequately ad-
dressed. It can also help stabilize the solution by ensuring that any resid-
ual errors are minimized.

y(ν1+1+ν2)
h ← Relax ν2 times on Ahxh = bh

8. Return the result. The final updated solution x(k+1)
h is set to y(ν1+1+ν2)

h .

x(k+1)
h ← y(ν1+1+ν2)

h

0 1 2 3
Iterations

1

2

Gr
id

Le
ve

ls Fine Grid Smoothing

Restriction to Coarse Grid Coarse Grid Correction

Interpolation to Fine Grid

Two-Grid Correction Scheme in Multigrid Methods

Figure 10: Graphical representation of the Two-Grid Scheme.
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5.2.6 V-Cycle Scheme

Purpose. The V-Cycle Scheme has the powerful ability to move between
fine and coarse grids in a structured manner, efficiently and recursively re-
ducing errors at all levels. It is very similar to the Two-Grid scheme, but
the V-Cycle version allows us to go as deep as we want (or can). The general
idea is:

1. Given an initial guess x(0)
h ;

2. While the stopping criteria is met:

(a) Compute:
x(k+1)

h = MG
(

x(k)
h , bh, ν1, ν2, J

)
(67)

As in the Two-Grid scheme, the arguments are the same, but the difference is the
parameter J , which indicates the maximum depth of the algorithm. However,
when the MG method is invoked, the algorithm is executed:

1. Fine Grid Smoothing (pre-smoothing). We start at the finest grid
level (top of the V shape). We apply ν1 iterations of a smoothing algorithm
such as Jacobi, on the system Ahxh = bh with the initial guess x(k)

h to
reduce high-frequency errors. The solution that we obtain is y(ν1)

h .

y(ν1)
h ← Relax ν1 times on Ahxh = bh

2. Compute Fine Grid Residual. Calculate the residual on the fine grid
r(ν1)

h = bh −Ahy(ν1)
h :

r(ν1)
h ← bh −Ahy(ν1)

h

3. Restriction to Coarse Grid. Move the residual r(ν1)
h from the fine grid

to the coarse grid to obtain the residual r(ν1)
2h = I2h

h r(ν1)
h :

r(ν1)
2h = I2h

h r(ν1)
h

4. Recursive V-Cycle on Coarser Grid. Check if the coarsest level is
the desired one, in other words, if we are at the coarsest level we requested
when we first invoked the algorithm.
If the level is the maximum depth requested (j = actual coarsest level),
solve the problem or find an approximate solution using direct methods.
If we are at this level, we are at the bottom of the V-shape. Otherwise, if
the level is not the desired one, we apply the V-cycle process recursively
on the coarsest grid, repeating steps 1 through 3 on progressively coarser
grids until the coarsest grid is reached.

Solve A2he2h = r(ν1)
2h if J = actual coarsest level

e2h = MG
(

0, r(ν1)
2h , ν1, ν2, j − 1

)
otherwise
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5. Interpolate back to Fine Grid. If we are here, the recursion has
reached the maximum depth. Now we have to come back to the surface and
follow the right side of the V-shape. Therefore, we transfer the correction
e2h calculated in the previous step from the coarse to the fine grid using
an interpolation operator Ih

2h (page 70):

eh = Ih
2he2h

6. Update and apply correction. Correct the approximation obtained on
the fine grid with the error estimate obtained on the coarse grid. Applying
this correction refines the solution on the fine grid, reducing the overall
error:

y(ν1+1)
h ← y(ν1)

h + eh

7. Fine Grid Smoothing (post-smoothing). Do ν2 iterations using a
chosen smoother (e.g. Jacobi) on the system Ahxh = bh starting with the
updated solution (initial guess) y(ν1+1)

h . The solution after these iterations
is y(ν1+1+ν2)

h .
These additional smoothing iterations are essential to refine the solution
and ensure that both high and low frequency errors are adequately ad-
dressed. It can also help stabilize the solution by ensuring that any resid-
ual errors are minimized.

y(ν1+1+ν2)
h ← Relax ν2 times on Ahxh = bh

8. Recursively return to the surface. We return the result obtained in
the previous step y(ν1+1+ν2)

h at the previous level of coarsest. Since we
are in a recursive path, if the previous caller is the main, then the method
stops, otherwise the previous caller recalculates its results from step 5 to
8, and so on.

x(k+1)
h ← (j − 1 recursive steps)← yν1+1+ν2

h

Note that the algorithm seems very similar to the Two-Grid Scheme because
the V-Cycle Scheme is an extension applied j times! In Figure 11, we can see
why the V-cycle scheme has a V-shape.

However, the V-cycle scheme is only one of several MG cycling schemes. Other
types of schemes are W-cycle and F-cycle, and can be analyzed at the following
MIT link.
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Figure 11: V-Cycle Scheme.

� How much does it cost?

The V-Cycle Scheme has a convergence less than one and independent
of h and it costs only O

(
nd log (n)

)
.

At each level j the values x(k)
h and bh must be stored. Also, each succes-

sively coarser grid requires progressively less memory because the number of
grid points is reduced by a factor at each level. In d dimensions, the coarse
grid has ≈ 2−d the number of points as the finer grid. Therefore the memory
requirement is:

Storage cost ≈ 2nd

1− 2−d

Furthermore, for d = 1 the memory requirement is less than twice that of the
fine-grid problem alone.
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5.3 Classical Algebraic Multigrid (AMG)
Classical Algebraic Multigrid (AMG) is a numerical method for solving
large systems of equations, especially those arising from the discretization
of partial differential equations.

It is a type of multigrid method that uses matrix coefficients to con-
struct a hierarchy of grids rather than relying on geometric information
(such as the V-cycle scheme). It aims to speed up the convergence of iterative
methods by combining smoothing operations with coarse grid corrections.

¥ Why is AMG one of the best MG methods?

When we think about how the V-cycle works, we notice an interesting thing.
Each MG tool presented in the previous pages requires an interpretation of
the geometric properties of the problems. Unfortunately, especially in the real
world, it is very difficult to understand the geometric relationship, and mainly
it avoids the coding necessary for a true multigrid implementation (we mean an
implementation of "how can we geometrically pass from a fine to a coarse grid
without losing important details or conditions?).

The main goal of the AMG method is its geometric independence. Un-
like geometric multigrid methods, which rely on the geometric structure of the
problem (grid spacing, shape, etc.), AMG constructs its grid hierarchies
based purely on the algebraic structure of the system matrix. This
makes it highly versatile and applicable to a wide range of problems, includ-
ing those with complex geometries or unstructured grids. This is one of the
most important differences, but the AMG also has other good points (efficiency,
applicability, etc.).

{ AMG Basis

The method is divided into several theoretical concepts:

1. Algebraic Multigrid (AMG) makes extensive use of graph-based con-
cepts. The system matrix (representing the discretized problem) can
be viewed as a graph. Each node in the graph corresponds to a
grid point, and each edge represents a connection (or interaction)
between grid points. For example, the following sparse matrix has the
corresponding graph.

A =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0
∗ 0 ∗ ∗ ∗ 0
∗ 0 ∗ ∗ ∗ 0
∗ 0 0 0 0 ∗
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2. Classical AMG is based on the observation that the algebraic smooth
error varies slowly in the direction of the matrix’s relatively large
(negative) coefficients. This gives us an algebraic way to track smooth
errors. However, we still need to define large.

Definition 1: strong connection

Given a threshold θ ∈ (0, 1) we say that i is strongly connected
with j if:

−ai,j ≥ θmax
k ̸=i

(−ai,k) (68)

Let us denote by Si the set of vertices that i is strongly connected
to by:

Si = {j ∈ Ni : i strongly connects to j} (69)

Where:
Ni = {j ̸= i : ai,j ̸= 0}

This gives us a strength matrix S, with Si as its i-th row. AMG uses
the concept of strong connection to decide how strongly nodes (grid
points) are connected. This is based on the matrix coefficients. Strong
connections are those where the matrix coefficients are relatively
large, indicating significant interactions between grid points.

3. Standard Coarsening. Standard coarsening in AMG involves reducing
the number of variables (or degrees of freedom) in the problem. This
is achieved by selecting a subset of nodes, known as coarse nodes (C-
vertices), while the remaining nodes become fine nodes (F-vertices).
The goal is to simplify the problem while preserving its essential
characteristics.

• C-vertices (Coarse nodes): These are the selected nodes that will
form the coarse grid.
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• F-vertices (Fine nodes): These are the remaining nodes that are
not selected as coarse nodes.

To put it simply, in AMG we deal with the original problem on a fine
grid. However, solving large problems directly on this fine grid can be
computationally expensive. To simplify, we create several “coarser”
versions of this grid, in which the problem size is progressively
reduced. This process is called standard coarsening.

® How can we apply the Standard Coarsening?

It requires an observation before use. The oscillatory error should
not be a problem, as this error is typically easier to reduce using standard
relaxation methods on fine grids. However, the real dilemma is the smooth
error, which can’t be reduced by simple relaxation methods. When ap-
plying standard coarsening, we need to focus on reducing smooth
error while building each coarse grid group and preserving the
most fundamental information.
Implementation. To achieve this, we need to approach the problem from
an algebraic point of view. The smooth error tends to vary slowly along
strong connections (edges in the graph). Essentially, strong connections
represent significant interactions or relationships between nodes (vertices).
By coarsening in the direction of these strong connections, we
preserve the most critical aspects of the problem, resulting in a
more accurate and efficient MG method. In other words, we focus our
coarsening efforts on the most “meaningful” parts of the graph, where the
important information is.
What happens in practice. In practice, standard coarsening divides
the vertices into Coarse (C-vertices) and Fine (F-vertices that are
strongly connected to the C-vertices) sets. The main idea is to
ensure that each F-vertex has a strong connection to at least
one C-vertex. This allows us to approximate the values at the F-vertices
by a linear combination of the values at the C-vertices, preserving the
important relationships in the original problem.
What happens after Standard Coarsening. The values at the F-
vertices can be expressed as a weighted combination of the values at their
neighboring C-vertices. This ensures that the coarser problem is a good
approximation of the finer problem.
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{ General Coarsening Algorithm

Given a strength matrix S indicating the strong connections between
nodes, the algorithm is:

(a) Initialization. We create an empty set C for Coarse vertices and
an empty set F for Fine vertices.

(b) Select an independent set of C-vertices. Choose an indepen-
dent set of C-vertices from the graph of S. An independent set
means that no two selected C-vertices are directly connected by a
strong connection.
The selection process is as follows:

i. Choose a C-vertex. Start with a node and mark it as a C-
vertex. In general, we start at the node with the highest number
of strong connections (or highest weight, if applicable).

ii. Populate Fine vertices set. All vertices strongly connected
to the previously selected C-vertex become F-vertices.

iii. Repeat. We repeat the process by selecting another vertex from
the undecided vertices as a C-vertex and making the vertices
strongly connected to it as F-vertices.

iv. Stop when all vertices are classified as either C-vertex
or F-vertex.

(c) Select additional C-vertices. Ensure that every F-vertex has a
strong connection to at least one C-vertex. If any F-vertex is not
strongly connected to a C-vertex, convert that F-vertex into a C-
vertex to ensure the interpolation requirements are satisfied.

] Interpolation

Interpolation is used to estimate unknown values at fine nodes (F-nodes)
using the known values at coarse nodes (C-nodes). It’s crucial for main-
taining accuracy and efficiency.

Let e = (e1, e2, . . . , ei, . . . ) be the error; a simple characterization of algebraic
smooth error is Ae ≈ 0. In other words:

ai,iei +
∑

j∈Ni

ai,jej ≈ 0 i ∈ F (70)

The idea is that we want to choose proper weight wi,j such that for any algebraic
smooth errors:

ei ≈
∑
j∈C

wi,jej i ∈ F

But if we define for i ∈ F :

• Ci the C-points strongly connected to i:

Ci = C ∩Ni

• F S
i the F-points strongly connected to i:

Fi = F ∩Ni
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• CS
i = C ∩ Si

• NW
i all points weakly connected to i:

NW
i = Ni(

CS
i ∪ F S

i

)
We can rewrite the characterization of algebraic smooth error as:

ai,iei +
∑

j∈Ni

ai,jej = 0 α =

∑
j∈Ni

ai,j∑
j∈CS

i

ai,j

(71)

We conclude that the formula of direct interpolation is:

wi,j = α
ai,j

ai,i
i ∈ F, j ∈ CS

i α =

∑
j∈Ni

ai,j∑
j∈CS

i

ai,j

(72)

The above direct interpolation can be applied as long as CS
i .

� How much does it cost?

The cost of each iteration in the Algebraic Multigrid (AMG) method primarily
depends on the operations involved, such as smoothing, restriction, inter-
polation, and correction (the all tools that we have already discussed in the
previous pages!). The cost is generally linearly proportional to the prob-
lem size. This means that as the problem size increases, the cost increases
linearly, making AMG methods efficient for large-scale problems.

However, leaving aside the iteration cost for the moment, the AMG method
is the best of the multigrid methods because the construction of the
MG hierarchy is done using only information from the matrix and not
from the geometry of the problem. This is the main and most important
key. This is one of the most important reasons to choose AMG, especially in
real practice problems.

Z Can it be parallelized?

AMG is not only the best because it is geometric independent, but also because
it lends itself very well to parallelization! In general, AMG methods are well
suited for parallelization, especially for large problems. The multi-level
structure of AMG allows the workload to be distributed across multiple proces-
sors. However, the efficiency of parallelization depends on the specific imple-
mentation and the problem to be solved (of course). Optimizations and careful
communication management can help achieve better parallel performance.
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