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Preface
Every theory section in these notes has been taken from the sources:

• Course slides. [1]

About:

§ GitHub repository

These notes are an unofficial resource and shouldn’t replace the course material
or any other book on numerical methods for partial differential equations. It is
not made for commercial purposes. I’ve made the following notes to help me
improve my knowledge and maybe it can be helpful for everyone.

As I have highlighted, a student should choose the teacher’s material or a
book on the topic. These notes can only be a helpful material.
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1 Basic Concepts

1 Basic Concepts
In this course, we introduce numerical methods for the solution of Partial
Differential Equations (PDEs), with focus on the Finite Element (FE)
method1 and the use of the computer for the construction of the PDEs numer-
ical solution.

We will consider the numerical approximation of elliptic and parabolic PDEs
by considering their variational formulation, Galërkin and FE approximations
in 1D/2D/3D, the theoretical properties and practical use of the methods, al-
gorithmic aspects, and interpretation of the numerical results.

Advanced topics include the approximation of saddle-point PDEs (Stokes equa-
tions), vectorial, nonlinear, and multiphysics differential problems, domain de-
composition methods exploiting the properties of the PDEs, and the introduc-
tion to parallel computing for the FE method, i.e., in the High Performance
Computing (HPC) framework.

Finally, the course will feature the use of the deal.II software library, a C++
open source FE library, and ParaView for the visualization of numerical solution
and scientific computing data.

1The Finite Element Method (FEM) is a popular method for numerically solving
differential equations arising in engineering and mathematical modeling. Typical problem
areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow,
mass transport, and electromagnetic potential. Computers are usually used to perform the
calculations required. With high-speed supercomputers, better solutions can be achieved, and
are often required to solve the largest and most complex problems. (source)
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1 Basic Concepts 1.1 Mathematical Models and Scientific Computing

1.1 Mathematical Models and Scientific Computing

Definition 1: Mathematical Model

A Mathematical Model is a set of (algebraic or differential) equa-
tions that is able to represent the features of a complex system
or process.

® Why do they exist?

Models are developed to:

• Describe

• Forecast

• Control

The behavior or evolution of such systems.

We are interested in the physics models. Physics-based models are those
mathematical models that are derived from physical principles (like
conservation laws of mass, momentum, energy, etc.) and that encode natural
laws of leading to (differential) equations whose solutions are often
represented in the form of functions. However, the analytical solution of
such models is rarely available in closed form, for which numerical approximation
methods are instead employed.

Definition 2: Numerical Modelling

Numerical Modelling indicates sets of numerical methods that
determine an approximate solution of the original (often infinite-
dimensional) mathematical model, by turing it into a discrete problem
(algebraic, finite-dimensional), whose dimension (size) is typically very
large.

Definition 3: Scientific Computing

Scientific Computing is a branch of Mathematics that numerically
solves (differential) mathematical models by building approxi-
mate solutions though the use of a calculator.

For numerical models of large size, parallel architectures for calculators and the
HPC framework are typically used.
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1 Basic Concepts 1.1 Mathematical Models and Scientific Computing

® Why did we introduce mathematical models and physical models?

Because they are connected and used together. Mathematical models are con-
ventionally used altogether with theoretical (mathematical) models and experi-
mental tests. Unfortunately, in several cases theoretical models are not available
(like in Computational Medicine) or experimental tests are not meaningful or
cannot be performed (for example, for nuclear testing). Physics-based models
have witnessed an increasing role in the modern society in virtue of the massive
developments of Scientific Computing and computational tools.

Since a large amount of data is becoming available from multiple sources nowa-
days, data-driven models are fundamentals. Data-driven models are those
mathematical models built from meaningful data that do not rely on physical
principles, because the latter are not available or are not reliable, and whose
construction calls for statical learning methods.

Physics-based mathematical models (mathematical problems) are a funda-
mental pillar in the understanding and prediction of several physical phenomena
and processes (physical problems). However, these mathematical models lead
to problems that can rarely be solved analytically, or in an exact way (exact
solution), especially for PDEs: with only a few exceptions, it is not possible to
write their solution explicitly.

Numerical methods and numerical approximation techniques (numerical prob-
lems) serve the purpose to determine an approximate solution of a math-
ematical model. When the calculator is used to determine such approximate
solution, the latter is called numerical solution (see the Figure 1).

Figure 1: Scientific Computing.
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1 Basic Concepts 1.2 Differential Models and PDEs

1.2 Differential Models and PDEs

Definition 4: Partial Differential Equation (PDE)

A differential equation (model) is an equation that involves one or
more derivatives of an unknown function. In an Ordinary Dif-
ferential Equation (ODE), every derivative of the unknown solu-
tion is with respect to a single independent variable. If instead,
derivatives are partial, then we have a Partial Differential Equation
(PDE).

In other words, it is a differential equation where its derivatives are partial.

There are different types of PDEs, and their nature depends on the conditions
and their type. Mathematically, we can represent a differential model (equa-
tion) as follows:

P (u; g) = 0 differential equation (mathematical problem) (1)

Where:

• P indicates the model ;

• u is the exact solution, a function of one or more independent variables
(space and/or time variables);

• g indicates the data.

7



1 Basic Concepts 1.2 Differential Models and PDEs

1.2.1 ODEs

Ordinary Differential Equation (ODE) is also known as initial value
problem.

[ I°ODE - Cauchy problem

A first order ODE, a Cauchy problem, is a differential problem, whose:

• Solution u = u (t) is a function of a single independent variable t, often
interpreted as time.

• A single condition is assigned on the solution, at a point (usually, the
left end of the integration interval).

Its form is the following find u : I ⊂ R → R such that:
du

dt
(t) = f (t, u (t)) t ∈ I

u (t0) = u0

(2)

Where:

• I = (t0, tf ] ⊂ R is a time interval ;

• u0 is the initial value assigned at t = t0;

• f : I × R → R

® Meaning. The equation describes the evolution of a scalar quantity u
over time t, without distribution in space.

® Vectorial problems. In vectorial problems, the unknown is a vector-
valued function u = u (t), where u = (u1, . . . , um) ∈ Rm, with m ≥ 1. The
first order Cauchy problem reads: find u : I ⊂ R → Rm such that:

du

dt
(t) = f (t,u (t)) t ∈ I

u (t0) = u0

Where u0 ∈ Rm is the initial datum and f : I × Rm → Rm.

[ II°ODE - Cauchy problem

A second order Cauchy problem sees second order time derivatives and two
initial conditions. It reads as: find u : I ⊂ R → R such that:

d2u

dt2
(t) = f

(
t, u (t) ,

du

dt
(t)

)
t ∈ I

du

dt
(t0) = v0

u (t0) = u0

(3)

Where the initial data are u0 and v0, while f : I × R× R → R.
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1 Basic Concepts 1.2 Differential Models and PDEs

1.2.2 PDE, boundary value problem in 1D

The Boundary value problem in 1D is characterized by a single inde-
pendent variable x, which represents the space coordinate in an interval
Ω = (a, b) ∈ R (1D).

The problem involves second order derivatives of the unknown solution
u = u (x) with respect to x. The value of u, or the value of its first derivate,
is a set at the two boundaries of the domain (interval) Ω, that is at x = a
and x = b (the domain boundary is ∂Ω = {a, b}).

Let us consider the following Poisson problem with (homogeneous) Dirichlet
boundary conditions: find u : Ω ⊂ R → R such that:

−d2u

dx2
(x) = f (x) x ∈ Ω = (a, b)

u (a) = u (b) = 0

(4)

This equation models a stationary phenomenon (the time variable doesn’t
appear in fact) and represent a diffusion model.

Example 1

For example, the diffusion model models the diffusion of a pollutant
along a 1D channel Ω = (a, b) or the vertical displacement of an elastic
thread fixed at its ends. In the first case, f = f (x) indicates the source
of the pollutant along the flow, while in the second case, f is the traverse
force acting on the elastic thread, in the hypothesis of negligible mass
and small displacements of the thread.

8 Boundary value problem in 1D vs ODE

We remark that the boundary value problem in 1D is a particular case of
PDEs, even if it involves only derivatives with respect to a single independent
variable x. Indeed, even if apparently similar to a second order ODE, the
boundary value problem is in reality substantially different from an ODE:

• In ODE, two conditions are set at t = t0;

• In the boundary value problem in 1D, one condition is set at x = a and
the other one at x = b.

The conditions in the boundary value problem determine to the so-called global
nature of the model.
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1 Basic Concepts 1.2 Differential Models and PDEs

1.2.3 PDE, initial and boundary value problem in 1D

Initial and boundary value problem in 1D is a type of problems that
concern equations that depend on space and time:

• The unknown solution u = u (x, t) both depends on the space coordinate
x ∈ Ω ⊂ R in 1D;

• The time variable t ∈ I ⊂ I.

In this case, the initial conditions at t = 0 must be prescribed, as well as the
boundary conditions at the ends of the interval in 1D.

The Heat equation, also known as Diffusion equation, with Dirichlet bound-
ary conditions assumes the following form: find u : Ω× I → R such that:

∂u

∂t
(x, t)− µ

∂2u

∂x2
(x, t) = f (x, t) x ∈ Ω = (a, b) , t ∈ I

u (a, t) = u (b, t) = 0 t ∈ I

u (x, t0) = u0 (x) x ∈ Ω = (a, b)

(5)

Example 2

For example, the unknown function u (x, t) describes the temperature
in a point x ∈ Ω = (a, b) and time t ∈ I of a metallic bar covering
the space interval Ω. The diffusion coefficient µ represents the thermal
response of the material and it is related to its thermal conductivity.
The Dirichlet boundary conditions express the fact that the ends of the
bar are kept at a reference temperature (zero degrees in this case), while
at time t = t0 the temperature is assigned in each point x ∈ Ω through
the initial function u0 (x). Finally, the bar is subject to a heat source of
linear density f (x, t).
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1 Basic Concepts 1.2 Differential Models and PDEs

1.2.4 PDE, boundary value problem in multidimensional domains

The Poisson problem (equation 4, page 9) can be extended in multidimen-
sional domains Ω ⊂ Rd, with d = 2, 3; the solution is u = u (x), where
x = (x1, . . . , xd)

T ∈ Rd. This leads to the following Poisson problem with
(homogeneous) Dirichlet boundary conditions: find u : Ω ⊂ Rd → R such that:{

−∆u = f in Ω (i.e. x ∈ Ω)

u = 0 on ∂Ω (i.e. x ∈ ∂Ω)
(6)

Where:

• The Laplace operator:

∆u (x) :=

d∑
i=1

∂2u

∂x2
i

(x)

• The domain Ω ⊂ Rd is endowed with boundary ∂Ω;

• f = f (x) is the external forcing term.

This equation is used for example to model the vertical displacement of
an elastic membrane fixed at the boundaries.

1.2.5 PDE, initial and boundary value problem in multidimensional
domains

The multidimensional counterpart of the heat equation (5, page 10) reads:
find u : Ω× I → R such that:

∂u

∂t
− µ∆u = f x ∈ Ω, t ∈ I

u (x, t) = 0 x ∈ ∂Ω, t ∈ I

u (x, t0) = u0 (x) x ∈ Ω

(7)

Where u0 is the initial datum. The solution is u = u (x, t).
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1 Basic Concepts 1.2 Differential Models and PDEs

1.2.6 Classification of PDEs

A PDE is a relationship among:

• The partial derivatives of a function u = u (u, t), that is the PDE solu-
tion;

• Spatial coordinates x = (x1, . . . , xd)
T ∈ Rd on which the solution de-

pends (if the problem is defined in a spatial domain Ω ⊂ Rd).

• Time variable t.

Therefore, a PDE can be written as:

P
(
u,

∂u

∂t
,
∂u

∂x1
, . . . ,

∂u

∂xd
, . . . ,

∂p1+···+pd+ptu

∂xp1

1 . . . ∂xpd

d ∂tpt
,x, t; g

)
= 0 (8)

Where p1, . . . , pd, pt ∈ N and g are the data.

Definition 5: PDE order

The PDE order is the maximum order of derivation that appears
in P, that is:

q = p1 + · · ·+ pd + pt (9)

Definition 6: PDE is linear

The PDE is linear if P linearly depends on u and its derivatives.

) Classification

Let us focus on linear PDEs of order q = 2 with constant coefficients, so that
the general PDE formulation is:

Lu = g

Where L is a second order, linear differential operator. When only two in-
dependent variables (our case) x1 and x2 are considered, the operator L applied
to the function u reads:

Lu = A · ∂
2u

∂x2
1

+B · ∂2u

∂x1 ∂x2
+ C · ∂

2u

∂x2
2

+D · ∂u

∂x1
+ E · ∂u

∂x2
+ F · u

For some constant coefficients A,B,C,D,E, F,G ∈ R. If d = 2 (our case), the
independent variables can represent the space coordinates:

• x1 = x

• x2 = y

After introducing the PDE discriminant (a quantity that helps determine the
type of PDE):

∆ := B2 − 4AC (10)
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1 Basic Concepts 1.2 Differential Models and PDEs

The PDE can be classified as:

• Elliptic PDE if ∆ < 0

• Parabolic PDE if ∆ = 0

• Hyperbolic PDE if ∆ > 0

® What are the implications of PDE classification?

The different nature of the PDE impacts on:

• Type and amount of data to prescribe as boundary;

• Initial conditions to ensure the well-posedness of the problem (existence
and uniqueness of the solution);

• The phenomena that can be described by the PDE;

• The information that encapsulates.

In general:

• Elliptic PDE typically describes stationary phenomena, without time
evolution of quantities.

• Parabolic PDE describes wave propagation phenomena with infinite
velocity of propagation.

• Hyperbolic PDE describes wave propagation phenomena but with
finite velocity of propagation.
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1 Basic Concepts 1.3 Numerical Methods

1.3 Numerical Methods
Since in most cases of practical interest we cannot solve a PDE analytically,
we need to use numerical methods that allow us to construct an approxima-
tion uh of the exact solution u, for which the corresponding error (u− uh) can
be quantified and/or estimated.

P (u; g) = 0 PDE (mathematical problem)
↓ numerical method

Ph (uh; gh) = 0 approximate PDE (numerical problem)

Where:

• gh is an approximation of the data g;

• Ph is a characterization of the approximate problem.

The subscript h indicates a discretization parameter that characterizes the
numerical approximation. Conventionally, the smaller is h, the better is the
approximation of u made by uh. Furthermore, the error (u− uh) tends to zero
as h gets smaller and smaller. In this course, we will specifically introduce the
FE method (page 4) to build the numerical approximation of PDEs.

] Summary Notation

Notation Description

P (u; g) = 0 PDE (mathematical problem)

u exact solution of a PDE

uh approximate solution of a PDE

(u− uh) error (quantified and/or estimated; tends to zero if h is
smaller)

h discretization parameter (↓ smaller h, better approxi-
mation; ↑ higher h, poor approximation)

Ph (uh; gh) = 0 approximate PDE (numerical problem)

gh approximation of the data g

Ph characterization of the approximate problem.

Table 1: Notation used to approximate the PDE with numerical methods.
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1 Basic Concepts 1.4 From Mathematical to Numerical Problem

1.4 From Mathematical to Numerical Problem
1.4.1 The Mathematical Problem (MP)

Let us consider a Physical Problem (PP) endowed with a physical solution,
let say uph, and dependent on data indicated with g.

The Mathematical Problem (MP) is represented by the mathematical
formulation of the PP and has mathematical solution u. Therefore, we
indicate the MP as:

P (u; g) = 0 (11)

Where:

• u ∈ U

• g ∈ G, and G is the set or space of admissible data.

Where U and G are suitable sets or spaces.

Definition 7: Model Error

The error between the physical and mathematical solutions is called
Model Error:

em := uph − u (12)

Where:

• uph is the physical solution;

• u is the mathematical solution.

The model error takes into account all those characteristics of the PP that
are not represented or captured by the MP.

® When a Mathematical Problem is well-posed?

Definition 8: well-posed MP

The mathematical problem MP is well-posed (stable) if and only if there
exists a unique solution u ∈ U that continuously depend on the
data g ∈ G.

From the previous definition, we remark that G is the set of admissible data, i.e.,
those for which the MP admits a unique solution. Furthermore, continuously
depend on the data means that small perturbations on data g ∈ G lead to
small changes on the solution u ∈ U of the MP. However, a measure of this
sensitivity is given by the condition number of the MP.
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1 Basic Concepts 1.4 From Mathematical to Numerical Problem

1.4.2 The Numerical Problem (NP)

The Numerical Problem (NP) is an approximation of the Mathematical
Problem (MP, equation 11, page 15). We indicate its numerical solution as
uh, where h stands as a suitable discretization parameter.

Ph (uh; gh) = 0 (13)

Where:

• uh ∈ Uh

• gh ∈ Gh, and gh is the representation of the data in the NP.

Where Uh and Gh are suitable sets or spaces.

Definition 9: Truncation Error

The error between the mathematical and numerical solutions is called
Truncation Error:

eh := u− uh (14)

Where:

• u is the mathematical solution;

• uh is the numerical solution.

The truncation error can be considered as the error resulting from the dis-
cretization of the MP.

� Numerical solution calculated on the computer

When the numerical solution is computed by running the algorithm on a com-
puter, we need more notations and concepts.

• ûh is the final solution.

• The final solution is affected by a Round-Off error er:

er := uh − ûh (15)

Such round-off errors depend on the machine architecture, on the repre-
sentation of the numbers at the calculator, and on operations made in
floating-point arithmetic.

• The truncation error eh (equation 14, page 16) and the Round-Off error
er (equation 15) concur to determine the Computational error ec:

ec := eh + er = (u−��uh) + (��uh − ûh) = u− ûh (16)

For some NP, we can have a round-off error less than a truncation error
|er| ≪ |eh|, for which ec ≈ eh.
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1 Basic Concepts 1.4 From Mathematical to Numerical Problem

® When a Numerical Problem is well-posed?

Definition 10: well-posed NP

The numerical problem NP is well-posed (stable) if and only if there
exists a unique solution uh ∈ Uh that continuously depends on
the data gh ∈ Gh.

� Consider the numerical solution calculated only on the computer

In practice, numerical solutions are computed on a computer. Therefore, it is
reasonable to obtain a computational error that tends to zero as the numerical
method improves, namely as the discretization parameter h goes to zero. This
concept is encoded in the definition of convergence.

Definition 11: convergence NP

The NP is convergent when the computational error tends to zero
for h tending to zero, that is:

lim
h→0

ec = 0 (17)

A crucial aspect is to qualify the convergence of the NP, that is determining the
convergence order of the NP.

Definition 12: convergence order

If |ec| ≤ Chp, with C a positive constant independent of h and p, then
the NP is convergent with order p.

® How to estimate the convergence order?

The convergence order can be estimated for many reasons (error estimation,
method comparison, accuracy verification, etc.). If there exists a constant C̃ ≤
C independent of h and p such that C̃hp ≤ |ec| ≤ Chp, then we can write
|ec| ≊ Chp and we can estimate the convergence order p of the NP by
using the known solution u of the MP. There are two approaches:

1. Algebraic estimation of p.

(a) We compute the computational errors ec1 and ec2 for the NP corre-
sponding to two different values of h that are “sufficietly” small, say
h1 and h2.

(b) Then:

• Writing |ec1| ≊ Chp
1 and |ec2| ≊ Chp

2

• Noticing that
|ec1|
|ec2|

=

(
h1

h2

)p
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1 Basic Concepts 1.4 From Mathematical to Numerical Problem

We estimate the order p as:

p =

log

(
|ec1|
|ec2|

)
log

(
h1

h2

) (18)

2. Graphical estimation of p. We represent the errors |ec| and h on a
plot in log-log scale. As log |ec| = log (Chp) = log (C) + p log (h), we have
p = arctan (θ), where θ is the slope of the curve (h, ec), a straight line
in log-log scale. Instead of computing θ, it is possible to verify that the
curves (h, ec) and (h, hp) are parallel in log-log scale.

In other words it involves plotting the error against the step size on a
log-log scale and analyzing the resulting graph:

(a) Compute Errors: Perform the numerical method for several step
sizes h, such as h1, h2, h3, . . . , and compute the corresponding errors
e1, e2, e3, . . . .

(b) Log-Log Plot : Plot the errors ei against the step sizes hi on a log-
log scale. This means we plot log (hi) on the x-axis and log (ei) on
the y-axis.

(c) Linear Relationship: If the method has a convergence order p,
the relationship between the error and the step size should follow
e ≈ Chp. Taking the logarithm of both sides gives:

log (e) ≈ log (C) + p log (h)

This indicates that the plot of log (e) versus log (h) should be a
straight line with a slope equal to p.

(d) Determine Slope : The slope of the line in the log-log plot is the
convergence order p. We can estimate this slope by fitting a linear
regression line to the data points.

Figure 2: Graphical estimation of the convergence order p of a NP: computa-
tional errors |ec| vs h.
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1 Basic Concepts 1.4 From Mathematical to Numerical Problem

® When is convergence guaranteed in NP?

Unfortunately, a well-posed NP is not necessarily convergent. To en-
sure convergence of the NP, this is required to satisfy the consistency property
(roughly speaking, the NP must be a “faithful copy” of the original MP).

Definition 13: NP consisten and strongly consistent

The Numerical Problem NP is consistent if and only if:

lim
h→0

Ph (u; g) = P (u; g) = 0 g ∈ Gh

The Numerical Problem NP is strongly consistent if and only if:

Ph (u; g) ≡ P (u; g) = 0 ∀h > 0, g ∈ Gh

Let highlights the main differences:

• Definition:

– Consistent . Consistency requires that as the discretization param-
eter h tends to zero lim

h→0
, the process Ph(u; g) approaches the exact

process P(u; g) and both become zero. This means that over time
and with finer discretization, the numerical approximation
converges to the exact solution.

– Strongly Consistent . Strong consistency means that for any pos-
itive value of h (∀h > 0, no matter how small), the process Ph(u; g)
is exactly equal to the exact process P(u; g) and both are zero. This
implies that the numerical approximation already matches the
exact solution for any step size.

• Condition of h:

– Consistent . The condition applies in the limit as h approaches zero.
The process gradually converges to the exact solution as the
discretization parameter becomes infinitesimally small.

– Strongly Consistent . The condition applies for all h > 0. This
is a stronger requirement because it demands that the numerical
method is accurate for any discretization parameter, not just
in the limit.

In practice, the Consistent indicates that the numerical method improves and
approaches the exact solution as the discretization parameter is refined. It
guarantees eventual accuracy, but not necessarily immediate or uniform
accuracy for larger h. On the other hand, Strongly Consistent indicates
that the numerical method is always accurate, regardless of the discretization
parameter. This implies a higher level of reliability and precision for any
h, making it a stronger and more robust form of consistency.

19



1 Basic Concepts 1.4 From Mathematical to Numerical Problem

The Lax-Richtmyer Equivalence Theorem is a cornerstone of numerical
analysis, linking the concepts of consistency, well-posedness (stability), and
convergence. It provides a rigorous framework for validating numeri-
cal methods and ensuring that they produce accurate and reliable
solutions. Furthermore, the following theorem guarantees that if a numerical
problem is well-posed and consistent, then the NP is also convergent .

Theorem 1 (Lax-Richtmyer, equivalence). If the Numerical Problem NP:

Ph (uh; gh) = 0 uh ∈ Uh, gh ∈ Gh

Is consistent:
lim
h→0

Ph (u; g) = P (u; g) = 0 g ∈ Gh

Then, it is well-posed if and only if it is also convergent.

It is a fundamental theorem in numerical analysis because it ensures that
stability and consistency are sufficient to guarantee convergence. Con-
versely, if we have a proof that the NP is consistent, we “only” need to show that
the problem is well-posed to automatically prove convergence (and vice versa).

Figure 3: Physical (PP), Mathematical (MP), and Numerical (NP) problems.
Corresponding solutions (uph, u, uh, and ûh) and errors (model em = uph − u,
truncation eh = u−uh, round-off er = uh− ûh, and computational ec = eh+ er
errors).
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O
Ordinary Differential Equation (ODE) 8

P
Parabolic PDE 13
Partial Differential Equation (PDE) 7
PDE discriminant 12
PDE is linear 12
PDE order 12
Physical Problem (PP) 15
Poisson problem 9
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Index Index

R
Round-Off error 16

S
Scientific Computing 5

T
Truncation Error 16
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