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Preface
Every theory section in these notes has been taken from the sources:

• Validity of the single processor approach to achieving large scale comput-
ing capabilities. [1]

• Introduction to parallel algorithms, Carnegie Mellon University. [2]

• Course slides. [3]

• Reevaluating Amdahl’s law. [4]

• OpenMP by Example, Johnston Hans. [5]

• Introduction to parallel computing, volume 110. [6]

• NVIDIA Tesla: A unified graphics and computing architecture. [7]

• Structured Parallel Programming: Patterns for Efficient Computation. [8]

• The critical directive, OpenMP, Microsoft. [9]

• Multithreading Architecture. [10]

• Lecture 5, Synchronization I - University of Michigan, EECS Department,
Prof. Ronald Dreslinski. [11]

• Cache, Wikipedia. [12]

About:

§ GitHub repository

These notes are an unofficial resource and shouldn’t replace the course mate-
rial or any other book on parallel computing. It is not made for commercial
purposes. I’ve made the following notes to help me improve my knowledge and
maybe it can be helpful for everyone.

As I have highlighted, a student should choose the teacher’s material or a
book on the topic. These notes can only be a helpful material.
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1 PRAM

1 PRAM

1.1 Prerequisites
Before we introduce the PRAM model, we need to cover some useful topics.

• A Machine Model describes a “machine”. It gives a value to the oper-
ations on the machine. It is necessary because: it makes it easy to deal
with algorithms; it achieves complexity bounds; it analyses maximum par-
allelism.

• A Random Access Machine (RAM) is a model of computation that
describes an abstract machine in the general class of register machines.
Some features are:

– Unbounded number of local memory cells;
– Each memory cell can hold an integer of unbounded size;
– Instruction set includes simple operations, data operations, compara-

tor, branches;
– All operations take unit time;
– The definition of time complexity is the number of instructions

executed;
– The definition of space complexity is the number of memory cells

used.

1.2 Definition

Definition 1: PRAM

A parallel random-access machine (parallel RAM or PRAM)
is a shared-memory abstract machine. As its name indicates, the
PRAM is intended as the parallel-computing analogy to the random-
access machine (RAM) (not to be confused with random-access mem-
ory). In the same way that the RAM is used by sequential-algorithm
designers to model algorithmic performance (such as time complexity),
the PRAM is used by parallel-algorithm designers to model par-
allel algorithmic performance (such as time complexity, where the
number of processors assumed is typically also stated).

The PRAM model has many interesting features:

• Unbounded collection of RAM processors (P0, P1, and so on);

• Processors don’t have tape;

• Each processor has unbounded registers;

• Unbounded collection of share memory cells;

• All processors can access all memory cells in unit time;

• All communication via shared memory.
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1 PRAM 1.3 How it works

1.3 How it works
1.3.1 Computation

A single processor of the PRAM, at each computation, is composed of 5
phases (carried out in parallel by all the processors):

1. Reads a value from one of the cells X (1) , . . . , X (N)

2. Reads one of the shared memory cells A (1) , A (2) , . . .

3. Performs some internal computation

4. May write into one of the output cells Y (1) , Y (2) , . . .

5. May write into one of the shared memory cells A (1) , A (2) , . . .

1.3.2 PRAM Classificiation

During execution, a subset of processors may remain idle. Also, some processors
can read from the same cell at the same time (not really a problem), but they
could also try to write to the same cell at the same time (write conflict). For
these reasons, PRAMs are classified according to their read/write capabilities
(realistic and useful):

• Exclusive Read (ER). All processors can simultaneously read from dis-
tinct memory locations.

• Exclusive Write (EW). All processors can simultaneously write to dis-
tinct memory locations.

• Concurrent Read (CR). All processors can simultaneously read from
any memory location.

• Concurrent Write (CW). All processors can write to any memory lo-
cation.

® But what value is ultimately written?

It depends on the mode we choose:

– Priority Concurrent Write. Processors have priority based on
which value is decided, the highest priority is allowed to com-
plete write.

– Common Concurrent Write. All processors are allowed to com-
plete write if and only if all the value to be written are equal.
Any algorithm for this model has to make sure that this con-
dition is satisfied. Otherwise, the algorithm is illegal and the
machine state will be undefined.

– Arbitrary/Random Concurrent Write. One randomly chosen
processor is allowed to complete write.

7



1 PRAM 1.3 How it works

1.3.3 Strengths of PRAM

PRAM is attractive and important model for designers of parallel algorithms
because:

• It is natural. The number of operations executed per one cycle on P
processors is at most P (equal to P is the ideal case).

• It is strong. Any processor can read/write any shared memory cell in
unit time.

• It is simple. It abstracts from any communication or synchronization
overhead, which makes the complexity and correctness of PRAM algo-
rithm easier.

• It can be used as a benchmark. If a problem has no feasible/efficient
solution on PRAM, it has no feasible/efficient solution for any parallel
machine.

1.3.4 How to compare PRAM models

Consider two generic PRAMs, models A and B. Model A is computationally
stronger than model B (A ≥ B) if and only if any algorithm written for
model B will run unchanged on model A in the same parallel time and
with the same basic properties.

However, there are some useful metrics that can be used to compare models:

• Time to solve problem of input size n on one processor, using best
sequential algorithm:

T ∗ (n) (1)

• Time to solve problem of input size n on p processors:

Tp (n) (2)

• Speedup on p processors:

SUp (n) =
T ∗ (n)

Tp (n)
(3)

• Efficiency, which is the work done by a processor to solve a problem of
input size n divided by the work done by p processors:

Ep (n) =
T1 (n)

pTp (n)
(4)

• Shortest run time on any process p:

T∞ (n) (5)

8



1 PRAM 1.3 How it works

• Cost, equal to processors and time:

C (n) = P (n) · T (n) (6)

• Work, equal to the total number of operations:

W (n) (7)

Some properties on the metrics:

• The time to solve a problem of input n on a single processor using the
best sequential algorithm is not equal to the time to solve a problem of
input n in parallel using one of the p processors available. In other words,
the problem should not be solvable on a single processor on a
parallel machine (otherwise, what would be the point of using a parallel
model?)

T ∗ ̸= T1

• SUP ≤ P

• SUP ≤
T1

T∞

• Ep ≤ 1

• T1 ≥ T ∗ ≥ Tp ≥ T∞

• T ∗ ≈ T1 ⇒ Ep ≈
T ∗

pTp
=

SUp

p

• Ep =
T1

pTp
≤ T1

pT∞

• T1 ∈ O (C) , Tp ∈ O

(
C

p

)
• W ≤ C

• p ≈ AREA W ≈ ENERGY
W

Tp
≈ POWER
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1 PRAM 1.4 MVM algorithm

1.4 MVM algorithm
The Matrix-Vector Multiply (MVM) algorithm consists of four steps:

1. Concurrent read of vector X (1 : n) (transfer N elements);

2. Simultaneous reads of different sections of the general matrix A

(transfer
n2

p
elements to each processor);

3. Compute
n2

p
operations per processor;

4. Simultaneous writes (transfer
n

p
elements from each processor).

Let i be the processor index, so the MVM algorithm is simply written as:

1 GLOBAL READ (Z ← X)
2 GLOBAL READ (B ← Ai)
3 COMPUTE (W := BZ)
4 GLOBAL WRITE (W → yi)

Algorithm 1: Matrix-Vector Multiply (MVM)

× =

× =

× =

× =

× =

× =

Ax=y

Ai x
yi

Core 1

Core 4

Figure 1: Example of MVM algorithm.
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1 PRAM 1.4 MVM algorithm

The performance of the MVM algorithm is as follows:

• The time to solve a problem of size n2 is equal to the big O of the
squared size of the problem as input divided by the number of processors
available:

Tp

(
n2

)
= O

(
n2

p

)
• The cost is equal to the number of processors and the time it takes to

solve the problem. So it is quite trivial:

C = O

(
�P ·

n2

�p

)
= O

(
n2

)
• The work is equal to the cost, and the linear power P is equal to the

ratio of work and time to solve the problem on p processors:

W = C
W

Tp
= P

• The perfect efficiency is equal to:

Ep =
T1

pTp
=

n2

pn2

p

= 1
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1.5 SPMD sum
The Single Program Multiple Data (SPMD) is a term that has been
used to describe computational models for exploiting parallelism, where
multiple processors work together to execute a program to get results
faster.

In this section, we will see an SPMD approach on a Parallel Random Access
Machine (PRAM). We will introduce one of the most common and simple math-
ematical operations: the sum.

The following pseudocode takes as input an array of size n = 2k. In this case,
n is a power of 2 because it ensures that the array can be evenly divided at each
step of the computation. The value k is the number of iterations or levels of the
summation process.

1 BEGIN
2 GLOBAL READ (A ← A(I))
3 GLOBAL WRITE (A → B(I))
4 FOR H = 1 : K
5 IF i ≤ n÷ 2h THEN BEGIN
6 GLOBAL READ (X ← B(2i - 1))
7 GLOBAL READ (Y ← B(2i))
8 Z := X + Y
9 GLOBAL WRITE (Z → B(i))

10 END
11 IF I = 1 THEN
12 GLOBAL WRITE (Z → S)
13 END

Algorithm 2: Single Program Multiple Data (SPMD) sum

• First, read the entire input array A and copy the read data to another
array B.

• Loop over h (1 to k). In each iteration, for each index i less than or equal
to n÷ 2h, read values from array B at positions 2i− 1 and 2i; sum these
values (and store the result in Z) and store the result (Z) back into B(i).

• Once all iterations are complete, the final sum is stored in a variable S.

For example, if n = 8, then k would be 3, meaning that the algorithm will run
for 3 iterations to sum all the elements in parallel.

h i adding

1

1 1,2
2 3,4
3 5,6
4 7,8

2 1 1,2
2 3,4

3 1 1,2
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1 PRAM 1.5 SPMD sum

Figure 2: Computation of the sum of eight elements on a PRAM with eight pro-
cessors. Each internal node represents a sum operation. The specific processor
executing the operation is indicated below each node.

T Performance of sum

When the size of the array is equal to the number of processors (N = P ), the
speedup and efficiency decrease:

• T ∗ (N) = T1 (N) = N

• TN=P (N) = 2 + logN

• SUP =
N

2 + logN

• T ∗ (N) = P · (2 + logN) ≈ N logN

• Ep =
T1

pTp
=

N

N logN
=

1

logN

13



1 PRAM 1.5 SPMD sum

If the size of the array is much larger than the number of processors (N ≫ P ),
the speedup and power are linear, the cost is fixed and the efficiency is
maximum (equal to 1):

• T ∗ (N) = T1 (N) = N

• Tp (N) =
N

p
+ log p

• SUP =
N

N
p + log p

≈ P

• COST = p

(
N

p
+ log p

)
≈ N

• WORK = N + P ≈ N

• Ep =
T1

pTp
=

N

p
(

N
p + log p

) ≈ 1

n = 1′000′000

Example 1

Refer to Figure 2 (page 13), the performance metrics are:

• T8 = 5

• C = 8 · 5 = 40 (could do 40 steps)

• W = 2n = 16 (16 on 40, wasted 24)

• Ep =
2

log n
=

2

3
= 0.67

•
W

C
=

16

40
= 0.4
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1 PRAM 1.5 SPMD sum

There is also the Prefix Sum, which takes advantage of idle processors in
the sum. It computes all prefix sums:

Si =

i∑
1

aj a1, a1 + a2, a1 + a2 + a3

Figure 4: Prefix sum.
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1.6 MM algorithm
The Matrix Multiply (MM) algorithm consists of three steps:

1. Compute the two matrices Ai,l and Bl,j , so use the concurrent read.

2. Make the sum.

3. Store the result using exclusive write.

1 BEGIN
2 Ti,j,l = Ai,lBl,j

3 FOR = H = 1 : K
4 IF l ≤ n÷ 2h THEN
5 Ti,j,l = Ti,j,2l−1 + Ti,j,2l

6 IF l = 1 THEN
7 Ci,j = Ti,j,1

8 END

Algorithm 3: Matrix Multiply (MM)

T Performance of MM

• T1 = n3

• Tp=n3 = log n

• SU =
n3

log n

• Cost = n3 log n

• Ep =
T1

pTp
=

1

log n
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1.7 PRAM variants and Lemmas
The PRAM model presented here is one of the most commonly used. However,
there are other important variants:

• PRAM model with a limited number of shared memory cells (small
memory PRAM). If the input data set exceeds the capacity of the shared
memory, the I/O values can be evenly distributed among the processors.

• PRAM model with limited number of processors (small PRAM). If the
number of execution threads is higher, processors can interleave multiple
threads.

• PRAM model with limited size of one machine word.

• PRAM model with access conflicts handling. These are restrictions on
simultaneous access to shared memory cells.

Lemma 1. Assume P ′ < P and same size of shared memory. Any problem
that can be solved for a P processor PRAM in T steps can be solved in a P ′

processor PRAM in:

T ′ = O

(
TP

P ′

)
(8)

Proof. Partition P is simulated processors into P ′ groups of size P
P ′ each. As-

sociate each of the P ′ simulating processors with one of these groups. Each of
the simulating processors simulates one step of its group of processors by:

• Executing all their read and local computation substeps first;

• Executing their write substeps then.

QED

Lemma 2. Assume M ′ < M . Any problem that can be solved for a P processor
and M -cell PRAM in T steps can be solved on a max (P,M ′)-processors M ′-cell

PRAM in O

(
TM

M ′

)
steps.

Proof. Partition M simulated shared memory cells into M ′ continuous segments
S, of size M

M ′ each. Each simulating processor P ′
I (1 ≤ I ≤ P ), will simulate

processor PI of the original PRAM. Each simulating processor P ′
I (1 ≤ I ≤M ′),

stores the initial contents of SI into its local memory and will use M ′ [I] as an
auxiliary memory cell for simulation of accesses to cell of SI .
Simulation of one original read operation:

1 EACH P ′
I (I = 1, . . . ,max (P,M ′)) REPEATS FOR K = 1, ..., M

M′
2 WRITE THE VALUE OF THE K-TH CELL OF SI INTO M ′ [I] (I = 1, . . . ,M ′)
3 READ THE VALUE WHICH THE SIMULATED PROCESSOR PI (I = 1, . . . , P )

WOULD READ IN THIS SIMULATED SUBSTEP , IF IT APPEARED IN THE
SHARED MEMORY

The local computation substep of PI (I = 1, . . . , P ) is simulated in one step
by P ′

I . SImulation of one original write operation is analogous to that of read.
QED
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1.8 PRAM implementation
The PRAM is an ideal model for creating parallel algorithms. Now we look at
“is it really implementable? ” The short answer is yes.

The longest answer is the following. There are already some examples of PRAM
being converted to real machine models, such as Explicit Multi-Threading
(XMT), Rigel, Tilera, etc. If conversion is not easy or possible, the imple-
mentation can be “direct”:

• The concurrent read is implemented as a detect-and-multicast technique.

• The concurrent write is implemented depending on the end result we want
to achieve. Fetch-and-operate and prefix-sum are examples of serialized
writing; otherwise, the CRCW technique is used:

– Common CRCW: detect and merge

– Priority CRCW: detect-and-priorities

– Arbitrary CRCW: arbitrary

Example 2: Boolean DNF (sum of products) common CRCW

A logical formula is considered to be in DNF if it is a disjunction of one
or more conjunctions of one or more literals.
Consider X as the sum of products of AND/OR operations:

X = a1b1 + a2b2 + . . .

The PRAM code, with X initialized to 0 and task index equal to $, is:

if (a$b$) X = 1;

The common result is that not all processors write X and those that do
write 1. The time complexity is O (1). It works on common, priority and
arbitrary CRCW.

Despite the previous example, exists also the PRAM SoP for the concurrent
write. Let boolean X as:

X = a1b1 + a2b2 + . . .

The PRAM algorithm is:

if (aibi) X = 1;

Where all cores which write into X, write the same value.
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✓ PRAM advantages

• Large body of algorithms.

• Easy to think about it.

• Sync version of shared memory. It eliminates sync and common issues,
allows focus on algorithms, but allows adding these issues and allows con-
version to async versions.

• Exists architectures for both synch (PRAM) and async (SM) model.

• PRAM algorithms can be mapped to other models.
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1.9 Amdahl’s and Gustafson’s Laws
The Amdahl’s Law is a formula which gives the theoretical speedup in
latency of the execution of a task at fixed workload that can be ex-
pected of a system whose resources are improved. The law can be stated
as:

Definition 2: Amdahl’s Law

The overall performance improvement gained by optimizing a
single part of a system is limited by the fraction of time that
the improved part is actually used.

In practice, Amdahl’s law says that the computation consists of interleaved
segments of two types:

1. Serial segments (which cannot be parallelized);

2. Parallelizable segments.

Therefore, the metrics we can obtain are the time on P processors metric, that
it is greater than the fraction of time on a processor divided by the processors
P , and the speedup metric, that it is less than the number of processors P :

TP >
T1

P
SU < P

Graphically, we can see a fixed part of the line, which is the serial segment
(no speedup), and a set of instructions that can be parallelized (the sum of
these segments is equal to the unit time 1).

Furthermore, if we identify the parallelizable segment as f and the serial segment
as 1− f , we obtain the following expressions:

SU (P, f) =
T1

TP
=

T1

T1 · (1− f) + T1·f
P

=
1

(1− f) + f
P

lim
P→∞

SU (P, f) =
1

1− f

(9)

In the following figure we can see the speedup with parameter f . Note the
pessimism: for a problem with inherent f = 90%, there is no point in using
more than 10 processors.
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Figure 5: Amdahl’s law, SU (P ), parameter f .

The original paper presenting Amdahl’s Law [1] can be viewed by clicking on
the link below or by scanning the QR code.

Amdahl’s Law

Amdahl’s law applies only to the cases where the problem size is
fixed. In practice, as more computing resources become available, they tend
to get used on larger problems (larger datasets), and the time spent in the
parallelizable part often grows much faster than the inherently serial work. In
this case, Gustafson’s law gives a less pessimistic and more realistic
assessment of the parallel performance. [8]

Gustafson’s Law gives the speedup in the execution time of a task that theo-
retically gains from parallel computing, using a hypothetical run of the task on
a single-core machine as the baseline. To put it another way, it is the theoret-
ical “slowdown” of an already parallelized task if running on a serial
machine.

Against Amdahl’s law, Gustafson suggests the following ideas:

• Portion f is not fixed;

• The absolute serial time is fixed;

• Parallel problem size is increased to exploit more processors;

• Fixed serial time (s of total) and fixed parallel time (1 − s of total) are
invariants;

• Fixed time model and not fixed size model (as Amdahl’s law):

SU (P ) =
T1

TP
=

s+ P · (1− s)

s+ (1− s)
= s+ P · (1− s) (10)
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Gustafson’s law suggests a linear speedup and is empirically applicable to
highly parallel algorithms.

Figure 6: Gustafson’s law.

Amdahl’s Law states that as computing power increases, computational re-
quirements remain the same. In other words, the analysis of the same data
will take less time with more computing power.

Gustafson , on the other hand, argues that more computing power leads
to more careful and complete analysis of the data. Where it would not
have been possible or practical to simulate the impact of nuclear denotation on
every building, car, and their contents (including furniture, structural strength,
etc.) because such a calculation would have taken more time than was available
to provide an answer, the increase in computing power will prompt researchers
to add more data to more fully simulate more variables, giving a more accurate
result.

The original paper presenting Gustafson’s Law [4] can be viewed by clicking on
the link below or by scanning the QR code.

Gustafson’s Law
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2 Fundamentals of architecture
The main purpose of this chapter is to introduce some basics of parallel com-
puting theory. It will introduce the simplest and trivial processor and the more
complex and efficient variants. The topics introduced are explained in a simple
way and without any deepening, because it is only an introduction. For those
who have studied computer science, this chapter might be a little boring and
you might notice that some topics are explained in a simplistic way.

2.1 Introduction
2.1.1 Simplest processor

Inside a computer, a processor executes instructions.

• Fetch/Decode: Determine which instruction to run next;

• ALU (execution unit): Performs the operation described by an instruc-
tion, which may change values in the processor’s registers or the com-
puter’s memory;

• Registers: maintain program state, store values of variables used as in-
puts and outputs to operations.

The simplest and most basic processor executes one instruction per clock
cycle.

Figure 7: The simplest and most basic processor.
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2.1.2 Superscalar processor

A more “complex” and realistic model is the superscalar processor. This pro-
cessor can decode and execute up to two instructions per clock. The
execution is slightly different from the simplest processor. The processor au-
tomatically finds independent instructions in an instruction sequence
and can execute them in parallel on multiple execution units.

Figure 8: The superscalar processor.

The superscalar processor takes advantage of Instruction-Level Parallelism
(ILP)1 within an instruction stream.

• Processing different instructions from the same instruction stream in
parallel (within a core).

• Parallelism is automatically detected by the hardware during
execution.

1Instruction-level parallelism (ILP) is the parallel or simultaneous execution of a sequence
of instructions in a computer program. More specifically ILP refers to the average number of
instructions run per step of this parallel execution.

24



2 Fundamentals of architecture 2.1 Introduction

2.1.3 Single Instruction, Multiple Data (SIMD) processor

Adding execution units (ALUs) to the simplest processor can increase compute
capability. Amortize the cost/complexity of managing an instruction stream
across many ALUs using Single Instruction, Multiple Data (SIMD) pro-
cessing. Therefore, the same instruction is sent to all ALUs. This opera-
tion is performed in parallel on all ALUs.

✓ Advantages

• Efficient for data-parallel workloads: amortize control costs over
many ALUs.

• Vectorization done by:

– Compiler (explicit SIMD): parallelism is explicitly requested by
the programmer through intrinsics, conveyed through parallel lan-
guage semantics, and inferred through loop dependency analysis by
the “auto-vectorizing” compiler. In other words, the SIMD paral-
lelization is done at compile time, and when we inspect the
program binary, we can see the SIMD instructions.

– At runtime by hardware (implicit SIMD): the compiler gener-
ates a binary with scalar instructions, but n instances of the pro-
gram are always executed together on the processor. The hardware
(not the compiler) is responsible for the simultaneous execu-
tion of the same instruction by multiple program instances
on different data on SIMD ALUs.

2.1.4 Multi-Core Processor

A Multi-Core Processor (MCP) is a microprocessor on a single inte-
grated circuit (IC) with two or more separate central processing units
(CPUs), called cores to emphasize their multiplicity (e.g., dual-core or quad-
core). Each core reads and executes program instructions, specifically ordinary
CPU instructions (such as add, move data, and branch). However, the MCP
can execute instructions on separate cores simultaneously, increasing
overall speed for programs that support multithreading or other par-
allel computing techniques.

✓ Advantages

• Provides thread-level parallelism: execute a completely different in-
struction stream on each core simultaneously.

• Software creates threads to expose parallelism to hardware (e.g.,
via threading API)
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2.2 Accessing Memory
2.2.1 What is a memory?

A computer’s memory is organized as an array of bytes. Each byte is identified
by its address in memory (its position in that array).

Address Value

0x0 16
0x1 255
0x2 14
0x3 0
0x4 0
0x5 0
0x6 6
0x7 0
0x8 32
0x9 48
0xA 255
0xB 255
0xC 255
0xD 0
0xE 0
0xF 0
0x10 128

...
...

0x1F 0

Table 1: Example illustration of the program’s memory address space of 32
bytes, range from 0x0 to 0x1F.

From the processor’s point of view, loading an instruction to access the contents
present in memory is done with the ld assembly instruction. For example, ld
R0 ← mem[R2] means “take the value from register R2 and put that value into
register R0”.

Before we introduce new concepts, let us take a moment to explain some im-
portant terminology:

• Memory Access Latency, is the time it takes for the memory system
to deliver data to the processor.

• Processor Stall. A processor stalls when it cannot execute the next
instruction in an instruction stream because of a dependency on
a previous instruction that has not been completed. Accessing
memory is a major source of stalling, which is one of the main reasons
why memory accesses should be limited.
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For example, in the following three assembler instructions, the add has
to wait for the loading of R2 and R3 values, making parallelization more
complicated:

ld r0 mem[r2]
ld r1 mem[r3]
add r0, r0, r1

• Memory Bandwidth, is the rate at which the memory system can
provide data to a processor.

Bandwidth is the critical resource in modern computing.

High-performance parallel programs will:

1. Organize computation to fetch data from memory less fre-
quently. For example, reuse data previously loaded by the same
thread (temporal locality optimizations) or share data across threads
(inter-thread cooperation);

2. Prefer to perform additional arithmetic to store/reload val-
ues;

3. Programs need to access memory infrequently to take advan-
tage of modern processors.

27



2 Fundamentals of architecture 2.2 Accessing Memory

2.2.2 How to reduce processor stalls

2.2.2.1 Cache

One of the most common solutions is caching.

A cache is a hardware or software component that stores data so that
future requests for that data can be served faster; the data stored in
a cache might be the result of an earlier computation or a copy of data stored
elsewhere.

• A Cache Hit occurs when the requested data is found in a cache;

• A Cache Miss occurs when it cannot.

Cache hits are served by reading data from the cache, which is faster than
recomputing a result or reading from a slower data store, so the more requests
that can be served from the cache, the faster the system performs. [12]

Many modern CPUs have logic that predicts what data will be accessed in
the future and “pre-fetches” that data into caches. Prefetching reduces stalls
because the data is resident in the cache when it is accessed. But beware, the
other side of the coin is that if the guess is wrong, the performance is worse
than the system without prefetching!

2.2.2.2 Multi-threading

A Multithreaded Processor is one that has the ability to follow multiple
instruction streams without software intervention. In practice, then, this
includes any machine that stores multiple program counters (PCs) in
hardware within the processor (i.e., on chip, for microprocessor-era ma-
chines). [10]

The main idea in this architecture is to interleave processing of multiple
threads on the same core to hide stalls. In other words, if we can’t make
progress on the current thread, we work on another one.

Example 1: core utilization

To better understand our explanation, suppose we are running a program
where threads perform three arithmetic instructions followed by a
memory load (with 12 cycle latency).

From the figure, it is clear that if we consider an arithmetic instruction
and a memory stall, the core is not fully optimized to work at 100%. In
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practice, we see that a single arithmetic instruction takes 3 clock cycles
and the memory stall takes 12 clock cycles. This means that from this
situation we are using the CPU at only 20% (3 work clock cycles on 15)!
Without suggesting the final solution, try to see what happens when we
add another thread.

We have gained three clock cycles, and now we are taking advantage of
the 40% of the core.
Now, how many threads do we need to achieve 100% utilization? The
answer is simple: the number of clock cycles of the operations to be done
before the stall plus the clock cycles of the stall divided by the working
operations (operations that are not stalls). In our case: 15÷ 3 = 5.

Note that if we add more threads, there will be no benefit because the
CPU is already at 100%.

✓ Multithreaded Processor benefits

• A processor with multiple hardware threads has the ability to avoid
stalls by executing instructions from other threads when one thread must
wait for a long latency operation to complete. The latency of the mem-
ory operation is not changed by multithreading, it just no longer causes
reduced processor utilization.

• A multithreaded processor hides memory latency by performing
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arithmetic from other threads. Program that feature more arithmetic
per memory access need fewer threads to hide memory stalls.

> Type of hardware-supported multithreading

• Core manages execution contexts for multiple threads. This type
still has the same number of ALU resources: multi-threading only helps
to use them more efficiently in the face of high latency operations such as
memory access. The processor decides which thread to run each
clock cycle.

• Coarse-Grain Multithreading, also called Block Multithreading or
Switch-On-Event Multithreading, has multiple hardware contexts as-
sociated with each processor core. A hardware context is the program
counter, register file, and other data required to enabled a software thread
to execute on a core. However, only one hardware context has access to
the pipeline at a time. [10]

• Fine-Grain Multithreading (FGMT), also known as Interleaved
Multithreading or Temporal Multithreading, is the type just de-
scribed on the previous pages, as in the example on page 28.

• Simultaneous Multithreading (SMT) has multiple hardware contexts
associated with each core. In a simultaneous multithreaded processor,
instructions from multiple threads are available to be issued on any cycle.
Therefore, all hardware contexts, and in particular all register files, must
be accessible to the pipeline and its execution resources. [10]

In other words, each clock, the core selects instructions from mul-
tiple threads to execute on ALUs.
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3 Programming models

3.1 Implicit SPMD Program Compiler (ISPC)
Before introducing the ISPC compiler, we give the definition of SPMD.

Definition 1: Single Program, Multiple Data (SPMD)

Single Program, Multiple Data (SPMD) is a term that has been
used to refer to computational models for exploiting parallelism, where
multiple processors work together to execute a program to
achieve faster results.
The difference between SPMD and SIMD (page 25) is that in SPMD
parallel execution, multiple autonomous processors simultane-
ously execute the same program at independent points, rather
than in SIMD it is vectorization at the instruction level so that each
CPU instruction processes multiple data elements.
In other words:

• SPMD: is the programming abstraction, because the program-
mer has to think; the program is written in terms of this abstrac-
tion.

• SIMD: in general, the compilers (ISPC) issue special vector instruc-
tions that execute the logic performed by each parallel instance
created (ISPC gang spawned). In addition, the compilers handle
the mapping of conditional control flow to vector instructions.

The difference and the terminology used by ISPC will become clearer in
the following pages. We suggest that finish this section and come back
here in a moment.

Definition 2: Implicit SPMD Program Compiler (ISPC)

Implicit SPMD Program Compiler (ISPC) is a compiler for a
variant of the C programming language, with extensions for Sin-
gle Program, Multiple Data (SPMD) programming. Under the SPMD
model, the programmer writes a program that generally appears to be
a regular serial program, though the execution model is actually that a
number of program instances execute in parallel on the hardware. In
other words, the ISPC gives the programmer some API to do
parallelization on the code; it also generates high quality SIMD
code to increase performance.

The definition, implementation, and other details are explained in the official
Intel GitHub repository.
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® How it works?

Let us take a general main program; when we call an ispc function, it causes a
spawn of gang of ISPC program instances upon return, all instances
have completed. These instances execute the same ISPC code simul-
taneously, and each instance has its own copy of local variables. Take
the following ISPC code as an example:

1 export void ispc_sinx(
2 uniform int N,
3 uniform int terms ,
4 uniform float* x,
5 uniform float* result
6 ){
7 // assume N % programCount = 0
8 for (uniform int i=0; i<N; i+= programCount) {
9 int idx = i + programIndex;

10 float value = x[idx];
11 float numer = x[idx] * x[idx] * x[idx];
12 uniform int denom = 6; // 3!
13 uniform int sign = -1;
14 for (uniform int j=1; j<=terms; j++) {
15 value += sign * numer / denom
16 numer *= x[idx] * x[idx];
17 denom *= (2*j+2) * (2*j+3);
18 sign *= -1;
19 }
20 result[idx] = value;
21 }
22 }

In the example, the programCount (row 8) and programIndex (row 9) variables,
uniform (row 2, and so on) data type tell us:

• programIndex gives the index of the SIMD-lane being used for running
each program instance (in other words, it’s a varying integer value that
has value zero for the first program instance, and so forth).

• programCount gives the total number of instances in the gang .

• A variable that is declared with the uniform qualifier represents a single
value that is shared across the entire gang .

Together, these can be used to uniquely map executing program instances to
input data (programIndex and programCount, uniform data type).

With the ISPC analogy, the SPMD programming model should be clear:

1. Single thread of control (typically a main program);

2. Invoke the SPMD function (in the previous example, the ispc_sinx
function);

3. SPMD execution, then multiple instances of the function run in
parallel (multiple logical threads of control);

4. Returns and resumes a single thread of control.
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Figure 9: Example of execution with 8 instances (programCount equal to 8).
For all program instances, there are eight non-contiguous values in memory. A
special instruction called gather is needed to implement this, but unfortunately
it is a more complex and expensive SIMD instruction rather than a contiguous
implementation.

Figure 9 shows a possible execution of the ISPC function using 8 instances. The
result is obtained and all is well. But there is one interesting observation. Each
ISPC instance writes each value in a non-contiguous way. This can be
done better:

1 export void ispc_sinx_v2(
2 uniform int N,
3 uniform int terms ,
4 uniform float* x,
5 uniform float* result
6 ){
7 // assume N % programCount = 0
8 uniform int count = N / programCount;
9 int start = programIndex * count;

10 for (uniform int i=0; i<count; i++) {
11 int idx = start + i;
12 float value = x[idx];
13 float numer = x[idx] * x[idx] * x[idx];
14 uniform int denom = 6; // 3!
15 uniform int sign = -1;
16 for (uniform int j=1; j<=terms; j++) {
17 value += sign * numer / denom
18 numer *= x[idx] * x[idx];
19 denom *= (j+3) * (j+4);
20 sign *= -1;
21 }
22 result[idx] = value;
23 }
24 }
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Figure 10: Example of execution with 8 instances (programCount equal to 8).
A single “packed vector load” instruction efficiently implements this. For all
program instances, since the eight values are contiguous in memory.
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3.2 Shared Address Space Model
We give a general introduction to memory in the chapter 2.2. In parallel comput-
ing theory, each thread communicates with other threads using read-
/write operations. These instructions operate on a special area called the
Shared Address Space (also called Shared Variables).

Definition 3: Shared Address Space

The Shared Address Space view of a parallel platform supports a com-
mon data space that is accessible to all processors. Processors interact
by modifying data objects stored in this shared-address-space. [6]

Now the first and trivial question should be: a powerful tool is the possibility
to allow communication between threads, but how can we guarantee that two
or more threads accessing the same resource do not create well known problems,
such as race condition?

This property, commonly called mutual exclusion or atomic operation,
can be guaranteed with some techniques:

• Lock/Unlock mutex around a critical section:

1 Lock lock_variable;
2

3 // some operations , such as spawn of threads
4

5 lock_variable.lock();
6 // critical section
7 lock_variable.unlock ();

• Some languages have first-class support for atomicity of code blocks:

1 atomic {
2 // critical section
3 }

• Intrinsics for hardware-supported atomic read-modify-write oper-
ations:

1 atomicAdd(x, 10);

The shared address space requires hardware support to be efficiently
implemented. The main idea is that each processor can directly reference
the contents of any memory location. Some interesting examples that
can be explored in depth are: SUN Niagara 2, Knights landing (KNL): 2nd
Generation Intel Xeon Phi processor.
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3.3 Message Passing model of communication
In parallel computing, the message passing model allows threads (or pro-
cesses) to communicate by sending and receiving messages. This model
is used to facilitate data exchange between threads running in their
own private address spaces.

Each thread operates within its private address space, meaning they do not
share memory directly. When they need to communicate with a specific
thread without using a shared address space model, they use the message passing
model to send (or receive) the data.

• Usually, the sender specifies

– the recipient;
– the buffer to be transmitted;
– an optional message identifier (a sort of tag).

• Meanwhile, the receiver specifies:

– who the sender is;
– the buffer where to store data;
– an optional message identifier (again, a sort of tag).

The message passing model is the only way to exchange data between
threads because it guarantees three main advantages:

¥ Data Isolation: Using message passing, each thread maintains its
address space, reducing the risk of race conditions.

¥ Scalability: Message passing scales well with distributed systems
and multi-core architectures, making it suitable for large-scale parallel
computing.

¥ Flexibility: It allows for explicit control over data exchange and
synchronization, providing Flexibility in parallel program design.
Explicit control refers to the fact that in message passing, each commu-
nication action is explicitly defined by send and receive operations. This
means we can precisely dictate which data is sent, when, and to whom it
is sent. Furthermore, the synchronization is managed very well because
message passing naturally incorporates synchronization. When a process
sends a message, it can block until it is received, ensuring that the sender
and receiver are synchronized.

® Why message passing is preferable to the shared address space
model

Unlike shared memory systems that require complex hardware mechanisms to
implement system-wide load and store operations, message passing systems do
not need this capability. They only need to communicate messages be-
tween nodes. It can be considered as a great advantage for message passing
models, which for this reason is very much used in the supercomputers and clus-
ters. Finally, this model has the ability to connect commodity hardware
systems together to form a large parallel machine. This means we can
use off-the-shelf components to build powerful computing clusters.
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3.4 Data-Parallel model
In parallel computing, the Data-Parallel model is characterized by applying
the same operation simultaneously across multiple data points. This
model is particularly effective for tasks involving large datasets where the same
computation needs to be performed on each data element.

This model organizes computation as operations on sequences of ele-
ments (e.g., perform the same function on all elements of a sequence). In
programming languages, the basic data type used for this purpose is called
Sequence (e.g., C++). Despite the name of the datatype used in the languages,
the definition is that it is an ordered collection of elements, where each
element can be accessed and manipulated using various sequence op-
erators. The most common operators are:

• Map. The map function is a higher-order function2 that operates on
sequences. It applies a side-effect-free unary function3 f : a→ b to
all elements of an input sequence, producing an output sequence
of the same length.

Example 1: Python Analogy

For a better understanding, we provide a very simple Python code
to see how a map function works. In Python there is a map function
that does exactly what we say.

1 # Define a trivial function that squares a number
2 def square(x):
3 return x * x
4

5 # Create a sample list
6 numbers = [1, 2, 3, 4, 5]
7

8 # Use the map function to apply the ’square ’ function
9 # to each element in the ’numbers ’ list

10 squared_numbers = map(square , numbers)
11

12 # Convert the result to a list and print it
13 print(list(squared_numbers))

And the result is:

1 [1, 4, 9, 16, 25]

Now the main idea is: since the map is a function without side effects, we
can apply it to all elements of the sequence in any order with-
out changing the output of the program. This allows reordering
or parallel processing of sequence elements to optimize perfor-
mance.

2A higher-order function is a function that can do one or both of the following:

– Take other functions as arguments (parameters).

– Returns a function or value as its result.

3A function that takes only one argument and doesn’t suffer from side effects.
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• Reduction. The reduction born from the need to make parallel opera-
tions of iterations. For example, in a for loop, if we need a progressive
sum of an element, we should implement some kind of mechanism to man-
age the synchronization. Using the reduction strategies, the compiler will
do this job. We suggest reading the Reduction section (5.3.1.1, page 65)
in the OpenMP chapter to understand what we mean.

• Others like scan and shift.
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4 Parallel Programming Models and pthreads

4.1 How to create parallel algorithms and programs
Although parallel algorithms and parallel programs are in the same father set,
the parallel computing topic, these two arguments are a little different.

Definition 1: Parallel Algorithms

A parallel algorithm, as opposed to a traditional serial algorithm, is
an algorithm which can do multiple operations in a given time.

Definition 2: Parallel Programs

A parallel program is a program that uses multiple CPU cores,
with each core performing a task independently.

However, designing parallel algorithms is not an easy task because there is no
heuristic for designing parallel algorithms. There are some rules that help in the
design. The same reasoning applies to parallel programs, because they depend
on the chosen language and architecture.

Furthermore, there is no single correct solution, but several possible parallel
solutions. A good first approach is to start with machine-independent
issues (concurrency) and delay target-specific issues as much as possible.

Design a parallel algorithm Design a parallel program

Understand the problem to be solved Analyze the target architecture(s)

Analyze data dependencies Choose the best parallel program-
ming model and language

Partition the solution Analyze the communications (cost,
latency, bandwidth, visibility, syn-
chronization, etc.)

Table 2: Design parallel algorithms and parallel programs.

The PCAM (Partitioning, Communication, Agglomeration, Mapping)
methodology described by Argonne National Laboratory is intended to promote
an exploratory approach to design in which machine independent issues,
such as concurrency, are considered early and machine specific aspects of
design are deferred until late in the design process. In other words, we
immediately consider the machine-independent issues (e.g., concurrency) at the
beginning of the design approach, and all machine-specific aspects are postponed
to an advanced stage of the design process.
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algorithms and programs

This methodology structures the design process into four distinct stages:

1. Partitioning. The computation that is to be performed and the data
operated on by this computation are decomposed into small tasks.
Practical issues such as the number of processors in the target computer
are ignored, and attention is focused on recognizing opportunities for par-
allel execution.

2. Communication. The communication required to coordinate task
execution is determined, and appropriate communication structures
and algorithms are defined.

3. Agglomeration. The task and communication structures defined in
the first two stages of a design are evaluated with respect to per-
formance requirements and implementation costs. If necessary,
tasks are combined into larger tasks to improve performance or to reduce
development costs.

4. Mapping. Each task is assigned to a processor in a manner that at-
tempts to satisfy the competing goals of maximizing processor utiliza-
tion and minimizing communication costs. Mapping can be specified
statically or determined at runtime by load-balancing algorithms.

In the first two stages, we focus on concurrency and scalability and seek
to discover algorithms with these qualities. In the third and fourth
stages, attention shifts to locality and other performance-related issues.

Figure 11: PCAM design methodology for parallel programs. Starting with a
problem specification, develop a partition, determine communication require-
ments, agglomerate tasks, and finally map tasks to processors.
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4.2 Analyze parallel algorithms
Whether we want to analyze our parallel algorithm created with the PCAM
model or evaluate a general parallel algorithm, we need some metrics.

The classical metrics needed to evaluate a parallel algorithm are:

• Time complexity: quantifies the amount of time required to produce
a solution.

• Resource complexity: quantifies how many resources are needed to
produce the solution in that time.

In general, to analyze a parallel algorithm, we can consider its structure
as a directed acyclic graph (DAG)4, where the nodes are the task and the
edges are the data dependencies.

[ Parallel Algorithm Terminology and Metrics

• Concurrent tasks, each task is executed independently.

• Parallel tasks, each task is executed at the same time (because multiple
computing resources are available).

• Work W is the number of operations executed. It may be higher than
the sequential version of the algorithm due to communication overhead,
etc.

• Span S is the longest chain of dependencies (i.e., the critical path)
that determines the minimum time required to execute the algo-
rithm. This is a lower bound on the running time, regardless of the
number of processors. The range indicates the ability of an algorithm to
get better performance on more processors.

® How do we calculate the Span metric?

1. As we just said, we represent a parallel algorithm as a DAG
graph, where nodes represent tasks and edges represent dependencies
between tasks;

2. We assign weights to each node that represent the time required
to perform the corresponding task;

3. We try to find the Critical Path. In other words, we determine
the path from the start node to the end node that has the maximum
cumulative weight ;

4. Finally, the sum of the weights of the nodes on the critical
path gives us the span value!

4A Directed Acyclic Graph (DAG) is a directed graph, i.e. with oriented edges,
without cycles.
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• Parallelism P is the measure of efficiency in the use of resources.
Trivially, it is the number of operations performed divided by the longest
chain of dependencies:

P =
W

S
(11)

It indicates how many processors can be effectively used by the
computation. If the work is equal to the span, the parallelism is 1 and
the computation is sequential. Ideally, but not necessarily, we win with
polylogarithmic span, because if the work is O(n log n) and the span is
O(log2 n), then the parallelism is O

(
n

logn

)
, which is actually quite high

(and unlikely to be a bottleneck on most machines in the next 25 years). [2]

This measure is one of the most important. It indicates the number of
processors that are not idle. It is obvious that a good parallel algo-
rithm is designed to have the lowest possible work (less operation,
then less resource usage, then less cost, and so on) and the highest
possible parallelism (achievable by reducing the span, and this should
be trivial, since the metric P is given by work divided by the span, so
reducing the denominator, you can get a higher value).

As in all things, there is a trade-off between the lowest possible “work”
and the highest possible “parallelism”. Reducing the work too much could
eliminate the possibility of parallelizing our algorithm, and on the other
hand, reducing the span too aggressively could cause communication/syn-
chronization overhead.

Figure 12: Example of DAG implementation with work equal to 9, span equal
to 5, and parallelism equal to 1.8 (9÷ 5). The span calculus is not well known,
has been calculated a priori.

Finally, we use a mathematical annotation and not only a graphical (DAG)
annotation. The Composition Rules help determine how to combine smaller
parallel tasks into a larger algorithm, while analyzing the Work and Span of the
combined algorithm:

• Single operation. An operation takes 1 unit of work and 1 unit of span
time.

W (op) = 1 S (op) = 1
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• Sequential Composition.

– The total work of executing e1 and e2 sequentially is the sum of
their individual work.

W (e1, e2) = W (e1) +W (e2)

– The total span of executing e1 and e2 sequentially is the sum of
their individual spans.

S (e1, e2) = S (e1) + S (e2)

• Parallel Composition.

– The total work of executing e1 and e2 in parallel is still the sum of
their individual works.

W (e1||e2) = W (e1) +W (e2)

– The total span of executing e1 and e2 in parallel is the maximum of
their individual spans, since they can be executed simultaneously.

S (e1||e2) = max (W (e1) ,W (e2))
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4.3 Technologies
Some famous architecture to work with parallel programming:

• Verilog/VHDL are hardware description languages. The target architec-
tures are ASIC and FPGA. The parallelism and the communication
are explicit.

✓ Pros

– Complete control on computation and memory

– No overhead introduced in the computation

– Provides access to potentially large computational power

. Cons

– Requires specific hardware (e.g., ASIC or FPGA) to implement func-
tionality

– Difficult to learn: completely different programming language and
programming paradigm

– Depends on the chosen target architecture

• MPI is a library. The target architectures are Multi CPUs. The paral-
lelism is implicit and the communication is explicit.

✓ Pros

– Can be adopted on different types of architecture

– Scalable solutions

– Synchronization and data communication are explicitly managed

. Cons

– Communication can introduce significant overhead

– Programming paradigm more difficult than shared memory-based
ones

– Standard does not reflect immediately advances in architecture char-
acteristics

• PThread is a library. The target architectures are Multi-core CPUs. The
parallelism is explicit and the communication is implicit.

✓ Pros

– Can be adopted on different types of architecture

– Explicit parallelism and full control over application

. Cons
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– Task management overhead can be significant

– Not easily scalable solutions

– Low level API

• OpenMP is a C/Fortran extensions. The target architectures are Multi-
core CPUs. The parallelism is explicit and the communication is
implicit.

✓ Pros

– Easy to learn

– Scalable solution

– Parallel applications can also be executed sequentially

. Cons

– Mainly focused on shared memory homogeneous systems

– Requires small interaction between tasks

• CUDA is a C extensions. The target architectures are CPU plus GPU(s).
The parallelism is implicit/explicit and the communication is im-
plicit/explicit.

✓ Pros

– Provides access to the computational power of GPUs

– Writing a CUDA kernel is quite easy

– Already optimized libraries

. Cons

– Targets only NVIDIA GPUs

– Difficult to extract massive parallelism from application

– Difficult to optimize CUDA kernel

• OpenCL is a C/C++ extensions and API. The target architectures are
heterogeneous architecture. The parallelism is implicit/explicit and
the communication is implicit/explicit.

✓ Pros

– Target-independent standard

– Hides architecture details

– Same programming infrastructure for every heterogeneous architec-
ture: CPU + GPU (and FPGA)

. Cons
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– Difficult programming paradigm for its heterogeneity

– Hiding of architecture details makes difficult to obtain best perfor-
mances

– Gradually abandoned

• Apache Spark is an API. The target architectures are multi CPUs. The
parallelism is implicit and the communication is implicit.

✓ Pros

– API for different languages

– Explicit parallelization and communication are not required

– Preinstalled on cloud provide VMs

. Cons

– Suitable only for big data applications

– Does not (yet) fully support GPUs

Regardless of these technologies, it is quite common to mix some of them:

• OpenMP + CUDA: allows to exploit multi-core CPU and GPU. CUDA
is used to parallelize GPU code and OpenMP is used to parallelize CPU
code.

• MPI + OpenMP: the most common scenario are:

1. MPI used to express coarser parallelism (multi CPU) and OpenMP
used to express finer parallelism (multi core).

2. MPI used to implement communication and OpenMP used to paral-
lelize computation.

• OpenCL + Verilog or VHDL: in principle, hardware kernels (imple-
mented for example on FPGA) can be used as accelerators; OpenMP
used to describe parallelism among different processing elements; Ver-
ilog/VHDL used to describe hardware kernel. An example of target: Intel
Xeon Scalable.
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4.4 Threads
4.4.1 Flynn’s taxonomy

Flynn’s taxonomy is a classification of computer architectures, proposed
by Michael J. Flynn. The classification system has been used as a tool in
the design of modern processors and their functionalities. Since the rise of
multiprocessing central processing units (CPUs), a multiprogramming context
has evolved as an extension of the classification system.

The four initial classifications defined by Flynn are based upon the number of
concurrent instruction (or control) streams and data streams available in the
architecture:

• Single Instruction stream, Single Data stream (SISD)

• Single Instruction stream, Multiple Data streams (SIMD)

• Multiple Instruction stream, Single Data stream (MISD)

• Multiple Instruction stream, Multiple Data stream (MISD)

It is important to quote it because it is the basis for the development of many
advanced technologies.

4.4.2 Definition

A UNIX process can be created by the operating system and contains informa-
tion about program resources and program execution status.

Definition 3: Thread

A thread is an independent stream of instructions within a pro-
cess. Threads can be scheduled by the operating system, and each thread
can run concurrently with other threads. A thread also has local re-
sources and can access the shared process resources.

In other words, a thread can be thought of as any procedure that runs
independently of its main program. We can create each thread dynamically
during execution. A good point is that a multi-threaded program is lighter than
a multi-process program.
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When a thread exists within a process, it shares most of the process resources,
for example:

• Changes made by one thread to shared system resources (such as closing
a file) will be seen by all other threads.

• Two pointers having the same value point to the same data.

• Implicit communication by reading and writing shared variables.

• Reading and writing to the same memory locations requires ex-
plicit synchronization by the programmer. If this rule is not fol-
lowed, the code may suffer from a data race or race condition 5 problem.

The most common models for threaded programs are the manager / worker
model6 and pipeline.

This chapter introduces the POSIX threads model.

Definition 4: pthreads

POSIX Threads, commonly known as pthreads, is an execution
model that exists independently from a programming language, as well
as a parallel execution model. It allows a program to control mul-
tiple different flows of work that overlap in time. Each flow of
work is referred to as a thread, and creation and control over these flows
is achieved by making calls to the POSIX Threads API.

POSIX threads and OpenMP are two implementations of a shared memory
parallel programming model using threads. The programmer is re-
sponsible for handling parallelism and synchronization, usually through
a library of subroutines or a set of compiler directives. Typically, hardware
vendors have implemented their own proprietary versions of threads, but in this
course we will look at POSIX threads (pthreads) and OpenMP.

5In parallel computing, a Data Race or Race Condition is a software problem that
occurs when two threads (or processes) access the same variables, and at least one does a
write. They can finish in a different order than expected.

6The manager/worker pattern is described as follows. The idea is that the work that needs
to be done can be divided by a “manager” into separate pieces and the pieces can be assigned
to individual “worker” processes. Thus the manager executes a different algorithm from that
of the workers, but all of the workers execute the same algorithm. Most implementations of
MPI allow MPI processes to be running different programs (executable files), but it is often
convenient (and in some cases required) to combine the manager and worker code into a single
program.
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4.4.3 pthreads API

In 1995, the IEEE POSIX 1003.1c standard specified the API for explicitly
managing threads. An API is a set of C language programming types
and procedure calls.

• Header file to include in the main file: pthread.h.

• To compile and use it, it is necessary to add the flag -pthread to the
gcc (or g++) options.

The API are divided by what we want to do. In general, there are two sets:
thread management and thread synchronization.

• Thread Management

– Creation (page 49)

– Termination (page 50)

– Joining (page 51)

– Detaching (page 52)

– Joining through Barriers (page 53)

• Thread Synchronization

– Mutexes (page 54)

– Condition variables (page 54)

4.4.3.1 Creation

Once threads are created, they are peers, and may create other threads.
There is no implied hierarchy or dependency between threads. The
maximum number of threads depends on the implementation. Doc. [

pthread API: pthread_create

1 int pthread_create(
2 pthread_t * thread ,
3 const pthread_attr_t * attr ,
4 void * (* start_routine) (void *),
5 void * arg
6 )

• Return value: on success, pthread_create() returns 0; on error, it
returns an error number, and the contents of *thread are undefined.

• Arguments:

– thread: identifier for the new thread returned by the subroutine.

– attr: used to set thread attributes, such as joinable, detached,
scheduling and stack size.
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– start_routine: the C routine that the thread will execute once it
is created.

– arg: argument passed to start_routine. It must be passed by
address as a pointer cast of type void.

4.4.3.2 Termination

The thread returns from its startup routine when its “life” ends. The thread
makes a call to the pthread_exit subroutine. Doc. [

pthread API: pthread_exit

1 void pthread_exit(void *retval)

• Return value: this function does not return to the caller.

• Arguments:

– retval: function terminates the calling thread and returns a value
via retval.

The thread is canceled by another thread via the pthread_cancel routine. Doc. [

pthread API: pthread_cancel

1 int pthread_cancel(pthread_t thread)

• Return value: on success, pthread_cancel() returns 0; on error, it
returns a nonzero error number.

• Arguments:

– thread: the pthread_cancel() function sends a cancellation request
to the thread thread.
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4.4.3.3 Joining

The join function blocks the calling thread until the specified thread
exits. Doc. [

pthread API: pthread_join

1 int pthread_join(pthread_t thread , void ** retval)

• Return value: on success, pthread_join() returns 0; on error, it returns
an error number.

• Arguments:

– thread: the pthread_join() function waits for the thread speci-
fied by thread to terminate. If that thread has already terminated,
then pthread_join() returns immediately. The thread specified by
thread must be joinable.
If multiple threads simultaneously try to join with the same thread,
the results are undefined. If the thread calling pthread_join() is
canceled, then the target thread will remain joinable (i.e., it will not
be detached).

– retval: if retval is not NULL, then pthread_join() copies the
exit status of the target thread (i.e., the value that the target thread
supplied to pthread_exit()) into the location pointed to by retval.
If the target thread was canceled, then PTHREAD_CANCELED is placed
in the location pointed to by retval.
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4.4.3.4 Detaching

The detach function marks a thread as detached. When a thread is de-
tached, its resources are automatically released back to the system
when the thread terminates, without the need for another thread to join
with it.

® Why would I need to detach a thread and not join it?

Good question. The answer depends on what we have to do.

• Fire and forget tasks. When we start a thread to perform a task that
doesn’t require further interaction or result processing, releasing it ensures
that the resources are automatically cleaned up when the task is complete.

• Resource management. Detaching avoids the need for another thread
to call pthread_join(), which can save system resources and reduce the
complexity of our code. It’s especially useful in a highly concurrent appli-
cation with many short-lived threads.

• Avoid deadlocks. When we have potential circular dependencies or com-
plex synchronization between threads, detaching threads can help avoid
deadlocks by eliminating the need for one thread to wait on another.

• Long-running background tasks. For tasks that should run indepen-
dently in the background and not block the main program flow, detaching
makes sense. We make sure they clean up after themselves without having
to explicitly manage their lifecycle.

Doc. [

pthread API: pthread_detach

1 int pthread_detach(pthread_t thread)

• Return value: on success, pthread_detach() returns 0; on error, it
returns an error number.

• Arguments:

– thread: the pthread_detach() function marks the thread identified
by thread as detached. When a detached thread terminates, its
resources are automatically released back to the system without the
need for another thread to join with the terminated thread.
Attempting to detach an already detached thread results in unspec-
ified behavior.
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4.4.3.5 Joining through Barriers

The barrier init function initializes a barrier object, and the barrier wait
function blocks a thread until the specified number of threads have
called it. A barrier object is, in parallel computing, a synchronization tool
that ensures that multiple threads reach a certain point of execution before any
of them continue. It’s like a checkpoint that everyone must reach before
continuing, ensuring coordinated progress in a parallel algorithm.7 Doc. [

pthread API: pthread_barrier_init

1 int pthread_barrier_init(
2 pthread_barrier_t * barrier ,
3 pthread_barrierattr_t * attr ,
4 unsigned int count
5 )

pthread API: pthread_barrier_wait

1 int pthread_barrier_wait(pthread_barrier_t * barrier)

• Return value: on success, function return 0; on error, they return an
error number.

• Arguments: the main and most important argument is count, which
specifies the number of threads to wait for.

7For example, imagine multiple threads working on different parts of a matrix. A barrier
can ensure that all threads finish their part of the computation before moving on to the next
phase, such as combining results or performing subsequent operations.
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4.4.3.6 Mutexes

Mutex variables are the basic method of protecting shared data when
multiple writes occur. Only one thread can lock a mutex variable at a
time. If multiple threads attempt to lock a mutex, only one thread will succeed.
Threads that fail to acquire the mutex are blocked. There is also the
trylock function, which returns immediately if the mutex is currently locked
(by any thread, including the current thread). Note that a lock function has
the potential to create a deadlock situation.

There are also three types of mutex that can be set using the settype
function:

• Normal Mutex (PTHREAD_MUTEX_NORMAL). A normal mutex does not
check for errors such as deadlock. If a thread tries to lock a mutex
it already owns, the thread will deadlock.

• Error Check Mutex (PTHREAD_MUTEX_ERRORCHECK). Provides error
checking. If a thread tries to lock a mutex it already owns, lock function
will return an error instead of deadlocking.

• Recursive Mutex (PTHREAD_MUTEX_RECURSIVE). Allows the same thread
to lock the mutex multiple times without deadlocking. Each lock must
have a corresponding unlock.

Doc. [

pthread API: pthread_mutex_lock

1 int pthread_mutex_lock(pthread_mutex_t *mutex)

pthread API: pthread_mutex_trylock

1 int pthread_mutex_trylock(pthread_mutex_t *mutex)

pthread API: pthread_mutex_unlock

1 int pthread_mutex_unlock(pthread_mutex_t *mutex)

4.4.3.7 Condition variables

Mutexes implement synchronization by serializing data accesses. Condition vari-
ables allow threads to synchronize explicitly by signaling the meeting of a condi-
tion. Without condition variables, the programmer would need to poll to check
if the condition is met.
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5 OpenMP v5.2

5.1 Introduction
OpenMP is a scalable model that gives parallel programmers a simple and
flexible interface for developing portable parallel applications in C/C++ and
Fortran.

• Header file to include in the main file: omp.h.

• To compile and use it, it is necessary to add the flag -fopenmp to the
gcc (or c++) options.

The following link contains about 200 slides on OpenMP. It is an introduction,
but it covers every argument required in this PoliMI course. The slides are made
by a Senior Principal Engineer, Mattson Tim. He’s a Senior Principal Engineer
at Intel, where he’s been since 1993. The slide link.

✓ Benefits

• Standard across a variety of shared memory architectures and platforms.

• Supports three famous languages: Fortran, C and C++.

• Scalable from embedded systems to the supercomputer.

• The directives are intuitive, and with a limited set of directives we can
implement parallel algorithms.

• Incremental parallelization of serial program.

• Coarse-grained and fine-grained parallelism. See here here an interesting
difference between coarse-grained and fine-grained architecture:

® How it works?

OpenMP is based on the fork-join paradigm. A “master” thread forks a spec-
ified number of “slave” threads. Tasks are divided among the “slaves”, and each
“slave” runs concurrently as the runtime allocates threads to different processors.

1. Thread #0 born. OpenMP programs start with a single thread;

2. Fork. At the start of a parallel region, the master creates a team of
parallel worker threads (slaves).

3. OpenMP code block. Statements in the parallel block are executed in
parallel by each thread.

4. Join. At the end of the parallel region, all threads synchronize (implicit
barrier, see definition on page 53) and join the master thread. [5]
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Figure 13: Example of an OpenMP program called Hello. At runtime, the mas-
ter thread forks 3 additional slave threads to print hello. The example is very
trivial, but here is a graphical representation of the workflow. An interesting
thing to note is that OpenMP creates a sort of region where each thread
executes all the instructions in the OpenMP block. This is important
to understand. [5]
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5.2 Basic syntax
We can manage OpenMP work flow using the directive syntax. We remember
that the reference guide of OpenMP is available on their website:

Reference Guide

A directive is a combination of the base-language mechanism and a directive-
specification (the directive-name followed by optional clauses). A construct con-
sists of a directive and, often, additional base language code. In C++ directives
are formed from either pragmas or attributes.

OpenMP: pragma omp

1 #pragma omp directive-specification

The number of OpenMP threads can be set using:

• At compilation time: using the environment variable OMP_NUM_THREADS

• At runtime: using the function Doc. [

OpenMP: omp_set_num_threads

1 void omp_set_num_threads(int num_threads)

Other useful function to get information about threads:

• The number of threads in the current team: Doc. [

OpenMP: omp_get_num_threads

1 int omp_get_num_threads ()

The binding region for an omp_get_num_threads region is the innermost
enclosing parallel region. If called from the sequential part of a program,
this routine returns 1.
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• The upper bound on the number of threads that could be used to
form a new team if a parallel construct without a num_threads clause
were encountered after execution returns from this routine. Doc. [

OpenMP: omp_get_max_threads

1 int omp_get_max_threads ()

• The thread number of the calling thread, within the current team. Doc. [

OpenMP: omp_get_thread_num

1 int omp_get_thread_num ()

• The elapsed wall clock time in seconds. Doc. [

OpenMP: omp_get_wtime

1 double omp_get_wtime ()

• The precision of the timer (seconds between ticks) used by
omp_get_wtick. Doc. [

OpenMP: omp_get_wtick

1 double omp_get_wtick ()

OpenMP programs execute serially until they reach a parallel directive. As
we have explained at page 56, the thread that was executing the code spawns a
group of “slave” threads and becomes the “master” (thread ID 0). The code in
the structured block is replicated, each thread executes a copy. At the end of
the block there is an implied barrier, only the “master” thread continues.

OpenMP: pragma omp parallel

1 #pragma omp parallel optional-clauses

The parallel directive has optional clauses, the most commonly used are:

• Specify the number of threads to spawn:

1 #pragma omp parallel num_threads(int)
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• Conditional parallelization with:

1 #pragma omp parallel if (condition)

Example 1: parallel if condition

1 #include <stdio.h>
2 #include <omp.h>
3

4 void test(int val)
5 {
6 #pragma omp parallel if (val != 0)
7 if (omp_in_parallel ()) {
8 #pragma omp single
9 printf_s(

10 "val = %d, parallelized with %d threads\n",
11 val , omp_get_num_threads ()
12 );
13 } else {
14 printf_s("val = %d, serialized\n", val);
15 }
16 }
17

18 int main( )
19 {
20 omp_set_num_threads (2);
21 test (0);
22 test (2);
23 }

The output will be:

1 val = 0, serialized
2 val = 2, parallelized with 2 threads

• Data scope clauses (explained in the following pages).

The number of threads in a parallel region is determined by the fol-
lowing factors, in order of priority (high to low):

1. Evaluation of the if clause;

2. Value of the num_threads clause;

3. Use of the omp_set_num_threads() library function;

4. Setting of the OMP_NUM_THREADS environment variable;

5. Implementation default, e.g., the number of CPUs on a node.
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5.3 Work sharing
Work-sharing constructs divide the execution of a region of code
among the team members who encounter it. A work-sharing construct
must be enclosed in a parallel region for the directive to be executed in paral-
lel. Note that the constructs do not start new threads. Also, there is no
implicit barrier at the entry of a work-sharing construct, but there is an
implicit barrier at the exit of a work-sharing construct.

5.3.1 For

The for directive shares iterations of a loop across the team (data paral-
lelism).

Figure 14: OpenMP for loop.

OpenMP: pragma omp for

1 #pragma omp parallel
2 {
3 #pragma omp for
4 /* for loop */
5 }

The for directive parallelize execution of iterations. The number of iteration
cannot be internally modified. Some common clauses are:

• schedule that describes how iterations of the loop are distributed
among the threads in the team. The schedule type can be either
dynamic, guided, runtime, or static.

– static . Loop iterations are divided into blocks of size chunk
and then statically allocated to threads. If chunk is not speci-
fied, the iterations are divided evenly (if possible) among the
threads.
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OpenMP: static schedule

1 #pragma omp for schedule(static , chunk-size)

Figure 15: static schedule.

– dynamic . Loop iterations are divided into blocks of size chunk
and distributed among the threads at runtime ; when a thread
completes one chunk, it is dynamically allocated another. The
default chunk size is 1. In fact, we can see in the image that the order
is not always the same.

OpenMP: dynamic schedule

1 #pragma omp for schedule(dynamic , chunk-size)

Figure 16: dynamic schedule.

– runtime . Depends on environment variable OMP_SCHEDULE.
– guided . Static, gradually decreases the chunk size (chunk specifies

the smallest one).

OpenMP: guided schedule

1 #pragma omp for schedule(guided)
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Figure 17: guided schedule.

Example 2: schedule types

1 #include <stdio.h>
2 #include <omp.h>
3

4 #define NUM_THREADS 4
5 #define STATIC_CHUNK 5
6 #define DYNAMIC_CHUNK 5
7 #define NUM_LOOPS 20
8 #define SLEEP_EVERY_N 3
9

10 int main( )
11 {
12 int nStatic1[NUM_LOOPS],
13 nStaticN[NUM_LOOPS ];
14 int nDynamic1[NUM_LOOPS],
15 nDynamicN[NUM_LOOPS ];
16 int nGuided[NUM_LOOPS ];
17

18 omp_set_num_threads(NUM_THREADS);
19

20 #pragma omp parallel
21 {
22 #pragma omp for schedule(static , 1)
23 for (int i = 0 ; i < NUM_LOOPS ; ++i)
24 {
25 if ((i % SLEEP_EVERY_N) == 0)
26 Sleep (0);
27 nStatic1[i] = omp_get_thread_num( );
28 }
29

30 #pragma omp for schedule(static , STATIC_CHUNK)
31 for (int i = 0 ; i < NUM_LOOPS ; ++i)
32 {
33 if ((i % SLEEP_EVERY_N) == 0)
34 Sleep (0);
35 nStaticN[i] = omp_get_thread_num( );
36 }
37

38 #pragma omp for schedule(dynamic , 1)
39 for (int i = 0 ; i < NUM_LOOPS ; ++i)
40 {
41 if ((i % SLEEP_EVERY_N) == 0)
42 Sleep (0);
43 nDynamic1[i] = omp_get_thread_num( );
44 }
45

46 #pragma omp for schedule(dynamic , DYNAMIC_CHUNK)
47 for (int i = 0 ; i < NUM_LOOPS ; ++i)
48 {
49 if ((i % SLEEP_EVERY_N) == 0)
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50 Sleep (0);
51 nDynamicN[i] = omp_get_thread_num( );
52 }
53

54 #pragma omp for schedule(guided)
55 for (int i = 0 ; i < NUM_LOOPS ; ++i)
56 {
57 if ((i % SLEEP_EVERY_N) == 0)
58 Sleep (0);
59 nGuided[i] = omp_get_thread_num( );
60 }
61 }
62

63 printf_s("
------------------------------------------------\n")
;

64 printf_s("| static | static | dynamic | dynamic |
guided |\n");

65 printf_s("| 1 | %d | 1 | %d |
|\n",

66 STATIC_CHUNK , DYNAMIC_CHUNK);
67 printf_s("

------------------------------------------------\n")
;

68

69 for (int i=0; i<NUM_LOOPS; ++i)
70 {
71 printf_s("| %d | %d | %d | %d

|"
72 " %d |\n",
73 nStatic1[i], nStaticN[i],
74 nDynamic1[i], nDynamicN[i], nGuided[

i]);
75 }
76

77 printf_s("
------------------------------------------------\n")
;

78 }

The result will be:

1 ------------------------------------------------
2 | static | static | dynamic | dynamic | guided |
3 | 1 | 5 | 1 | 5 | |
4 ------------------------------------------------
5 | 0 | 0 | 0 | 2 | 1 |
6 | 1 | 0 | 3 | 2 | 1 |
7 | 2 | 0 | 3 | 2 | 1 |
8 | 3 | 0 | 3 | 2 | 1 |
9 | 0 | 0 | 2 | 2 | 1 |

10 | 1 | 1 | 2 | 3 | 3 |
11 | 2 | 1 | 2 | 3 | 3 |
12 | 3 | 1 | 0 | 3 | 3 |
13 | 0 | 1 | 0 | 3 | 3 |
14 | 1 | 1 | 0 | 3 | 2 |
15 | 2 | 2 | 1 | 0 | 2 |
16 | 3 | 2 | 1 | 0 | 2 |
17 | 0 | 2 | 1 | 0 | 3 |
18 | 1 | 2 | 2 | 0 | 3 |
19 | 2 | 2 | 2 | 0 | 0 |
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20 | 3 | 3 | 2 | 1 | 0 |
21 | 0 | 3 | 3 | 1 | 1 |
22 | 1 | 3 | 3 | 1 | 1 |
23 | 2 | 3 | 3 | 1 | 1 |
24 | 3 | 3 | 0 | 1 | 3 |
25 ------------------------------------------------

• nowait to avoid synchronization at the end of the parallel loop.
It overrides the barrier implicit in a directive.

1 #pragma omp for nowait

Example 3: nowait clause

1 #include <stdio.h>
2

3 #define SIZE 5
4

5 void test(int *a, int *b, int *c, int size)
6 {
7 int i;
8 #pragma omp parallel
9 {

10 #pragma omp for nowait
11 for (i = 0; i < size; i++)
12 b[i] = a[i] * a[i];
13

14 #pragma omp for nowait
15 for (i = 0; i < size; i++)
16 c[i] = a[i]/2;
17 }
18 }
19

20 int main( )
21 {
22 int a[SIZE], b[SIZE], c[SIZE];
23 int i;
24

25 for (i=0; i<SIZE; i++)
26 a[i] = i;
27

28 test(a,b,c, SIZE);
29

30 for (i=0; i<SIZE; i++)
31 printf_s("%d, %d, %d\n", a[i], b[i], c[i]);
32 }

The output will be:

1 0, 0, 0
2 1, 1, 0
3 2, 4, 1
4 3, 9, 1
5 4, 16, 2
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5.3.1.1 Reduction

In parallel programming, sometimes there are some exceptional cases when we
use the for statement where the variables inside the code block are not so easy
to manage (memory viewpoint). For example, consider the following case:

1 #include "stdio.h"
2 #include "omp.h"
3 #define MAX 10
4

5

6 int main(int argc , char const *argv [])
7 {
8 double ave = 0.0;
9 double A[MAX] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

10 int i;
11 #pragma omp parallel for
12 for(i = 0; i < MAX; i++) {
13 ave += A[i];
14 }
15 ave = ave / MAX;
16 printf("Value %f\n", ave);
17 return 0;
18 }

. Too many threads modifying the same variable

In this case, we are combining values into a single accumulation variable (called
ave). There is a true dependence between loop iterations that can’t be trivially
removed. A continuous execution produces different results!

1 $ ./ example.out
2 Value 1.300000
3 $ ./ example.out
4 Value 2.400000
5 $ ./ example.out
6 Value 2.500000
7 $ ./ example.out
8 Value 2.100000
9 $ ./ example.out

10 Value 1.900000

This is a very common situation and a solution, which can also be used as a
synchronization technique, is called a reduction.

A reduction variable in a loop aggregates (i.e., accumulates) a value that
depends on each iteration of the loop and doesn’t depend on the iter-
ation order.

OpenMP: reduction

1 #pragma omp parallel for reduction(operator: list)

A reduction clause:

• It makes a local copy of each list variable and initialized depending
on the operator ;
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• It updates occur on the local copy;

• Local copies are reduced into a single value and combined with
the original global value.

Therefore, the variables in list must be shared in the enclosing parallel region.

Many different associative operands (operator value) can be used with reduc-
tion:

• + with initial value 0

• * with initial value 1

• - with initial value 0

• min with initial value as largest positive number

• max with initial value as most negative number

• & with initial value ∼ 0

• | with initial value 0

• ^ with initial value 0

• && with initial value 1

• || with initial value 0

Using the reduction clause, the code written at the beginning of the paragraph
can be fixed as follows:

1 #include "stdio.h"
2 #include "omp.h"
3 #define MAX 10
4

5

6 int main(int argc , char const *argv [])
7 {
8 double ave = 0.0;
9 double A[MAX] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

10 int i;
11 // use reduction
12 #pragma omp parallel for reduction (+: ave)
13 for(i = 0; i < MAX; i++) {
14 ave += A[i];
15 }
16 ave = ave / MAX;
17 // now it prints the correct result 5.5
18 printf("Value %f\n", ave);
19 return 0;
20 }

✓ Avoid race condition
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5.3.2 Sections

Section identifies code sections to be divided among all threads.

Sections allow to specify that the enclosed section(s) of code are to be executed
in parallel. Each section is executed once by a thread in the team. Doc. [

OpenMP: sections

1 #pragma omp [parallel] sections [clauses]
2 {
3 #pragma omp section
4 {
5 code_block
6 }
7 }

The sections directive identifies a noniterative work-sharing construct that spec-
ifies a set of constructs that are to be divided among threads in a team. Each
section is executed once by a thread in the team.

Each section is preceded by a section directive, although the section directive
is optional for the first section. The section directives must appear within the
lexical extent of the sections directive. There’s an implicit barrier at the
end of a sections construct, unless a nowait is specified.

Restrictions to the sections directive are as follows:

• A section directive must not appear outside the lexical extent of the
sections directive.

• Only a single nowait clause can appear on a sections directive.

Figure 18: Breaks work into separate, discrete sections, each executed by a
thread (functional parallelism).
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5.3.3 Single/Master

A section (not the directive) of code should be executed on a single
thread, not necessarily the main (master) thread. The single direc-
tive identifies a construct that specifies that the associated structured block is
executed by only one thread in the team (not necessarily the master thread).

OpenMP: single and master

1 #pragma omp parallel
2 {
3 #pragma omp single
4 {
5 /* code section */
6 }
7 # pragma omp master
8 {
9 /* code section */

10 }
11 }

• single specifies that a section of a code is executed only by a single
thread. Doc. [

• master specifies that a section of a code is executed only by the mas-
ter. Doc. [

There’s an implicit barrier after the single construct unless a nowait clause
is specified.
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5.3.4 Tasks

The following section has been enhanced with slides from Senior Principal En-
gineer Mattson Tim. He’s a senior principal engineer at Intel, where he’s been
since 1993. His profile can be seen here and the slides are available online here.
He has also made an interesting YouTube series on the introduction to OpenMP.

Tasks are independent units of work. They consist of: code to execute,
data environment, and internal control variables (ICV). Threads perform
the work of each task. The runtime system decides when to execute
tasks; each task can be deferred or executed immediately.

In other words, an OpenMP task is a block of code contained in a parallel
region that can be executed simultaneously with other tasks in the
same region.

Some useful terminology:

• Task construct . It identifies the task directive plus the structured
block.

• Task . It is the package of code and instructions for allocating data
created when a thread encounters a task construct.

• Task region . It is the dynamic sequence of instructions generated
by the execution of a task by a thread.

Tasks are guaranteed to complete at thread barriers (using the barrier direc-
tive) or at task barriers (using the taskwait directive):

1 #pragma omp parallel // omp directive to parallel the code
2 {
3 #pragma omp task // multiple foo tasks created here ,
4 // one for each thread
5 foo();
6 #pragma omp barrier // all foo tasks guaranteed
7 // to be completed here
8 #pragma omp single // only one thread can access to
9 // this piece of code

10 {
11 #pragma omp task // one bar task created here
12 bar();
13 }
14 // foo task guaranteed to be completed here
15 }

Example 4: Fibonacci with tasks

Let us see a Fibonacci example of data scoping using the tasks. In the
following code, we create the Fibonacci function and we create two tasks,
but each task has a private variable and these variables are also used in
the return statement:

1 int fib(int n) {
2 int x, y;
3 if(n < 2)
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4 return n;
5 #pragma omp task
6 x = fib(n-1);
7 #pragma omp task
8 y = fib(n-2);
9 #pragma omp taskwait

10 return x + y;
11 }

A good solution is to “share” the x and y variables because we need both
values to calculate the sum.

1 int fib(int n) {
2 int x, y;
3 if(n < 2)
4 return n;
5 #pragma omp task shared(x)
6 x = fib(n-1);
7 #pragma omp task shared(y)
8 y = fib(n-2);
9 #pragma omp taskwait

10 return x + y;
11 }

✓ Main advantage

Note the following code:

1 // create a team of threads
2 #pragma omp parallel
3 {
4 // one thread executes the single construct
5 // and other threads wait at the implied
6 // barrier at the end of the single construct
7 #pragma omp single
8 { // block 1
9 node *p = head;

10 while(p) { // block 2
11 // the single thread creates a task
12 // with its own value for the pointer p
13 #pragma omp task firstprivate(p)
14 process(p);
15 p = p -> next; // block 3
16 }
17 // execution moves beyond the barrier
18 // once all the tasks are complete
19 }
20 }

The tasks have the potential to parallelize irregular patterns and recur-
sive function calls. See Figure 19 (page 71) to understand how the runtime
system can optimize execution using the tasks.
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Figure 19: The main advantage of the tasks is to parallelize irregular patterns
and recursive function calls.

] Synchronization

When a thread encounters a task construct, the task is created but not imme-
diately executed. The tasks are guaranteed to be completed:

• At a barrier (implicit or explicit)

• At task synchronization points:

– taskwait construct specifies a wait on the completion of child
tasks of the current task. Doc. [

OpenMP: pragma omp taskwait

1 #pragma omp taskwait

– taskgroup construct specifies a wait on the completion of child
tasks of the current task (such as taskwait) and their descen-
dent tasks (main difference). Doc. [

OpenMP: pragma omp taskgroup

1 #pragma omp taskgroup
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5.3.4.1 Task dependences

By creating tasks instead of sections, each thread can execute any task as long
as its input is ready. Since the internal scheduler decides how to manipulate
the execution of tasks, there is a useful clause to indicate a dependency
between tasks. Doc. [

OpenMP: depend

1 #pragma omp task depend(dependence-type: variable)

The depend clause enforces additional constraints on the scheduling of
tasks or loop iterations. These constraints establish dependencies only
between sibling tasks or between loop iterations.
The dependence-type can be in or out.

In addition to the depend clause, we can also use the priority clause to hint that
more important tasks should be executed more frequently.

The priority clause is a hint for the priority of the generated task. The
priority-value is a non-negative integer expression that provides a hint for
task execution order. Among all tasks ready to be executed, higher priority
tasks (those with a higher numerical value in the priority clause expression)
are recommended to execute before lower priority ones. The default
priority-value when no priority clause is specified is zero (the lowest priority).

If a value is specified in the priority clause that is higher than the max-
task-priority-var ICV (internal control variables) then the implementation
will use the value of that ICV. A program that relies on task execution
order being determined by this priority-value may have unspecified behavior.

• The omp_get_max_task_priority routine returns the maximum value
that can be specified in the priority clause. Doc. [

OpenMP: omp_get_max_task_priority

1 int omp_get_max_task_priority ()

• The OMP_MAX_TASK_PRIORITY environment variable controls the use of
task priorities by setting the initial value of the max-task-priority-var
ICV. The value of this environment variable must be a non-negative inte-
ger. Doc. [

. Possible overhead

The task in general, but especially the dependencies between tasks, can
introduce overhead and reduce performance.
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Example 5: dependences

Let the following parallel code:

1 #pragma omp parallel default(none) \
2 shared(fp_read) \
3 shared(n_io_chunks) \
4 shared(n_work_chunks) \
5 shared(a, b, c) \
6 shared(status_read , status_processing) \
7 shared(status_postprocessing)
8 {
9 #pragma omp single nowait

10 {
11 for(int64_t i = 0; i < n_io_chunks; ++i) {
12 #pragma omp task depend(out: status_read[i]) \
13 priority (20)
14 {
15 (void) read_input(
16 fp_read , i, a, b, &status_read[i]
17 );
18 } // End of task reading in a chunk of data
19

20 #pragma omp task depend(in: status_read[i]) \
21 depend(out: status_processing[i]) \
22 priority (10)
23 {
24 (void) compute_results(
25 i, n_work_chunks , a, b, c,
26 &status_processing[i]
27 );
28 } // End of task performing the computations
29

30 #pragma omp task depend(in: status_processing[i])
31 priority (5)
32 {
33 (void) postprocess_results(
34 i, n_work_chunks , c,
35 &status_postprocessing[i]
36 );
37 } // End of task postprocessing the results
38 } // End of for -loop
39 } // End of single region
40 } // End of parallel region
41

• Row 11. We are going to process n_io_chunks of data.

• Rows 12, 20. Refer to read and are compute dependence.

• Rows 21, 30. Refer to compute and are postprocess dependence.

73



5 OpenMP v5.2 5.3 Work sharing

A possible order of execution if we consider 3 threads is:

As long as the dependencies are respected, the loop iterations can be
executed in any order. No explicit flush (page 89) are required because
it is implied before and after every task.

® Custom number of iterations

Each task gets assigned a number of iterations which is the minimum
between grainsize and the total number of iterations.

If a grainsize clause is present, the number of logical iterations assigned to
each generated task is greater than or equal to the minimum of the value of the
grain-size expression and the number of logical iterations, but less than two
times the value of the grain-size expression.

If the grainsize clause has the strict modifier, the number of logical itera-
tions assigned to each generated task is equal to the value of the grain-size
expression, except for the generated task that contains the sequentially last iter-
ation, which may have fewer iterations. The parameter of the grainsize clause
must be a positive integer expression. Doc. [

OpenMP: pragma omp taskloop grainsize

1 #pragma omp taskloop grainsize([strict] grain-size)
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® Number of created tasks

To keep the number of created tasks low, the clause num_tasks sets
the number of tasks that the runtime system can generate.

If num_tasks is specified, the taskloop construct creates as many tasks as
the minimum of the num-tasks expression and the number of logical itera-
tions. Each task must have at least one logical iteration. The parameter of the
num_tasks clause must be a positive integer expression.

If the num_tasks clause has the strict modifier for a task loop with N logi-
cal iterations, the logical iterations are partitioned in a balanced manner and
each partition is assigned, in order, to a generated task. The partition size is⌈⌈

N

num-tasks

⌉⌉
until the number of remaining iterations divides the number of

remaining tasks evenly, at which point the partition size becomes
⌊⌊

N

num-tasks

⌋⌋
.
Doc. [

OpenMP: pragma omp taskloop num_tasks

1 #pragma omp taskloop num_tasks([strict] num-tasks)

If neither a grainsize nor num_tasks clause is present, the number of
loop tasks generated and the number of logical iterations assigned to
these tasks is implementation defined.
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5.4 Synchronization
The following section has been enhanced with slides from Senior Principal En-
gineer Mattson Tim. He’s a senior principal engineer at Intel, where he’s been
since 1993. His profile can be seen here and the slides are available online here.
He has also made an interesting YouTube series on the introduction to OpenMP.

OpenMP is a multi-threaded, shared address model. This means that threads
communicate by sharing variables. Unfortunately, this can cause some problems
such as race conditions (page 48). The solution is to use synchronization to
protect against data conflicts. The good news is that synchronization can
avoid data race problems, but it is also an expensive method. So we can
use synchronization, but we need to change the way data is accessed to
minimize the need for synchronization.

Synchronization brings one or more threads to a well-defined and known
point in their execution. The two most common forms of synchronization
are:

• Barrier : each thread wait at the barrier until all threads arrive.

• Mutual exclusion : define a block of code that only one thread at a
time can execute.

The OpenMP directives are: critical, atomic, and barrier. These are high-
level synchronization directives, but there are also low-level synchronization
directives, such as flush and locks, but they are too complex at the moment,
we will see them later.

(a) Barrier. Each thread wait at the
barrier until all threads arrive.

(b) Mutual exclusion. Define a block
of code that only one thread at a time
can execute.
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Barrier. Each thread waits until all threads arrive. Doc. [

OpenMP: barrier

1 #pragma omp barrier name

An optional name may be used to identify the critical region. A thread
waits at the beginning of a critical region until no other thread is exe-
cuting a critical region (anywhere in the program) with the same name. All
unnamed critical directives map to the same unspecified name.

Example 6: synchronization with barrier directive

The following example includes several critical directives. The example
illustrates a queuing model in which a task is dequeued and worked on.
To guard against many threads dequeuing the same task, the dequeuing
operation must be in a critical section. Because the two queues in this
example are independent, they’re protected by critical directives with
different names, xaxis and yaxis. [9]

1 #pragma omp parallel shared(x, y) private(x_next , y_next)
2 {
3 #pragma omp critical ( xaxis )
4 x_next = dequeue(x);
5 work(x_next);
6 #pragma omp critical ( yaxis )
7 y_next = dequeue(y);
8 work(y_next);
9 }

10

Mutual exclusion. Only one thread at a time can enter a critical region. Doc. [

OpenMP: critical

1 #pragma omp critical

omp critical omp single

Meaning Run code segment one by
one by all threads

Run code segment once by
any thread

Number of times
code is executed

Number of threads Only one

Use case Avoid race condition Manage control variables or
signals

Table 3: . omp critical vs omp single
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Example 7: synchronization with critical directive

Note the following code:

1 float res;
2

3 #pragma omp parallel
4 {
5 float B;
6 int i, id , nthrds , niters = big_number;
7

8 id = omp_get_thread_num ();
9 nthrds = omp_get_num_threads ();

10 for (i = id; i < niters; i += nthrds) {
11 B = big_job(i);
12 #pragma omp critical // threads wait their turn;
13 res += consume(B); // only one at a time
14 } // calls consume
15 }
16

Atomic. Provides mutual exclusion, but only when updating a memory loca-
tion. It ensures that a particular memory location is accessed atomi-
cally. It is valid only for the following statement and not for a structured
block.

The statement inside the atomic must be one of the following forms:

• x binop = expr

• x++ or ++x

• x-- or --x

Where x is an lvalue of scalar type and binop is a non-overloaded builtin oper-
ator. Doc. [

OpenMP: atomic

1 #pragma omp atomic

Example 8: synchronization with atomic directive

1 #pragma omp parallel
2 {
3 double tmp , B;
4 B = DOIT();
5 tmp = big_ugly(B);
6 #pragma omp atomic
7 X += tmp;
8 }
9
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5.5 Data environment
OpenMP is based on the shared memory programming model, so most vari-
ables are shared by default. Global variables are also shared between
threads. But not everything is shared; for example, stack variables in func-
tions called from parallel regions are private, as are automatic variables within
a statement block.

Example 9: data sharing

In the following code, the variable temp is private (local to each thread)
because it is in the stack of the function work; meanwhile, the variables
A, index, and count are shared by all threads.

1 double A[10];
2 int main() {
3 int index [10];
4 #pragma omp parallel
5 work(index);
6 printf("%d\n", index [0]);
7 }
8

9 void work(int *index) {
10 double temp [10];
11 static int count;
12 /* other code */
13 }

We can refer to these arguments as Data Scope Attribute Clauses because
the issue is really about the visibility and value of each data in each scope.
Although OpenMP shares variables by default, there is (and it is a very common
and best practice) the option to:

• Selectively change storage attributes for construct using the follow-
ing clauses: shared, private and firstprivate.

• The final value of a private inside a parallel loop can be transmitted
to the shared variable outside the loop with: lastprivate.

• The default attributes can be overridden with:
default(private | shared | none)

. Note that when we say “copy” we mean the shallow copy, not the
deep copy. So when the following clauses create a local copy, they
create a shallow copy.

private clause. The statement private(var) creates a new local copy of
var for each thread. The value of the private copies is uninitialized and
also the original variable value remains unchanged after the region.

OpenMP: private(... )

1 #pragma omp parallel directive private(var1-name, var2-name, ...)
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Example 10: private clause and dirty memory location

In the following code we try to use the private clause inside a parallel
for. The code is very trivial, we set the number of threads to two for
better understanding, so we start the parallel code with the for directive
and the private clause. It has private_test as a private variable. So
each thread will copy the variable and the initial value will be undefined.

1 #include <iostream >
2 #include "omp.h"
3 #define MAX 6
4

5 int main(int argc , char const *argv [])
6 {
7 int i, private_test = 10;
8 printf("Memory location of private_test: %p\n",
9 &private_test);

10 // set limit to 2 threads for better understanding
11 omp_set_num_threads (2);
12 printf("Master will execute for in parallel !\n");
13 #pragma omp parallel for private(private_test)
14 for(i = 0; i < MAX; ++i) {
15 // initialize private_test
16 private_test = i == 0 ? 0 : ++ private_test;
17 printf(
18 "Thread #%i, iter_i: %d, private_test: %d\n",
19 omp_get_thread_num (), i, private_test
20 );
21 }
22 printf(
23 "private_test outside the parallel region: %d\n",
24 private_test
25 );
26 return 0;
27 }

Unfortunately, when we examine the output, we see a problem. Thread
zero (master) executes the for statement for the first 3 iterations,
while thread one (slave) executes the for statement for the last 3 it-
erations. The zero thread behaves as expected because we initialize the
private_test variable to zero on the first for iteration (when i is 0).
The thread one, has made a copy of the variable in another memory
location and the value is unknown; so it continues to add a single value
to each iteration in a dirty memory location. This is a trivial example
that highlights the unknown values that we can find inside the private
variables if we don’t do any initialization.

1 $ g++ -fopenmp example.cpp -o example
2 $ ./ example
3 Memory location of private_test: 0x7ffecdfa3aa4
4 Master will execute the for statement in parallel!
5 Thd #0, i:0, private_test :0, mem: 0x7ffecdfa3a40
6 Thd #0, i:1, private_test :1, mem: 0x7ffecdfa3a40
7 Thd #0, i:2, private_test :2, mem: 0x7ffecdfa3a40
8 Thd #1, i:3, private_test :687869953 , mem: 0x76a0297ffdd0
9 Thd #1, i:4, private_test :687869954 , mem: 0x76a0297ffdd0

10 Thd #1, i:5, private_test :687869955 , mem: 0x76a0297ffdd0
11 private_test outside the parallel region: 10
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firstprivate clause. The variables are initialized from the shared vari-
able, but as in the private clause, the updated value doesn’t leave the parallel
region.

OpenMP: firstprivate(... )

1 #pragma omp parallel directive firstprivate(var1-name, ...)

Example 11: firstprivate clause

A very trivial example to see how the firstprivate clause works. The
variable private_test is copied to local and initialized with the value
outside the parallel region.

1 #include <iostream >
2 #include "omp.h"
3 #define MAX 6
4

5 int main(int argc , char const *argv [])
6 int i, private_test = 10;
7 printf("Memory location of private_test: %p\n",
8 &private_test);
9 // set limit to 2 threads for better understanding

10 omp_set_num_threads (2);
11 printf("Master will execute for in parallel !\n");
12 #pragma omp parallel for firstprivate(private_test)
13 for(i = 0; i < MAX; ++i) {
14 // initialize private_test
15 ++ private_test;
16 printf(
17 "Thd #%i, i:%d, private_test :%d, mem: %p\n",
18 omp_get_thread_num (), i,
19 private_test , &private_test
20 );
21 }
22 printf(
23 "private_test outside the parallel region: %d\n",
24 private_test
25 );
26 return 0;
27 }

Note that the value is not propagated outside the parallel region.

1 $ g++ -fopenmp example.cpp -o example
2 $ ./ example
3 Memory location of private_test: 0x7ffc5cd153b0
4 Master will execute for in parallel!
5 Thd #0, i:0, private_test :11, mem: 0x7ffc5cd15350
6 Thd #0, i:1, private_test :12, mem: 0x7ffc5cd15350
7 Thd #0, i:2, private_test :13, mem: 0x7ffc5cd15350
8 Thd #1, i:3, private_test :11, mem: 0x77001d9ffdd0
9 Thd #1, i:4, private_test :12, mem: 0x77001d9ffdd0

10 Thd #1, i:5, private_test :13, mem: 0x77001d9ffdd0
11 private_test outside the parallel region: 10
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Example 12: be careful with pointers using the firstprivate
clause

The following code is very similar to the previous one. The difference
here is that the parallel region also gets a pointer. Note that the pointer
is in C style, because using the unique pointer technique (suggested in
C++) will create an exception, because C++ doesn’t allow the copy
of a unique pointer. However, each thread creates a shallow copy of
the pointer, but not a copy of the value pointed to! In this test, we
use the pointer to the value of private_test to modify the value of
private_test.

1 #include <iostream >
2 #include "omp.h"
3 #define MAX 6
4

5 int main(int argc , char const *argv []) {
6 bool print_flag = true;
7 int i, private_test = 10;
8 // C pointer , not a good practice in C++...
9 // used only for the example

10 int *ptr_private_test = &private_test;
11 printf("Memory location of private_test : %p\n",
12 &private_test);
13 printf("Memory location of ptr_private_test: %p\n",
14 &ptr_private_test);
15 // set limit to 2 threads for better understanding
16 omp_set_num_threads (2);
17 printf("Master will execute for in parallel !\n\n");
18 #pragma omp parallel for firstprivate(private_test ,

ptr_private_test , print_flag)
19 for(i = 0; i < MAX; ++i) {
20 if (print_flag) {
21 printf("Memory location ptr %p\n",
22 &ptr_private_test);
23 print_flag = false;
24 }
25 // increase value pointed to by ptr
26 ++* ptr_private_test;
27 // increase simple variable
28 ++ private_test;
29 printf(
30 "Thread #%i, i:%d\n- private_test :%d,

ptr_private_test :%d, mem: %p\n\n",
31 omp_get_thread_num (), i, private_test ,
32 *ptr_private_test , &private_test
33 );
34 }
35 printf(
36 "private_test outside the parallel region: %d\n",
37 private_test
38 );
39 return 0;
40 }

Note an interesting observation. The variable private_test is incre-
mented at each iteration; in the same way, the value pointed to by the
pointer ptr_private_test is also incremented. Finally, the variable
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private_test is modified because the pointer was copied in each thread
and each slave, including the master, increased the value. This is a very
bad practice and we want to suggest to use unique pointers of C++ or
to avoid shallow copies.

1 Memory location of private_test : 0x7fff3849c224
2 Memory location of ptr_private_test: 0x7fff3849c228
3 Master will execute for in parallel!
4

5 Memory location ptr 0x7fff3849c1a0
6 Thread #0, i:0
7 - private_test :11, ptr_private_test :11, mem: 0x7fff3849c198
8

9 Thread #0, i:1
10 - private_test :12, ptr_private_test :12, mem: 0x7fff3849c198
11

12 Thread #0, i:2
13 - private_test :13, ptr_private_test :13, mem: 0x7fff3849c198
14

15 Memory location ptr 0x7b710cfffdb0
16 Thread #1, i:3
17 - private_test :11, ptr_private_test :14, mem: 0x7b710cfffda8
18

19 Thread #1, i:4
20 - private_test :12, ptr_private_test :15, mem: 0x7b710cfffda8
21

22 Thread #1, i:5
23 - private_test :13, ptr_private_test :16, mem: 0x7b710cfffda8
24

25 private_test outside the parallel region: 16

The expected value for private_test should remain 10 because the
firstprivate doesn’t affect the values of the variables after the parallel
region, but in this case we are using a pointer and a bad practice.

lastprivate clause. The variables update shared variables with the
value from the last iteration, so the order of execution of the threads is
important here.

OpenMP: lastprivate(...)

1 #pragma omp parallel directive lastprivate(var1-name, ...)

Example 13: lastprivate clause

In the following example, the value of the last iteration is passed (and
overwritten) to the original value:

1 #include <iostream >
2 #include "omp.h"
3 #define MAX 6
4

5 int main(int argc , char const *argv []) {
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6 int i, private_test = 10;
7 printf("Memory location of private_test: %p\n",
8 &private_test);
9 // set limit to 2 threads for better understanding

10 omp_set_num_threads (2);
11 printf("Master will execute for in parallel !\n");
12 #pragma omp parallel for lastprivate(private_test)
13 for(i = 0; i < MAX; ++i) {
14 // initialize private_test
15 private_test = i;
16 printf(
17 "Thd #%i, i:%d, private_test :%d, mem: %p\n",
18 omp_get_thread_num (), i,
19 private_test , &private_test
20 );
21 }
22 printf(
23 "private_test outside the parallel region: %d\n",
24 private_test
25 );
26 return 0;
27 }

The private_test variable initially has a value equal to 10, but with
lastprivate we have overwritten it.

1 Memory location of private_test: 0x7ffc4c82b8c0
2 Master will execute for in parallel!
3 Thd #0, i:0, private_test :0, mem: 0x7ffc4c82b860
4 Thd #0, i:1, private_test :1, mem: 0x7ffc4c82b860
5 Thd #0, i:2, private_test :2, mem: 0x7ffc4c82b860
6 Thd #1, i:3, private_test :3, mem: 0x72c7dddffdd0
7 Thd #1, i:4, private_test :4, mem: 0x72c7dddffdd0
8 Thd #1, i:5, private_test :5, mem: 0x72c7dddffdd0
9 private_test outside the parallel region: 5
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default clause. The default storage attribute is default(shared). To
change the default we can write simply the value shared or none inside the
brackets:

• default(share) is the default choice for OpenMP, so there is no need to
use it except for the clause pragma omp task.

OpenMP: default(share)

1 #pragma omp parallel directive default(share)

Against the private clauses, if we want to share some variables, we can
use shared clause.

OpenMP: shared

1 #pragma omp parallel directive shared(var1-name, ...)

• default(private), each variable in the construct is made private as if
specified in private clause.

OpenMP: default(private)

1 #pragma omp parallel directive default(private)

• default(none), no default for variables in static extent. Must list storage
attribute for each variable in static extent. It is a good programming
practice.

OpenMP: default(none)

1 #pragma omp parallel directive default(none)
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Example 14: default(none)

1 #include <iostream >
2 #include "omp.h"
3 #define MAX 6
4

5 int main(int argc , char const *argv []) {
6 double private_test = 10.0;
7 int i;
8 // set limit to 2 threads for better understanding
9 omp_set_num_threads (2);

10 #pragma omp parallel for default(none) private(i,
private_test)

11 for(i = 0; i < MAX; i++) {
12 private_test = i;
13 printf(
14 "Thread #%i, value: %f\n",
15 omp_get_thread_num (), private_test
16 );
17 }
18 printf(
19 "private_test outside the parallel region: %f\n"

,
20 private_test
21 );
22 return 0;
23 }

1 Thread #0, value: 0.000000
2 Thread #0, value: 1.000000
3 Thread #0, value: 2.000000
4 Thread #1, value: 3.000000
5 Thread #1, value: 4.000000
6 Thread #1, value: 5.000000
7 private_test outside the parallel region: 10.000000
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5.6 Memory model
OpenMP supports a shared memory model. It is a model where all threads
share an address space, but it can get complicated, for example in the fol-
lowing example (picture) we can see a shared space that is also in the cache
of process 3; so how can we manage this situation? What are the methods to
adapt? Furthermore, what happens when a thread modifies a shared address
space? How does the system behave?

In general, a memory model is defined in terms of:

• Coherence: behavior of the memory system when a single address is
accessed by multiple threads.

• Consistency: read, write, or synchronization (RWS) orders with differ-
ent addresses and through multiple threads.

Remark: what the compiler does at the low level

When we write a program and ask the compiler to compile it, it does a
lot of “magic” under the hood.

1. Our source code is decoded into very low level operations. These
operations respect the order of the high-level operations of our
code.

2. The compiler, smarter then us, tries to optimize the code while
creating the executable code; so it reorders the low-level operations
that are semantically equivalent to our program, but often allow
to gain performance.

3. During the execution of the code, if it is parallel, some threads are
created and each of them has a private memory address.

4. Finally, each thread writes/reads from memory, also called the
commit order, using some rules.
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Note that the re-ordering are made by:

• Compile re-orders program order → code order.

• Machine re-orders code order → memory commit order.

At any given time, the private view seen by a thread may differ from the view
in shared memory. For this reason, there are consistency models that de-
fine constraints on the order of RWS (Reads, Writes, Synchronizations)
operations.

In general, a multiprocessor adopts the Sequential Consistency Model. It
says that given n operations (RWS), they are sequentially consistent if:

• They remain in program order for each processor.

• They are seen to be in the same overall order by each of the other
processors.

Also, in a sequential consistency model, program order is the same as code order
and commit order.

OpenMP uses a Relaxed Consistency Model where the compiler cannot
reorder synchronization operations with read or write operations on
the same thread. The consequences are:

✓ All threads have the same view of memory at specific points in the code,
called Consistency Points.

✓ Between two consistency points, each thread has its own temporary view
of memory, which may be different from the other temporary views of
other threads.
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✓ Data are read-only, this guarantee to avoid consistency issues.

✗ Shared data that need to be modified can create possible race conditions.

flush directive. Defines a sequence point at which a thread is guaranteed
to see a consistent view of memory with respect to the flush-set. The
flush-set means all thread visible variables for a flush construct without
an argument list, and it also means a list of variables when the flush(list)
construct is used. The action of flush is to guarantee that:

• All read/write operations that overlap the flush-set and occur be-
fore the flush will be completed before the flush is executed.

• Any read/write operations that overlap the flush-set and occur
after the flush will not be performed until after the flush.

• Flushes with overlapping flush-sets can not be reordered.

In other words, the flush forces data to be updated in memory so that
other threads see the most recent value. Doc. [

OpenMP: flush

1 #pragma omp flush flush-set

A flush operation is implied by default by OpenMP synchronizations:

• At entry/exit of parallel/critical regions;

• At implicit and explicit barriers;

• At exit from work-sharing constructs, unless nowait is specified.

And it is not implied:

• At entry of work-sharing constructs;

• At entry and exit of master.
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5.7 Nested Parallelism
® How does OpenMP create multiple threads?

OpenMP uses a fork-join model of parallel execution. When a thread encoun-
ters a parallel construct, the thread creates a team composed of itself
and some additional (possibly zero) number of threads. The encountering
thread becomes the master of the new team. The other threads of the
team are called slave threads of the team.

Figure 21: OpenMP fork-join model.

® What is the life history of each thread (slave) created?

All team members execute the code inside the parallel construct. When a
thread finishes its work within the parallel construct, it waits at the implicit
barrier at the end of the parallel construct. When all team members have
arrived at the barrier, the threads can leave the barrier. The master thread
continues execution of user code beyond the end of the parallel construct,
while the slave threads wait to be summoned to join other teams.

OpenMP parallel regions can be nested inside each other. If nested
parallelism is:

• Disabled, then the new team created by a thread encountering a parallel
construct inside a parallel region consists only of the encountering
thread.

• Enabled, then the new team may consist of more than one thread.
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g How does OpenMP manage the available threads? Thread Pool

The OpenMP runtime library maintains a pool of threads that can be used as
slave threads in parallel regions. When a thread encounters a parallel construct
and needs to create a team of more than one thread, the thread will check the
pool and grab idle threads from the pool, making them slave threads of the
team. The master thread might get fewer slave threads than it needs if there
is not a sufficient number of idle threads in the pool. When the team finishes
executing the parallel region, the slave threads return to the pool.

] Summary

1. Parallel construct. Our main thread starts to execute our code. It
encounters a parallel construct.

2. Pool verification. The OpenMP library checks its pool of threads. If
within its pool of available threads have something of disposable, it al-
locates the slave (thread requested) to the master (thread that want to
create the team). We refer to a single thread, but obviously this can
be extended to multiple thread request (e.g. master thread requests 3
threads to OpenMP). Finally, the number of requested slaves cannot al-
ways be satisfied; OpenMP guarantees the best, so it continues to give
the requested threads to the applicants. If it cannot satisfy the request, it
returns the maximum number of slaves it can satisfy (e.g. master requests
4 threads, but OpenMP has a pool of only 2 threads available; therefore
it returns 2 slaves).

3. Assign and start execution. Ideally, OpenMP returns the number
of threads requested by the master. Otherwise, it returns the maximum
number. The team now consists of the main thread, called the master,
and its slaves. Each member of the team executes the code specified by
the programmer within the parallel construct.

4. End of execution of a thread. A thread of the team finishes its work.
It can finally rest, and its state changes from "running" to "waiting". It
waits for its other thread friends. Each thread has an implicit barrier at
the end of the parallel construct.

5. Any thread finish. Finally, each thread finishes its work. The master
releases each member of the team to the OpenMP library. OpenMP up-
dates its thread pool with the returning threads, and the master thread
continues its life independently from the released threads.

The previous flow works if and only if nested parallelism is enabled. Otherwise,
if a master asks to create a new team, it will ignore the request and tell the
requester to continue alone.
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{ Implementation

Nested parallelism can be enabled or disabled by passing true or false as argu-
ments to the runtime function: Doc. [

OpenMP: omp_set_nested

1 void omp_set_nested(int nested)

We can set a default number of threads at different levels of nested
parallelism with:

OMP_NUM_THREADS = [list, of, integers]

If the nesting level is deeper than the number of entries in the list, the last value
is used for all subsequent nested parallel region.

• OMP_MAX_ACTIVATE_LEVELS defines the upper limit on the number of
active parallel regions that may be nested.

• OMP_THREAD_LIMIT avoids that recursive applications create too many
threads.

Finally, since we are in nested parallelism, the thread number returns the thread
number partially and not globally, we need other useful functions:

• Returns the maximum number of OpenMP threads available in contention
group: Doc. [

OpenMP: omp_get_thread_limit

1 int omp_get_thread_limit ()

• Returns the maximum number of nested active parallel regions when the
innermost parallel region is generated by the current task. Doc. [

OpenMP: omp_get_max_active_levels

1 int omp_get_max_active_levels ()

• Limits the number of nested active parallel regions when a new nested
parallel region is generated by the current task. Doc. [

OpenMP: omp_set_max_active_levels

1 void omp_set_max_active_levels(int max_levels)
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• Returns the number of nested parallel regions on the device that enclose
tha task containing the call. Doc. [

OpenMP: omp_get_level

1 int omp_get_level ()

• Returns the number of active, nested parallel regions on the device enclos-
ing the task containing the call. Doc. [

OpenMP: omp_get_active_level

1 int omp_get_active_level ()

• Returns, for given nested level of the current thread, the thread number
of the ancestor of the current thread. Doc. [

OpenMP: omp_get_ancestor_thread_num

1 int omp_get_ancestor_thread_num(int level)

• Returns, for a given nested level of the current thread, the size of the
thread team to which the ancestor of the current thread belongs. Doc. [

OpenMP: omp_get_team_size

1 int omp_get_team_size(int level)
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5.8 Cancellation
As of OpenMP 4.0, a thread can be cancelled using a combination of two com-
mands:

• cancel construct cancels the innermost enclosing region of the specified
type.

In other words, it allows us to cancel the current thread. But be
careful! The directive only allows to set the cancellation flag to a
value of one. So it is necessary to also use the cancellation point
command or the thread must hit a barrier (implicit or explicit).

The syntax of the cancel construct is as follows: Doc. [

OpenMP: pragma omp cancel

1 #pragma omp cancel construct-type-clause

Where construct-type-clause is one of the following: parallel,
sections, for, taskgroup.

• The cancellation point construct introduces a user-defined cancellation
point at which implicit or explicit tasks check whether cancellation of the
innermost enclosing region of the specified type has been enabled.

In other words, when a thread encounters the cancellation point,
the cancellation flag has been checked. The thread execution is
stopped. This is an explicit cancellation request because there are other
points where cancellation flag is checked, such as at another cancel region
or at a barrier. Doc. [

OpenMP: pragma omp cancellation point

1 #pragma omp cancellation point

Since there is an overhead in checking for cancellation, it can be enabled
manually using the OMP_CANCELLATION environment variable (false by default).

. Immediate cancellation is not guaranteed

OpenMP does not guarantee that cancellation will result in immedi-
ate termination.

✓ When to use?

When there is a need to stop the execution, such as in the divide-and-
conquer algorithms (for example, to stop a search when we find the element),
or when we need to handle some errors.
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Example 15: thread cancellation

Assume that from a certain point in our algorithm there are 5 threads
alive (including the master), and the construct pipeline is as follows.

Thread 3 hits a cancellation point, but there is no cancel directive before
it, so the cancellation flag is set to zero by default and the thread hasn’t
been broken.

Thread 1 requests the cancellation and waits for a synchronization point,
such as a barrier or an cancellation point. From that point on, it is idle
and waits.
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Thread 0 calls a cancellation point to check the flag and terminates
because thread 1 (last step) has set the cancellation flag to 1. At this
point, thread 1, which was waiting for a synchronization point, also
terminates.

At the same time, thread 2 is cancelled because the cancel directive
checks the cancellation flag first.

At this point the thread 3 has been terminated.

Finally, thread 4 never encounters a cancellation point and finishes exe-
cution normally.
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5.9 SIMD Vectorization
A SIMD processor exploits data parallelism by providing instructions
that operate on blocks of data (called vectors). SIMD provides data par-
allelism at the instruction level and can be combined with other OpenMP
constructs to achieve multi-level parallelism.

q What compilers must do to understand whether a loop can be
vectorized

SIMD instructions use SIMD registers. The compilers deal with several
issues to determine whether a loop can be vectorized by SIMD in-
structions. It does:

• An analysis of the dependencies across iterations;

• An alias analysis of pointers;

• An analysis of the data layout/alignment issues;

• An analysis of conditional executions;

• Checks of the loop bounds that must not be multiple of vector length.

q Other compiler problems: Loop Peeling and Loop Tail

Also, the loop iterations at the beginning and end may not be vec-
torized (loop peeling, tail). This is because when a compiler tries to optimize
a loop using vectorization (i.e., applying the same operation to multiple data
points simultaneously to speed up execution), it often encounters problems with
the iterations at the beginning and end of the loop. These iterations may not
fit neatly into the vectorized operations because the total number of iterations
of the loop may not be a perfect multiple of the vector length.

Essentially, the compiler may have to split the loop into three parts:

1. Loop Peeling. Handle the initial few iterations that don’t align with
vector boundaries.

2. Vectorized Main Loop. Process the majority of the loop iterations
using vectorized operations.

3. Loop Tail. Handle the remaining iterations that can’t be processed with
vector operations due to their small number.

This approach ensures that the loop is as optimized as possible, even if some
parts of it cannot be vectorized efficiently.
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{ Use OpenMP SIMD

The simd construct can be applied to a loop to indicate that the loop can
be transformed into a SIMD loop (i.e., multiple iterations of the loop can be
executed simultaneously using SIMD instructions). Doc. [

OpenMP: pragma omp simd

1 #pragma omp simd

The loop is divided into chunks, and all iterations are executed by a
single thread using SIMD vector instructions. The chunks should fit
into a vector register for performance, and each iteration is executed
by a SIMD lane . The compiler will generate SIMD instructions, it is up to
the user to ensure this maintains correct behavior.

® Possible clauses

• Data scope clauses (page 79) can be used in a simd directive.

• A collapse clause can be used to fuse two perfectly nested loops,
but the complexity can be increase.

• The simdlen(size ) clause suggests a preferred vector length. Maybe
the code will work better with a specific vector length, but the compiler
is free to ignore it (is only a suggestion make by the programmer). It can
also hurt performance but the results remain correct.

• The safelen(size ) clause sets an upper limit to the vector length
that the compiler cannot exceed.

T For SIMD

The omp for simd directive distributes the iterations of one or more
associated loops across the threads that already exist in the team and
indicates that the iterations executed by each thread can be executed
concurrently using SIMD instructions.

OpenMP: pragma omp for simd

1 #pragma omp for simd

The number of threads and scheduling policy greatly affect perfor-
mance. If the number of threads increases, work for each thread is
smaller. Each thread should work with a chunk corresponding to the
vector length. Ideally, it is correct to distribute iterations among threads in
a team, then each thread uses SIMD instructions.
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The clause schedule avoid performance degradation specifying the schedul-
ing type and chunk size for the loop iterations. The static sched-
ule divides the iterations into chunks of chunk-size , distributing them to the
threads.

OpenMP: pragma omp declare simd

1 #pragma omp for simd schedule(simd:static , chunk-size)

Finally, we can also declare a function to be compiled for calls inside a
SIMD loop.

OpenMP: pragma omp declare simd

1 #pragma omp declare simd
2 /* function definition */
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6 GPU Architecture

6.1 Introduction
In the image below, we can see a very basic GPU architecture:

• GPU Structure (left). The GPU is made up of a grid of smaller blocks,
each representing a core. All the blocks form a multi-core structure
that allows the GPU to handle many tasks simultaneously.

Within a single core, the GPU uses SIMD (Single Instruction, Multiple
Data) execution. This means that many execution units within a core
can simultaneously execute the same instruction on different pieces of data.
This results in highly efficient execution of parallel tasks such as rendering
graphics or running simulations.

In addition, each core supports multi-threaded execution, which
allows multiple threads to be processed simultaneously. This further en-
hances the GPU’s ability to perform multiple tasks simultaneously.

• Memory Connection (right). The GPU is connected to DDR5 DRAM,
a type of dynamic random access memory. Fast memory is essential to
handle the large amounts of data that GPUs process. The more powerful
the DRAM, the faster the data transfer.

Initially, GPUs were designed with a specific purpose: to render graphics quickly
and efficiently. However, their role has expanded significantly over the years.

General-Purpose computing on Graphics Processing Units (GPGPU)
was originally designed to render graphics, but GPUs have evolved to perform
a wide range of computations beyond traditional graphics tasks. GPGPU takes
advantage of the parallel processing capabilities of GPUs to perform computa-
tions typically handled by the CPU.
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6.2 GPU compute mode
GPU compute mode refers to GPU hardware that is optimized for
general-purpose computing rather than graphics rendering. This mode
allows users to run non-graphics programs on the GPU’s programmable cores,
taking advantage of the GPU’s parallel processing capabilities for tasks such as
scientific simulations, data analysis, and machine learning.

Example 1: how to run code on a GPU (prior to 2007)

Now let us see how to run a simple code on a GPU. Suppose a user wants
to draw a picture on a GPU:

• GPU Shader Program Binaries. The application, via the
graphics driver, supplies the GPU with shader program binaries.
These are compiled programs that the GPU will execute to perform
rendering tasks.

• Graphics Pipeline Parameters. The application sets various
parameters for the graphics pipeline, such as the output image
size, to control how the rendering should be processed.

• Vertex Buffer. The application provides the GPU with a buffer
of vertices. Vertices are data points that define the shape of the
objects to be rendered.

• Draw Command. The application sends a draw command to the
GPU using the function call drawPrimitives(vertex_buffer).
This command instructs the GPU to start rendering using the pro-
vided vertex data.

The stages of the graphics pipeline:

1. Input Vertex Buffer: The initial stage where the vertex data is
input to the pipeline.

2. Vertex Generation: Vertices are generated or fetched from the
vertex buffer.

3. Vertex Processing: The vertices undergo various transforma-
tions and shading calculations.

4. Primitive Generation: The processed vertices are used to gen-
erate geometric primitives (such as triangles).

5. Fragment Generation (Rasterization): The primitives are
converted into fragments (potential pixels).

6. Fragment Processing: Fragments undergo shading and textur-
ing calculations to determine their final color and properties.

7. Pixel Operations: Final operations are performed on the frag-
ments, such as depth testing and blending.

8. Output Image Buffer: The processed fragments are written to
the output image buffer, resulting in the final rendered image.
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Î Some history

Before 2007 the only way to interface with GPU hardware was through
the graphics pipeline. This meant that GPUs were designed and used
specifically for tasks related to graphics rendering. The pipeline stages
(such as vertex processing, fragment generation, and pixel operations) were all
designed to transform vertex data into pixels displayed on the screen.

Because they were optimized to handle parallel tasks associated with rendering
images, their architecture and interfaces were tightly coupled with graphics
APIs.

By 2007, the concept of using GPUs for General-Purpose computing on
Graphics Processing Units (GPGPU) was emerging. Thanks mainly to the
introduction of a new architecture signed NVIDIA called Tesla and CUDA, a
parallel computing platform and programming model (also OpenCL was emerg-
ing).

The NVIDIA Tesla architecture, introduced with the GeForce 8800 GPU in
2006, marked a significant shift in GPU design by unifying graphics and comput-
ing capabilities. This architecture featured a scalable parallel array of processors
that could be programmed in C or via graphics APIs2. The Tesla architecture
enabled flexible, programmable graphics and high-performance com-
puting, making it possible to use GPUs for a wide range of applications beyond
traditional graphics rendering. This unification enabled massive multithreading
and parallel processing, dramatically improving performance for computation-
ally intensive tasks. [7]

From this point on, the programmable cores of the GPU are used:

• Application could allocate buffers in GPU memory and copy data to/from
buffers;

• Application (via the graphics driver) provides a single kernel program
binary to the GPU;

• Application tells GPU to run kernel in SPMD fashion.
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6.3 CUDA
6.3.1 Basics of CUDA

® What is CUDA?

Compute Unified Device Architecture (CUDA), is a parallel comput-
ing platform and Application Programming Interface (API) model cre-
ated by NVIDIA. It allows developers to utilize NVIDIA GPUs for general-
purpose processing, enabling them to perform a wide range of computations
more efficiently than with traditional CPU processing alone.

CUDA was introduced with the NVIDIA Tesla architecture, which marked a
significant shift in GPU capabilities, enabling general purpose computing on
GPUs. CUDA is designed to be similar to the C programming lan-
guage, making it familiar to many developers. It allows programmers to write
code that runs on GPUs using the compute-mode hardware interface.

CUDA’s abstractions are relatively low-level and closely match the
performance characteristics and capabilities of modern GPUs. This
design goal helps maintain a low abstraction layer, ensuring that developers can
take full advantage of the hardware’s potential.

Note that Open Computing Language (OpenCL) is an open standards
version of CUDA that runs on both CPUs and GPUs from multiple vendors.
While CUDA runs only on NVIDIA GPUs, OpenCL is designed to
be more versatile and work on hardware from multiple vendors.

® CUDA Thread Hierarchy

CUDA organizes threads into a hierarchical structure to efficiently manage par-
allel computations on GPUs. To understand how it works, let’s look at it from
the deepest level up:

1. Threads. Threads (or CUDA Threads) are the smallest unit of exe-
cution in CUDA. Each thread runs a single instance of a kernel function8.

Threads are identified by their unique thread IDs, which are used to
calculate memory addresses and control decisions.

2. Thread Blocks. Threads are grouped into blocks (called also CUDA
Blocks). Each block can contain multiple threads that execute concur-
rently.

Threads within the same block can communicate and share data
through shared memory and synchronization primitives like barriers and
atomic operations.

The maximum number of threads per block is limited by the GPU archi-
tecture, typically up to 1024 threads per block.

8A kernel function in CUDA is a function that runs on the GPU (device) but is called from
the CPU (host). These functions are executed by many parallel threads on the GPU
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3. Grids. Blocks are organized into a grid (called also CUDA Grids). A
grid is a collection of blocks that execute the same kernel function.
All threads in a grid share the same global memory space.
The grid can be multi-dimensional, allowing for flexible organization of
blocks to match the problem’s dimensions.

Note that CUDA uses the x, y, and z dimensions for threads, blocks, and grids
because this multi-dimensional structure aligns well with many common
computational problems. Many computational problems naturally fit into a
multi-dimensional space. For example, image processing involves 2D data, and
volumetric simulations involve 3D data.

Figure 22: The figure shows an example of a CUDA grid consisting of 6 blocks,
each block consisting of 12 threads. The number of threads and the number of
blocks per column/row are customizable, this is just an example. In total, there
are 72 CUDA threads (12 threads per block times 6 blocks in the grid).

y CUDA Kernels

A CUDA kernel is a function that gets executed on the GPU. It contains
the parallel portion of the application, which is executed by multiple threads in
parallel. Unlike regular C/C++ functions that run on a single thread, CUDA
kernels can run thousands of threads simultaneously.
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8 Device vs Host

In CUDA, there is a term to identify the code that runs on the CPU and GPU.

Definition 1: CUDA Host (CPU)

The CUDA Host refers to the CPU and its associated memory.
It is responsible for managing the overall program execution.
This includes allocating memory, launching CUDA kernels, and trans-
ferring data between the CPU and the GPU.
It is typically written in the standard programming language used (e.g.,
C, C++, Java, Python, etc.) and contains the logic for setting up and
controlling the execution of CUDA kernels on the device.

Definition 2: CUDA Device (GPU)

The CUDA Device refers to the GPU and its associated memory.
It is responsible for running parallel code (CUDA kernels) and
performs the bulk of the computation. This takes advantage of the
parallel processing power of the GPU.
The device code (kernels) is written in the CUDA programming language
and is designed to run on the multiple parallel cores of the GPU.

Ð Basic CUDA syntax

Here is a sample code written in CUDA:

1 #include <cuda_runtime.h>
2 #include <iostream >
3 #define Nx 12
4 #define Ny 6
5

6 // Kernel definition
7 __global__ void MatAdd(
8 float A[Ny][Nx],
9 float B[Ny][Nx],

10 float C[Ny][Nx]
11 ) {
12 int i = blockIdx.x * blockDim.x + threadIdx.x;
13 int j = blockIdx.y * blockDim.y + threadIdx.y;
14 // guard against out of bounds array access
15 if (i < N && j < N)
16 C[i][j] = A[i][j] + B[i][j];
17 }
18

19 int main() {
20 // Define the hierarchy
21 dim3 threadsPerBlock (4, 3);
22 dim3 numBlocks(
23 Nx / threadsPerBlock.x,
24 Ny / threadsPerBlock.y
25 );
26 // Kernel invocation
27 // Assume matrices A, B, C are already allocated (dim Nx x Ny)
28 MatAdd <<<numBlocks , threadsPerBlock >>>(A, B, C);
29 }
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Rows 3-4 Variables Nx and Ny define the dimensions of the matrices. In this case,
they are 12× 6.

Row 21 The threadsPerBlock function specifies that each block will have 4
threads in the x dimension and 3 threads in the y dimension. In other
words, it defines how a block should be composed (see the figure 22).

Row 22 The numBlocks function defines the number of blocks required to cover
the entire matrix. The number of blocks is calculated by dividing the
matrix dimensions by the number of threads per block in each dimension.
In other words, it defines how a grid should be composed (see the figure
22).

Row 28 The execution configuration syntax <<<...>>> is required to specify the
number of threads per block and the number of blocks per grid (both
numbers can be of type int or dim3).

The function invocation starts the MatAdd kernel with the given grid and
block dimensions. This kernel runs on the GPU and performs the matrix
addition.

Row 7 Defines a kernel function called MatAdd to be executed on the GPU. The
__global__ keyword indicates that this is a kernel function.

Rows 12-13 Computes the global column index i for each thread. This combines the
block index and the thread index within the block to get the overall posi-
tion.

It also does the same with the j index.

Row 15 The if condition ensures that the thread does not access out-of-bounds
elements in the matrices.

Row 16 Finally, it performs the element-wise addition of matrices A and B and
stores the result in matrix C.

As we said in Figure 22 (page 104), the example spawns 72 CUDA threads.
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6.3.2 Memory model

The CUDA memory model consists of several types of memory, each with dif-
ferent characteristics and uses. In general, the Host (CPU) and the Device
(GPU) have different address spaces, each one has its private memory
address.

For example, the cudaMemcpy function in CUDA is used to copy data between
different memory spaces, specifically between host (CPU) memory and de-
vice (GPU) memory.

1 // allocate buffer in host mem
2 float* A = new float[N];
3

4 // populate host address space pointer A
5 for (int i = 0; i < N; ++i) {
6 A[i] = (float)i;
7 }
8

9 // allocate buffer in device (GPU) address space
10 int bytes = sizeof(float) * N;
11 float* deviceA;
12 cudaMalloc (&deviceA , bytes);
13

14 // populate deviceA
15 cudaMemcpy(deviceA , A, bytes , cudaMemcpyHostToDevice);
16 // deviceA:
17 // Destination memory address (either on the host or device).
18 //
19 // A:
20 // Source memory address (either on the host or device).
21 //
22 // bytes:
23 // Number of bytes to copy.
24 //
25 // cudaMemcpyHostToDevice:
26 // Type of memory copy operation.
27 // Copies data from host memory to device memory.

Note that directly accessing deviceA[i] is an invalid operation, because we
cannot manipulate the contents of deviceA directly from host, since deviceA
is not a pointer to the host’s address space.
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: Types of CUDA device memory models visible to kernels

1. Per-thread Private Memory. This memory is private to each
thread. Each thread has its own memory space that other threads cannot
access.

® Usage. It is ideal for storing variables that are only relevant
to individual threads and do not need to be shared with other threads.

T Access. It has fast access, limited by the number of registers avail-
able.

2. Per-block Shared Memory. This memory is shared by all threads
within a block. It allows threads within the same block to cooperate by
sharing data.

® Usage. It is useful for tasks where threads within a block need
to communicate or share intermediate results. It is often used to
optimize memory access patterns and reduce global memory accesses.

T Access. It is much faster than global memory, but limited in
size. Access is almost as fast as registers when used properly.

3. Device Global Memory. This memory is accessible to all threads
across all blocks. It provides a large amount of memory, but has higher
latency and lower bandwidth than shared memory.

® Usage. It is suitable for storing large amounts of data that must
be accessed by threads in different blocks.

T Access. It has the slowest access of the three types, but is necessary
for large data storage and inter-block communication.
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6.3.3 NVIDIA V100 Streaming Multiprocessor (SM)

The NVIDIA V100 is a powerful GPU designed for data centers, primarily used
for Artificial Intelligence (AI), High Performance Computing (HPC), and data
science. Meanwhile, the NVIDIA V100 Streaming Multiprocessor (SM)
is a key component of the V100 GPU architecture.

® How is architecture composed?

See Figure 23 (page 110) for a graphical representation.

• Warp Selector and Fetch/Decode:

The Warp Selector and Fetch/Decode units are responsible for managing
the execution of warps (groups of threads) and decoding instruc-
tions.

• Functional Units:

– SIMD fp32 functional unit (Yellow).
It handles single-precision floating-point operations. Control
is shared across 16 units, allowing for 16 multiply-add (MUL-ADD)
operations per clock cycle. This translates to one 32-wide SIMD
operation every two clocks.

– SIMD int functional unit (Orange).
It manages integer operations, also shared across 16 units, with
the same performance characteristics as the fp32 unit (16 × MUL-ADD
per clock).

– SIMD fp64 functional unit (Brown).
It is responsible for double-precision floating-point opera-
tions. Control is shared across 8 units, allowing for 8 MUL-ADD oper-
ations per clock cycle, equating to one 32-wide SIMD operation every
four clocks.

– Tensor core unit (Red).
It is specialized for tensor operations, which are crucial for deep
learning and AI workloads.

– Load/store unit (Green).
It handles memory operations, such as loading data from and
storing data to memory.

• Warp Scheduler:

The diagram below shows the scheduling of warps (Warp 0, Warp 4, Warp
60, etc.) across the functional units, indicating how different warps are
processed in parallel.
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Figure 23: A “sub-core” of the NVIDIA V100 Streaming Multiprocessor (SM)
architecture.

® What is a Warp?

A Warp is a group of 32 threads that execute the same instruction
at the same time. Threads within a block are divided into warps.
For example, a block of 256 threads would have 8 warps (256 threads / 32
threads per warp). Each SM in the V100 can schedule and interleave
the execution of up to 16 warps. This means that multiple warps can be
executed simultaneously, improving the overall throughput of the GPU. Finally,
each warp has some registers to store the data needed by the threads.
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® How is a Warp executed?

Threads within a warp execute the same instruction simultaneously,
taking advantage of SIMD execution to improve performance.

When threads within a warp do not share the same instruction, it
results in divergent execution, which can degrade performance due
to the need to serialize instructions. However, the check of the same in-
struction by the 32 threads is done dynamically by the GPU hardware.
Finally, although not part of CUDA, understanding warps is critical to optimiz-
ing CUDA programs on modern NVIDIA GPUs.

Figure 24: A NVIDIA V100 Streaming Multiprocessor (SM) architecture.
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6.3.4 Running a CUDA program on a GPU

The following section is dedicated to understanding the execution of the “con-
volve” kernel on a fictitious dual-core GPU. In other words, we present an ex-
ample of a kernel function execution (and therefore GPU-executed) that imple-
ments a convolution operation. It also aims to show why memory management
is also fundamental inside the GPU.

The kernel execution requirements for this explanation are:

• Each thread block must execute 128 CUDA threads.

• Each thread block must allocate 130 × sizeof(float) = 520 bytes of
shared memory. In other words, each thread block requires 520 bytes
of shared memory.

Let’s take an array of size N as input to the kernel function. When the kernel
function is executed (launched), it generates thousands of thread blocks because
the array size N is assumed to be very large.

1 #define THREADS_PER_BLK 128
2 convolve <<<(N/THREADS_PER_BLK), THREADS_PER_BLK >>>(N, input_array ,

output_array);

Where:

• N/THREADS_PER_BLK is the number of blocks per grid.

• THREADS_PER_BLK is the number of threads per block, 128 CUDA threads
in our case.

The main task of the GPU Work Scheduler is to manage the two available
cores (let’s say Core 0 and Core 1), where each core has its own Fetch/Decode
units, execution context storage for 384 CUDA threads (12 warps), and
shared memory storage (1.5 KB).

Note that this architecture has fictitious cores that are smaller than V100 SM
cores, with fewer execution units, less support for active warps, and less shared
memory.
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T Execution

1. The host (CPU) sends a command to the CUDA device (GPU),
which is the execution of the kernel function.

• Execute: convolve (kernel function)

• Args:

– N = 128′000

– input_array
– output_array

• Number of blocks: 1000. Note that the number of blocks is given
by the formula:

N
THREADS_PER_BLK

Therefore, the size of the array is easily calculated as:

N
128

= 1000 ⇒ N = 128× 1000 = 128′000

2. The scheduler maps block 0 to Core 0, reserving execution contexts for
128 threads and 520 bytes of shared memory to meet requirements.
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3. The scheduler continues to map blocks to available execution contexts, so
it now maps block 1 to Core 1. This shows interleaved mapping (where
the scheduler maps blocks to available execution contexts across different
cores, ensuring efficient use of resources).

4. As in the previous step, there is a interleaved mapping phenomena. The
scheduler maps block 2 to Core 0. But now the shared memory (Core
0 ) is saturated because three concurrent blocks allocate 520 bytes× 3 =
1.56 KB > limit (1.5 KB).
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5. The scheduler assigns block 3 to Core 1. But now the shared memory
of Core 1 is also saturated, because three concurrent blocks allocate
520 bytes × 3 = 1.5 KB > limit (1.5 KB). So we can say that only two
thread blocks fit on one core.

6. The scheduler waits for a task to complete on a block. The following
figure shows block 0 completing on Core 0. Now Core 0 is ready to host
execution blocks again.
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7. When the task is complete, the scheduler assigns block 4 to Core 0.

8. Thread block 2 completes on Core 0.

9. Finally, thread block 5 is scheduled on Core 0.
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The explanation is intended to illustrate a phenomenon where the GPU sched-
uler has to manage limited shared memory resources across multiple thread
blocks.

• Shared Memory Saturation: When a GPU core’s shared memory is
fully occupied by existing thread blocks, new thread blocks cannot be
scheduled until sufficient shared memory is freed up by the completion of
some of the current thread blocks.

• Idle Periods: While the scheduler is waiting for shared memory to be-
come available, the GPU cores may be idle. This doesn’t mean the
entire GPU is idle, but certain cores may not have new blocks to execute
until resources are freed up.

• Resource Contention: This example shows how shared memory con-
tention can affect the scheduling efficiency of a GPU. Efficient use of
shared memory is critical to maximizing GPU performance.

• The concept of resource contention, whether it be shared memory,
registers or other resources, is well known in parallel computing and GPU
programming. It highlights the importance of optimizing memory
usage to avoid bottlenecks and ensure efficient execution.

The example demonstrates how GPUs must juggle limited resources while max-
imizing throughput, a key aspect of parallel computing. By showing that the
scheduler must wait before allocating new blocks, it emphasizes the impor-
tance of careful resource management in kernel design and execution.
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6.3.5 Implementation of CUDA abstractions

We assume that we have a fictitious Streaming Multiprocessor (SM) core
(Figure 23 page 110, same as NVIDIA V100, page 109) with only four warps
of parallel execution in hardware. So there are 4 warps times 32 threads, and
128 threads can be executed in parallel each time.

Figure 25: Streaming Multiprocessor (SM) core, with 4 warps and 128 threads
in total.

® Why allocating all threads in a block might be inefficient

Now imagine we want to run a CUDA program where a thread block consists
of 256 CUDA threads, even though our GPU architecture can only execute
128 threads at a time. A naive implementation might execute the entire CUDA
block by executing four warps (threads 0-127) to completion, and then execute
the next four warps (threads 128-255) to completion. This sequential exe-
cution of warps can lead to inefficiencies because there may be idle
periods where some warps are stalled waiting for memory accesses or
synchronization points.

¥ Use interleaving execution

A good alternative is to use interleaved execution. Interleaved execution
means that the GPU schedules warps so that they overlap. While some
warps are waiting for memory access or synchronization, others can execute.
This overlapping helps to hide latencies and keep the GPU cores busy.

However, CUDA kernels can create dependencies between threads in
a block. To manage these dependencies, the programmer can use the function
__syncthreads() to synchronize threads within a block. __syncthreads()
ensures that all threads in the block reach the synchronization point
before any thread can continue. This means that threads 128-255 cannot
continue until threads 0-127 reach the synchronization point.
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¥ Why interleaving execution is optimal when there are
dependencies

If we run four warps to completion before starting the next four, we may not
be using shared resources (such as shared memory and execution units)
efficiently. This can also lead to scenarios where some warps are stalled
indefinitely waiting for other warps to reach synchronization points,
causing potential deadlocks or inefficiencies.

By interleaving the execution of warps, the GPU can better manage thread
dependencies, hide latencies, and make more efficient use of its resources.

1 #define THREADS_PER_BLK 256
2

3 __global__ void convolve(int N, float* input , float* output)
4 {
5 __shared__ float support[THREADS_PER_BLK * 2];
6 int index = blockIdx.x * blockDim.x + threadIdx.x;
7

8 support[threadIdx.x] = input[index ];
9 if (threadIdx.x < N) {

10 support[
11 THREADS_PER_BLK + threadIdx.x
12 ] = input[index + THREADS_PER_BLK ];
13 }
14

15 __syncthreads ();
16

17 float result = 0.0f; // thread -local
18 for (int i = 0; i < 5; i++)
19 result += support[threadIdx.x + i];
20

21 output[index] = result;
22 }

[ Summary

1. Thread blocks can be scheduled in any order by the system.

• The system assumes no dependencies between blocks.

• Blocks are logically concurrent, similar to ISPC tasks (Implicit SPMD
Program Compiler, page 31).

2. CUDA threads in the same block run concurrently (live at the
same time).

• When a block begins executing, all threads exist and have register
state allocated.

• A CUDA thread block is an SPMD (Single Program, Multiple
Data) program, similar to an ISPC gang of program instances.

• Threads in a thread block are concurrent, cooperating “workers”.
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3. CUDA implementation.

• An NVIDIA GPU warp has performance characteristics similar to
an ISPC gang of instances.

• All warps in a thread block are scheduled onto the same SM (Stream-
ing Multiprocessor), allowing for high-bandwidth, low-latency com-
munication through shared memory variables.

• When all threads in a block complete, block resources (shared mem-
ory allocations, warp execution contexts) become available for the
next block.
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6.3.6 Advanced thread scheduling

The main goal of this section is to show how a CUDA kernel uses hardware
execution resources: thread block allocation to execution resources, execution
resource capacity constraints, and zero-overhead thread scheduling.

In general, CUDA thread blocks execute independently and can run
in any order. The hardware is free to assign blocks to any processor at
any time. This flexibility allows the GPU to optimize resource utilization and
balance the load. A kernel (the function that runs on the GPU) scales to any
number of parallel processors. This means that the same code can run efficiently
on GPUs with different numbers of cores.

Thread blocks are the basic unit of work in CUDA
and are assigned to SMs in block granularity (as
we saw in Chapter 6.3.4). This means that a
thread block cannot be split across multi-
ple SMs, but is executed entirely within a
single SM. Each SM has a limit on the number
of threads and thread blocks it can support si-
multaneously. For example, the Volta SM can
handle up to 2048 threads. The number of
blocks an SM can hold depends on the number of
threads per block:

• If a block has 256 threads, up to 8 blocks can fit (256×8 = 2048 threads).

• If a block has 512 threads, only 4 blocks can fit (512× 4 = 2048 threads).

The SM manages the indexes of the threads and blocks assigned to it,
enabling scheduling and execution.

] Von Neumann model with SIMD units

The Von Neumann Model consists of a Control Unit, ALU (Arithmetic Logic
Unit), Registers, Memory, and I/O components that work in a sequential man-
ner. However, when we integrate SIMD (Single Instruction, Multiple Data)
units into the model, we add the ability to process multiple data items
simultaneously using a single instruction.

As we have explained in the section 2.1.3 page 25, SIMD allows the same op-
eration to be performed on multiple pieces of data in parallel. This means a
Control Unit (CU) sends the same instruction to multiple ALUs, each working
on different data at the same time.
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] Von Neumann model with SIMD units in GPUs

The architecture uses SIMD units to execute multiple threads in par-
allel, making GPUs highly efficient at tasks involving large data sets, such as
image processing, matrix multiplication, and other data-parallel computations.

Warps (groups of 32 threads) are executed in a SIMD fashion. All threads
in a warp perform the same operation, but on different pieces of
data. This is critical for speeding up computations that need to process large
amounts of data in parallel. SIMD capabilities allow GPUs to efficiently handle
large numbers of parallel tasks, making them far more powerful than traditional
CPUs for certain workloads, such as graphics rendering and scientific computing.

Figure 26: Von Neumann model with SIMD units.

However, these features are implementation choices, not part of the CUDA
programming model. Therefore, future GPUs may have different numbers of
threads in each warp.

Example 2: Warp

If 3 blocks are assigned to a Streaming Multiprocessor (SM) and each
block has 256 threads, how many warps are there in an SM?
Since each warp is made up of 32 threads, if a block is made up of 256
threads, then 8 warps are required for each block:

Threads per block
Threads per warp

=
256

32
= 8

Since the number of blocks to be allocated is 3, if each block requires 8
warps, there are 8× 3 = 24 warps inside a single SM.
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[ Zero-Overhead Warp Scheduling [11]

Zero-Overhead Warp Scheduling is a feature of NVIDIA’s GPUs that allows
efficient management of thread execution without significant performance
penalties. This mechanism is obviously implemented in the Streaming
Multiprocessor architectures.

• Warp Status. Each warp has a state that can be:

– Eligible: the warp is ready to execute its next instruction because
all the necessary operands are available (ready for consumption).

– Not Eligible: the warp cannot execute its next instruction because
it is waiting for operands or other resources.

– Busy: the warp is currently running and executing instructions.

Each warp also has an associated priority value.

• The scheduler has a Prioritized Scheduling Policy, so it selects:

1. Highest Priority and Eligible: the scheduler first selects warps
that have the highest priority and are eligible for execution.

2. Eligible Warps: if no high-priority warps are eligible, the scheduler
then selects from the pool of eligible warps.

• Execution Context Switching. After that the scheduler choose a warp
to run, how it can change the execution context from a warp to another?

– Before giving the answer, it is necessary to understand that the Ex-
ecution Context contains the state of all threads in a warp,
such as Program Counters, register values, and other information
necessary for execution. This context is stored in hardware re-
sources dedicated to each warp.

– Thus zero-overhead warp scheduling takes advantage of the power
of the hardware. When the warp scheduler decides to switch
from one warp to another (to hide latency or because a warp is wait-
ing for data), it does not need to save and restore context to and
from memory. Instead, it simply switches the execution state
to the context of another warp, which is already stored in
dedicated hardware.

This means that the switching process is very fast and has virtually no
overhead, hence the term “zero-overhead”!
In other words, since all the necessary state information is already
stored in the hardware, this switch is instantaneous and doesn’t
involve the overhead of saving/loading data to/from memory.

¥ Advantages

• Efficiency. By leveraging hardware resources for context storage, CUDA
ensures that switching between warps incurs virtually no overhead.

• Latency Hiding. This efficient scheduling helps hide latencies and keeps
the GPU’s computational resources fully utilized, leading to high perfor-
mance.
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Example 3: Matrix Multiplication on Volta Architecture

This example illustrates the impact of different block sizes on thread
utilization when performing matrix multiplication using NVIDIA’s Volta
GPU architecture.
With the term Block Granularity we refer to the number of threads
per block. Choosing the right block size is crucial for maximiz-
ing the efficiency of GPU resources.

• In general, each Streaming Multiprocessor (SM) on the Volta ar-
chitecture can handle up to 2048 threads.

• 4× 4 Threads per Block:

– Threads per Block: 16 threads (4× 4).

– Blocks per SM: the GPU can accommodate up to 32 blocks
per SM.

– Utilization: 16 threads per block mean 2048 threads would
fill 128 blocks. However, since an SM can only accommodate
up to 32 blocks at a time, only 512 threads will be utilized
per SM (16 threads/block × 32 blocks), leading to under-
utilization of available threads!

• 8× 8 Threads per Block:

– Threads per Block: 64 threads (8× 8).

– Blocks per SM: with 2048 threads per SM, up to 32 blocks
of 64 threads each can be allocated per SM (2048 threads per
SM ÷ 64 threads per block).

– Utilization: this setup can utilize the full capacity of 2048
threads per SM, provided other resource limitations (such as
shared memory or registers) are not a constraint.

• 30× 30 Threads per Block:

– Threads per Block: 900 threads (30× 30).

– Blocks per SM: with 2048 threads per SM, only two blocks
of 900 threads each can be accommodated, resulting in 1800
threads (2 × 900), which is less than the SM’s maximum
capacity.

– Utilization: this configuration also leads to under-utilization
because it does not utilize the full 2048 thread capacity.
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The example on page 124 shows some important points to emphasize:

• Choosing Block Size: choosing the optimal block size is critical to
maximizing GPU efficiency. In the previous example, a block size of 8× 8
allows full utilization of the SM’s thread capacity.

• Resource Constraints: when choosing a block size, we must also con-
sider other resource limitations, such as shared memory and registers,
which can affect the number of threads and blocks that can be scheduled
on an SM.
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6.3.7 Memory and Data Locality in Depth

In CUDA programming, understanding memory and data locality is crucial for
achieving high performance.

® Why Memory Hierarchy and Data Locality Matter

We propose a piece of code of a kernel function where there is a computation of
the blur in an image:

1 // get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
2 for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE +1; ++ blurRow)
3 {
4 for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE +1; ++ blurCol)
5 {
6 int curRow = Row + blurRow;
7 int curCol = Col + blurCol;
8 // Verify we have a valid image pixel
9 if(curRow > -1 && curRow < h && curCol > -1 && curCol < w)

10 {
11 pixVal += in[curRow * w + curCol ];
12 // keep track of number of pixels
13 // in the accumulated total
14 pixels ++;
15 }
16 }
17 }
18

19 // write our new pixel value out
20 out[Row * w + Col] = (unsigned char)(pixVal / pixels);

The code accesses global memory for input matrix elements. This is
evident from the line 11 where in is likely a pointer to the global memory holding
the image data. Therefore, each thread accesses global memory to read the pixel
values within a 2xBLUR_SIZE x 2xBLUR_SIZE box around the current pixel.

• Each memory access is 4 bytes per floating point addition.

• The memory bandwidth is 4 bytes per second per FLOP, 4B/s of
memory bandwidth/FLOPS.

Assuming a GPU with a peak floating point rate of 1,600 GigaFLOPS and
a DRAM bandwidth of 600 GB/s, then 1,600 GigaFLOPS would require 6,400
GB/s of memory bandwidth to achieve the peak FLOPS. However, the 600 GB/s
memory bandwidth limits execution to 150 GFLOPS, which is only 9.3% of the
peak floating point execution rate. To get close to the 1,600 GigaFLOPS,
it is necessary to drastically cut down memory accesses.

In other words, there is an evident Memory Bandwidth Bottleneck. Even
with a high peak floating-point rate, the actual performance can be limited
by memory bandwidth (to achieve 1,600 GigaFLOPS, the kernel would require
6,400 GB/s of memory bandwidth, but the available bandwidth is only 600
GB/s).
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Therefore, it is important to understand that minimizing global memory
access and optimizing data locality are essential strategies in CUDA
programming to achieve high performance. This is because accessing
global memory often results in high latency, which can significantly degrade the
performance of our GPU application.

• Global memory access. Global memory is the largest and slowest mem-
ory available on a GPU. Frequent accesses to global memory can
cause significant performance bottlenecks due to high latency.

• Bandwidth and Latency. While global memory provides high band-
width, the latency associated with accessing it can slow overall per-
formance, especially when multiple threads are accessing it simultane-
ously.

• Memory hierarchy. GPUs have a hierarchical memory structure that
includes registers, shared memory, and global memory. Using a proper
memory structure can improve performance and reduce memory band-
width. We discussed these topics in Section 6.3.2, page 108.

• Data Locality and Caching. Optimizing data locality (keeping fre-
quently accessed data close to where it is processed) is key to improving
performance. Using shared memory to cache data that is accessed
multiple times by threads can significantly reduce the need for
global memory accesses.

Example 4: Matrix Multiplication

Matrices:

• Matrix M

• Matrix N

• Matrix P , the resulting matrix.

In the image below, the matrices are divided into blocks with dimensions
labeled as WIDTH and BLOCK_WIDTH, indicating the block-based approach
to matrix multiplication.
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Arrows show the direction of data flow, indicating how elements from
matrices M and N are multiplied to form matrix P .
The code used to perform the matrix multiplication is as follows:

1 __global__ void MatrixMulKernel(
2 float* M, float* N, float* P, int Width
3 ) {
4 // Calculate the row index of the P element and M
5 int Row = blockIdx.y * blockDim.y + threadIdx.y;
6

7 // Calculate the column index of P and N
8 int Col = blockIdx.x * blockDim.x + threadIdx.x;
9

10 int RowTimesWidth = Row * Width;
11

12 if ((Row < Width) && (Col < Width)) {
13 float Pvalue = 0;
14 // Each thread computes one element
15 // of the block sub -matrix
16 for (int k = 0; k < Width; ++k) {
17 Pvalue += M[RowTimesWidth + k] *
18 N[k * Width + Col];
19 }
20 P[RowTimesWidth + Col] = Pvalue;
21 }
22 }

• The MatrixMulKernel function is defined to run on the GPU (in-
dicated by __global__). It takes pointers to matrices M , N , P ,
and an integer Width representing the dimensions.

• Calculate Row Index (row 5). It calculates the row index of the
current element in matrix P that the thread is responsible for.
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• Calculate Column Index (row 8). It calculates the column index of
the current element in matrix P .

• The if condition ensures that the thread operates within the bounds
of the matrices.

• If the condition is true, initializes the Pvalue and iterates over
the row of M and column of N . Each iteration accumulates the
product of corresponding elements from M and N .

• Finally, stores the computed value in matrix P .

Since the previous example shows problems with global memory access (be-
cause accessing elements of matrices M , N , and P involves global memory),
optimization (it doesn’t load elements into shared memory to reduce global
memory accesses), and data locality (because consecutive threads don’t access
successive memory locations), we propose an alternative.

{ Alternative (better) implementation of the previous example

The following figure shows how threads are mapped to elements of the output
matrix P during matrix multiplication. It shows how the matrix is divided into
blocks and how threads handle these blocks.

• The 4×4 matrix P is divided into smaller 2×2 blocks. This division helps
in managing data more efficiently and improves memory access patterns.

• The BLOCK_WIDTH is 2, indicating that each block contains 2×2 elements.

• Each block of the matrix P is assigned to a specific thread.

– Block(0,0) is handled by Thread(0,0).

– Block(0,1) is handled by Thread(0,1).

– Block(1,0) is handled by Thread(1,0).

– Block(1,1) is handled by Thread(1,1).
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The mapping ensures that each thread is responsible for computing
the values of a specific block in matrix P .

In the following figure, we illustrate an example of how elements P0,0 and P0,1

in matrix P are calculated using elements from matrices M and N .

• To compute P0,0, are used elements from:

– The first row of matrix M (M0,0,M0,1,M0,2,M0,3)

– The first column of matrix N (N0,0, N1,0, N2,0, N3,0)

The computation involves multiplying corresponding elements and sum-
ming the results:

P0,0 = (M0,0 ×N0,0) + (M0,1 ×N1,0)+

(M0,2 ×N2,0) + (M0,3 ×N3,0)

• To compute P0,1, are used elements from:

– The first row of matrix M (M0,0,M0,1,M0,2,M0,3)

– The second column of matrix N (N0,1, N1,1, N2,1, N3,1)

The computation involves multiplying corresponding elements and sum-
ming the results:

P0,1 = (M0,0 ×N0,1) + (M0,1 ×N1,1)+

(M0,2 ×N2,1) + (M0,3 ×N3,1)

And why is this related to storage and data locality? For three reasons:

✓ Memory Access Patterns. By dividing the matrix into blocks and
assigning specific threads to handle these blocks, the computa-
tion can take advantage of memory locality. Threads working on the
same block will likely access contiguous memory locations, which
improves memory access efficiency.
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✓ Shared Memory Usage. Instead of repeatedly accessing global memory,
threads can load the necessary block data into shared memory
once. All threads in a block can then work on the data in shared
memory, significantly reducing global memory access and thus improving
performance.

✓ Optimization for Performance. Reducing the number of global mem-
ory accesses by optimizing data locality and using shared memory can
drastically improve the performance of the matrix multiplication kernel.
Efficient mapping of threads to data and making use of memory
hierarchy are key strategies for achieving high performance in
CUDA applications.

[ Memory/Data Locality are fundamental, now we go deep

Before explaining the keywords used by CUDA, it is important to understand
the programmer’s view of CUDA memory.

• Host (CPU) Memory. Connected to the GPU, but distinct from GPU
memory.

• Global Memory. Accessible by all threads and the host. It’s the largest
but also the slowest type of memory.

• Constant Memory. Read-only memory accessible by all threads.

• Grid. Contains multiple blocks, each consisting of threads (we have al-
ready seen and discussed this in Section 2, page 103).

• Shared Memory. Faster than global memory, shared among threads
within the same block.
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• Registers. The fastest memory, local to each thread.

CUDA has specific declarations for different types of memory:

• Local Variable (int LocalVar): stored in registers, scope and lifetime
are per thread.

• Shared Variable (__shared__ int SharedVar): stored in shared mem-
ory, scope and lifetime are per block.

• Global Variable (__device__ int GlobalVar): stored in global mem-
ory, scope is the entire grid, and the lifetime is the duration of the appli-
cation.

• Constant Variable (__constant__ int ConstantVar): stored in con-
stant memory, scope is the grid, and the lifetime is the duration of the
application.

Variable Declaration Memory Scope Lifetime

int LocalVar Register Thread Thread
__shared__ int SharedVar Shared Block Block
__device__ int GlobalVar Global Grid Application
__constant__ int ConstantVar Constant Grid Application

Table 4: CUDA Memory Types, Scope, and Lifetime.

There are two observations to make:

1. The __device__ keyword is optional when used with __shared__ or
__constant__.

2. The automatic variables (those that are automatically managed by the
compiler) reside in the registers because they are the fastest type of
memory available to threads (very close to the processor).

However, there’s an exception for per-thread arrays: when we declare
an array inside a kernel function, this array is unique to each thread and
can be relatively large. Due to their size and potential complexity, these
per-thread arrays cannot fit in registers and are stored in global
memory instead.

® And how do I decide where to put the variables?

It depends on the implementation. The good question to ask is: can the host
access the declared variable?

• If the host can access the variable, it should be a global or constant
variable.

– Declared outside of a function;

– Accessible by both host (CPU) and device (GPU).
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• If the host cannot access the variable, it should be a register or
shared variable.

– Declared inside the kernel function;

– If it is shared, it is accessible to all threads within the same block;

– On the other hand, if it is register (local), it is only accessible to
individual threads, suitable for frequently accessed variables.

] In-depth analysis of shared memory in CUDA

Some features of shared memory in CUDA:

1. Shared Memory in Each Streaming Multiprocessor (SM). Each
SM in a CUDA GPU has its own shared memory.

Shared memory is significantly faster than global memory, both in terms
of latency and throughput.

2. Scope and Lifetime. The scope of shared memory is limited to the
block; only threads within the same block can access the same shared
memory.

The lifetime of shared memory is tied to the thread block’s lifetime. Once
the block finishes execution, the shared memory is released.

3. Access. Shared memory is accessed using memory load/store instruc-
tions.

It acts as a scratchpad memory in the computer architecture, allowing
threads to quickly share and exchange data.

Figure 27: Hardware View of CUDA Memories.
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• Global Memory. A large memory space accessible by all threads and
the host (CPU). Used for data storage and retrieval but has higher latency
compared to shared memory.

• Shared Memory. A smaller, faster memory space within each SM. Used
for data sharing among threads in the same block.

• Processing Unit.Contains Arithmetic Logic Units (ALUs) and a Reg-
ister File for performing computations. Registers are the fastest type of
memory, used for storing per-thread data.

• Control Unit. Manages the execution of instructions, including the Pro-
gram Counter (PC) and Instruction Register (IR).

• I/O. Represents input/output operations.
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6.3.8 Tiling Technique

The Tiling Technique, also known as blocked matrix multiplication or
tiling , is a strategy to enhance the performance of matrix computations
by optimizing memory access patterns. It leverages shared memory in
CUDA to reduce the number of global memory accesses, improving efficiency
and throughput. A lot of parallel algorithms adopt the tiling technique.

® What is Tiling?

Tiling can be thought of as the process of breaking a large matrix into
smaller sub-matrices (called tiles or blocks) that can fit into faster, lim-
ited shared memory. The main goal of tiling is to:

• Minimize slower global memory accesses;

• Maximize the use of faster shared memory.

Instead of a large matrix, we can think of the global memory contents as tiles
and focus the computation of CUDA threads on one or a small number of tiles
at a time.

[ Great analogy to understand the basic concept of Tiling

Reducing the number of vehicles in a congested traffic system can significantly
improve the delays experienced by all vehicles. This is analogous to carpooling
for commuters. We can image:

• Drivers: represent threads accessing their memory data operands.

• Cars: represent memory access requests.

Just as carpooling reduces the number of cars on the road, tiling reduces the
number of global memory accesses by loading data into shared memory. The
result is a reduction in traffic (memory access requests) and an obvious improve-
ment in overall efficiency.

Unfortunately, just like in real life, there are some problems. For example,
there are the challenges of carpooling. In fact, some carpools are easier
to organize than others because the participants need to have similar work
schedules. So certain vehicles may be more suitable for carpooling. However,
other commuters may have different needs, so the number of carpools
may increase and there is a risk of increasing traffic again.

Similar challenges exist in tiling calculations. Some computations may be eas-
ier to tile based on data access patterns and the nature of the computation.
Organizing data and computations efficiently to fit into tiles may be
more challenging for certain algorithms. So what is the general euristic
to adopt in order to use the tiling technique or not? In general, it is:

✓ Good to use tiling when people have similar schedule. In computing, is
good when threads have similar access timing .
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p Bad to use tiling when people have very different schedule. In computing,
is bad when threads have very different timing .

But synchronization is also important. Just as workers’ schedules must be
aligned for effective carpooling, threads in parallel computing must be syn-
chronized for efficient execution. Efficient data access and memory usage de-
pend on synchronized operations to reduce latency and improve performance.
The following figure shows synchronization between multiple threads.

Figure 28: Barrier Synchronization for Tiling.

On the left are multiple threads (Thread 0, Thread 1, Thread 2, . . . , Thread
N-1) progressing over time. The wave represents when each thread reaches its
barrier on the code; at that point, the thread must wait until all threads have
arrived before it can continue. This ensures that all threads are synchronized
at certain points during execution. Execution of all threads resumes when the
last thread (in the picture, Thread N-2) reaches the barrier.

Synchronization is fundamental in the tiling technique because it en-
sures that all threads have their share of data loaded into shared
memory and are ready to proceed before they perform any compu-
tations. After the computation, they use another synchronization barrier to
ensure that all threads have completed their work before moving to the next
tile.
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{ Summary - How it works

1. Identify a Tile. Determine a section of global memory content that
multiple threads will access. Dividing the workload into smaller tiles allows
for efficient memory access and utilization of shared memory.

2. Load the Tile. Transfer the tile from global memory to on-chip memory
(shared memory). Loading data into shared memory reduces the latency
associated with accessing global memory.

3. Barrier Synchronization. Ensures that all threads are ready to begin
the computation phase. It also ensures that all threads have the necessary
data before starting the computation.

4. Access Data. Multiple threads access their data from the on-chip mem-
ory. Threads perform computations using the data stored in shared mem-
ory, benefiting from its faster access time.

5. Barrier Synchronization. Ensure all threads have completed the cur-
rent phase (computations).

6. Next Tile. Move on to the next tile and repeat the process.

✓ Advantages

✓ Improved Memory Access Patterns. By loading data into shared
memory, the number of global memory accesses is reduced, leading to
better performance.

✓ Higher Computational Throughput. Tiling helps achieve higher com-
putational throughput by leveraging the faster shared memory.
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6.3.8.1 Tiled Matrix Multiplication

In the following section, we present an example of matrix multiplication
using the tiling technique to illustrate the efficiency improvements brought
about by the tiling technique.

[ Traditional approach

Classical matrix multiplication has the following characteristics

• Each thread accesses a row of matrix M and a column of matrix N .

• Each thread block accesses a strip of matrix M and a strip of matrix N .

In the traditional approach, threads access data directly from global memory,
which can be inefficient due to high latency.

T Tiled Matrix Multiplication

1. As a first step, since we know the problem and (ideally) how the solution
is implemented, we can try to brainstorm on how to apply tiling. In
general, matrix operations lend themselves well to the tiling technique. In
the matrix multiplication:

• The execution of each thread can be broken into phases.

• The data accesses by the thread block in each phase are focused on
one tile of M and one tile of N .

• The tile is of BLOCK_SIZE elements in each dimension.
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2. As second step, the threads in a block participate in loading items into
shared memory using the tiling technique.

As we can see in the following figure, each thread in a block contributes
to loading elements from matrices M and N into shared memory. Each
thread is responsible for loading one element from the M matrix and one
element from the N matrix into shared memory. This parallel loading
ensures that data is moved quickly and efficiently from global memory to
faster shared memory.

The matrices M and N are the input and P is the result matrix. Each
element is indexed by i and j (e.g., Mij).

• Elements of M are loaded into shared memory by the threads.

• Similarly, elements of N are loaded into shared memory.

This particular phase focuses on the initial loading of elements for the
tile corresponding to block (0,0). Each thread in block (0,0) loads one
element from M and one from N , populating the shared memory with the
necessary data for the computation.

These steps are performed for each block of the matrices. In the following
figure, we can see another step of loading into shared memory.
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3. After loading into shared memory, there is the loading step, done in two
iterations, into the result matrix. This is only a graphical representation,
because in reality this step can be merged with the execution step. This
step prepares the operands to be used in the execution step.

(a) In the first iteration, the elements from the shared memory N0,0, N0,1

are used against the element from the shared memory M0,0,M1,0.

(b) In the second iteration, the elements from the shared memory N1,0, N1,1

are used against the element from the shared memory M0,1,M1,1.

This step is done for each block of the matrices. In the figure on the next
page, we can see two more steps of the load block.
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4. After each load, there is the execution phase. In the following table, we
highlight how four threads in a block perform matrix multiplication using
shared memory.
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The values Mdsi,j are the values loaded in the load step from global to
shared memory of the M matrix. The same reasoning applies to Nds.

Once the data is loaded into shared memory, each thread uses the loaded
values to update the partial product value PValue for the resulting matrix
P :

• thread0,0:

1 PValue0,0 += Mds0,0 * Nds0,0 + Mds0,1 * Nds1,0

• thread0,1:

1 PValue0,1 += Mds0,0 * Nds0,1 + Mds0,1 * Nds1,1

• thread1,0:

1 PValue1,0 += Mds1,0 * Nds0,0 + Mds1,1 * Nds1,0

• thread1,1:

1 PValue1,1 += Mds1,0 * Nds0,1 + Mds1,1 * Nds1,1

5. Barrier Synchronization step. To synchronize all threads in a block,
we use the function __syncthreads(). This function acts as a barrier
synchronization, ensuring that all threads in a block reach that point
before any thread can proceed.

Barrier synchronization is particularly useful for coordinating the execu-
tion of tiled algorithms in phases. It is useful in:

✓ Loading Phase. Ensures that all elements of a tile are loaded
into shared memory before any computation begins.

✓ Computation Phase. Ensures that all threads have completed
their computation on the current tile before moving to the
next phase or tile.
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6.3.8.2 Implementation Tiled Matrix Multiplication

After a great explanation of how to apply the tiling technique to the matrix mul-
tiplication operation, we present the CUDA implementation. As we said, the
goal of tiled matrix multiplication with CUDA is to optimize the matrix mul-
tiplication process by taking advantage of shared memory (small, fast memory
space accessible to all threads within the same block).

[ Introduction to the implementation

The main core of the implementation is about tile indexing. It can be 1 or
2 dimensional. In the following figures, to understand the logic, we show 2
dimensional indexing, which is more natural.

• When each thread loads the input from the original matrix (M or N), it
needs an index.

1 int Row = by * blockDim.y + ty;
2 int Col = bx * blockDim.x + tx;
3 // 2D indexing for accessing Tile 0:
4 M[Row][tx]
5 N[ty][Col]

At each iteration, each thread in a block considers the same row of the ma-
trix M and the same column of the matrix N . To distribute the workload
among the threads, we assign each thread to each column of the matrix M
(using the unique index tx, the index of the thread in the CUDA block),
and with the same reasoning, we assign each thread to each row of the
matrix N . The row in the matrix M is fixed, but the column is taken
entirely by the assignment of all threads in the block (using tx).
In the following figure, we see that the row in the matrix M is fixed, but
the column is fully occupied thanks to the assignment of all threads in the
block (using tx).
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When the first phase is finished, we move on to the second tile. For this
reason, we use a kind of offset given by the formula p × TILE_WIDTH
(TILE_WIDTH = BLOCK_WIDTH), where p is the number of the phase (at the
beginning zero, then one, and so on).

In the following image, we see that at phase 1, to load the tile 1, we use
the formula:

1 // 2D indexing for accessing Tile 1:
2 M[Row ][1 * TILE_WIDTH + tx]
3 N[1 * TILE_WIDTH + ty][Col]
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{ CUDA code

1 #define TILE_WIDTH 16
2

3 __global__ void MatrixMulKernel(
4 float* M, float* N, float* P, int Width
5 ) {
6 __shared__ float ds_M[TILE_WIDTH ][ TILE_WIDTH ];
7 __shared__ float ds_N[TILE_WIDTH ][ TILE_WIDTH ];
8

9 int bx = blockIdx.x; int by = blockIdx.y;
10 int tx = threadIdx.x; int ty = threadIdx.y;
11

12 int Row = by * blockDim.y + ty;
13 int Col = bx * blockDim.x + tx;
14 float Pvalue = 0;
15

16 // Loop over the M and N tiles
17 // required to compute the P element
18 int bound = Width / TILE_WIDTH;
19 for (int p = 0; p < bound; ++p) {
20 // Collaborative loading of M and N tiles
21 // into shared memory
22 ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
23 // = M[Row][p * TILE_WIDTH + tx]
24 ds_N[ty][tx] = N[(p * TILE_WIDTH + ty) * Width + Col];
25 // = N[p * TILE_WIDTH + ty][Col]
26 __syncthreads ();
27

28 for (int i = 0; i < TILE_WIDTH; ++i) {
29 Pvalue += ds_M[ty][i] * ds_N[i][tx];
30 }
31 __syncthreads ();
32 }
33 P[Row * Width + Col] = Pvalue;
34 }

• Index variables:

– bx and by are the block indices in the x and y directions.

– tx and ty are the thread indices within a block.

– Row and Col are the row and column indices of the element in
the output matrix.

• Main Loop: ph (phase) determines which tile is currently being pro-
cessed.

• Loading Tiles into Shared Memory:

– Each thread loads one element from the current tile of M and N into
shared memory.

– ds_M[ty][tx] loads an element from M .

– ds_N[ty][tx] loads an element from N .

– __syncthreads() is called to ensure all threads have loaded their
elements before proceeding.
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• Matrix Multiplication within a Tile. Once the tiles are loaded into
shared memory, each thread computes the partial dot product for the
corresponding element in the output matrix. The nested loop (second
for loop) accumulates the product of elements from M and N .

• Finally, after all tiles have been processed, the final value is stored in
the output matrix P .

¥ Final consideration

A bigger block is better and the reason is simple. Bigger tiles mean more
threads per block. For example:

• TILE_WIDTH of 16 results in 16× 16 = 256 threads per block.

• TILE_WIDTH of 32 results in 32× 32 = 1024 threads per block.

Therefore, the workload per phase is:

• TILE_WIDTH = 16:

– Each block performs 512 (2× 256) float loads from global memory.

– Executes 8192 (256×(2× 16)) multiply-add operations (16 float-
ing point operations for each memory load).

• TILE_WIDTH = 32:

– Each block performs 2048 (2×1024) float loads from global memory.

– Executes 65536 (1024 × (2 × 32)) multiply-add operations (32
floating point operations for each memory load).

Although a larger block might be better, shared memory is not infinite. It
depends on the implementation. If we take a classic Streaming Multiprocessor
(SM) with 16KB of shared memory, when we do a memory usage analysis:

• TILE_WIDTH = 16:

– Uses 2KB (2× 256× 4B) of shared memory per block.

– Allows up to 8 blocks per SM in parallel execution (8×256 threads
= 2048 threads).

This allows up to 4096 (8 × 512) pending loads (2 per thread, 256 per
block).

• TILE_WIDTH = 32:

– Uses 8KB (2× 32× 32× 4B) of shared memory per block.

– Allows up to 2 blocks per SM in parallel execution (limited by
thread count). If a GPU limits the thread count to 1536 threads per
SM, the number of blocks per SM is reduced to one!
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Using __syncthreads() ensures that all threads reach a barrier before continu-
ing, which can temporarily reduce the number of active threads. More
blocks per SM can be beneficial to balance memory usage and thread
count.

In summary, choosing the right tile size and efficiently managing shared
memory and threads are critical to optimizing GPU performance.
This balance affects how many operations can be performed simultaneously and
how effectively memory is used.
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6.3.8.3 Any size matrix handling

The following paragraph focuses on the challenge of handling matrix multi-
plication for matrices of arbitrary size using tiled matrix multiplication.
Often, real-world applications require support for matrices that aren’t always
square or multiples of the tile width (TILE_WIDTH). So what is the strategy for
these situations?

. Limitations of the Tiled Matrix Multiplication presented

• The base kernel can only handle square matrices whose dimensions are
multiples of TILE_WIDTH. This is a major limitation, since non-square
matrices also exist.

• A possible solution would be to apply padding, but padding these matrices
to match tile sizes can result in significant overhead in terms of space
and data transfer time.

The basic idea is that instead of padding, a different technique is proposed to
efficiently handle matrices of arbitrary size and prevent access to invalid memory
locations.

Example 5: graphical example

Imagine we have a 3 × 3 matrix and a TILE_WIDTH of 2. The grid and
block configuration may result in some threads accessing positions out-
side the bounds of the 3× 3 matrix.
The basic logic will be:

• Threads within the valid range of the matrix will load elements
normally.

• Threads outside the valid range need conditions to avoid accessing
or writing to out-of-bound elements.

Graphically, the special cases that we need to deal with will be:

• When we load elements from the matrix into shared memory:
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And:

• If we use the out-of-bound elements to calculate the result:

✓ A simple solution

The main simple and efficient solution is the conditional loading. When a
thread is to load an input element, check if the element index is within
valid bounds:

• If valid: proceed to load the element.

• If invalid: do not load the element, but write a 0 instead.

Assigning a 0 value ensures that the multiply-add step does not affect
the final value of the output element. Also, this simple check helps avoid
errors from invalid memory access and ensures correctness.
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® Why do we have to load a zero? We cannot skip this part
directly?

1. Safety and Validity. When a thread loads a 0 instead of an out-of-
bound element, it ensures that the memory access is valid and does
not cause runtime errors or fetch garbage data. This is crucial for
maintaining the stability of the program.

2. Maintaining Computational Integrity. The 0 value acts as a neutral
element in multiplication, meaning it does not alter the final sum
during the multiply-add operations. For example:

sum += tileM[ty][k] * tileN[k][tx]

If tileM[ty][k] or tileN[k][tx] is 0, the sum remains unaffected by
that particular operation, preserving the integrity of the calculation.

3. Facilitating Parallel Execution. In CUDA, all threads in a warp (a
group of 32 threads) execute the same instruction simultaneously. If some
threads are out-of-bound, they still participate in the synchronization
and memory access patterns, ensuring the warp executes efficiently
without branching or divergence.
By loading 0s, these threads can reach synchronization points (such as
__syncthreads()) together with other threads that load valid data, en-
suring all threads in the block stay in sync.
A Warp Divergence occurs when threads in a warp follow differ-
ent execution paths due to conditional branches. This means some
threads are active while others are idle, leading to inefficiency. The conse-
quences of warp divergence can have a severe impact on performance.

• Performance Impact :
– Divergence causes some threads to stall while others exe-

cute, reducing the overall throughput.
– All threads in the warp must eventually reconverge to

execute the same instructions again, prolonging the execu-
tion time for that warp.

• Synchronization Issues:
– Skipping __syncthreads() or similar synchronization points can

lead to incorrect behavior. Threads that do not wait might access
incomplete or inconsistent data in shared memory, leading to
incorrect results.

– Ensuring that all threads in a warp (or block) reach
synchronization points is crucial for data consistency.

4. Shared Memory Utilization. All threads, including those loading 0s,
contribute to filling the shared memory tiles. This ensures that when
the matrix multiplication is performed, the shared memory con-
tains a complete tile (with zeros in out-of-bound areas). This approach
guarantees that the shared memory tiles are properly used for the block’s
calculations, and threads with 0 elements help maintain the structure and
coherence of these tiles.
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{ Implementation

The code snippet is as follows:

1 for (int p = 0; p < (Width - 1) / TILE_WIDTH + 1; ++p) {
2 if (Row < Width && p * TILE_WIDTH + tx < Width) {
3 ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
4 } else {
5 ds_M[ty][tx] = 0.0;
6 }
7 if (p * TILE_WIDTH + ty < Width && Col < Width) {
8 ds_N[ty][tx] = N[(p * TILE_WIDTH + ty) * Width + Col];
9 } else {

10 ds_N[ty][tx] = 0.0;
11 }
12 __syncthreads ();
13

14 // Ensuring valid computations and
15 // writing to the output matrix
16 if (Row < Width && Col < Width) {
17 for (int i = 0; i < TILE_WIDTH; ++i) {
18 Pvalue += ds_M[ty][i] * ds_N[i][tx];
19 }
20 }
21 __syncthreads ();
22 }
23

24 if (Row < Width && Col < Width) {
25 P[Row * Width + Col] = Pvalue;
26 }

• Matrix M . Each thread loads:

– An element in the position M[Row][p * TILE_WIDTH + tx] if the row is
less than the width of the matrix (Row < Width) and the tile number
(p * TILE_WIDTH) plus the index number of the thread tx is less than
the width of the matrix (p * TILE_WIDTH + tx < Width).

– Otherwise, load 0.

• Matrix N . Each threads loads:

– An element in the position N[p * TILE_WIDTH + ty][Col] if the col-
umn is less than the width of the matrix (Col < Width) and the tile
number (p * TILE_WIDTH) plus the index number of the thread ty is
less than the width of the matrix (p * TILE_WIDTH + ty < Width).

– Otherwise, load 0.

• Boundary condition (Width - 1) / TILE_WIDTH + 1:

– Width - 1: adjusts the maximum index for a zero-based index sys-
tem. Essentially, it ensures we account for the last valid index in the
matrix.

– / TILE_WIDTH: divides the total width by the tile width, determining
how many full tiles fit within the width.
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– TILE_WIDTH + 1: ensuring that any remaining part of the matrix
that doesn’t fit perfectly into the last tile is also processed. If the
width isn’t an exact multiple of the tile width, the +1 ensures that
an additional tile is considered to cover the remaining part of the
matrix.
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6.3.9 Optimizing Memory Coalescing

In this chapter, we introduce the importance of memory coalescing for effectively
using memory bandwidth in CUDA.

[ Introduction

Memory bandwidth is important in CUDA because each thread may need to
access memory, and efficient memory access is critical to overall performance.
Ideally, when multiple threads in a CUDA program access memory, their ac-
cesses should be coalesced. This means that memory accesses from multiple
threads are combined into a single memory transaction.

The memory type inside the GPU is DRAM. Since DRAM accesses are not as
fast as local registers, an optimization is required. For this reason, the technique
of DRAM bursts is introduced:

• It allows a block of data to be transferred in one go. When CUDA threads
coalesce memory accesses, the entire burst can be used effectively, resulting
in fewer memory transactions and higher memory bandwidth utilization.

• By coalescing memory accesses into fewer DRAM bursts, the latency (de-
lay) associated with memory access is reduced. This is because once a
burst is initiated, the additional data within the burst can be accessed
quickly.

• CUDA developers use a variety of techniques to ensure that thread mem-
ory accesses are concatenated to take full advantage of DRAM burst ca-
pabilities. These include aligning data structures and managing memory
access patterns.

For example, consider a CUDA kernel where each thread accesses successive
memory locations. When these accesses are combined, a single DRAM burst
can fetch multiple data points needed by multiple threads, significantly speeding
up the computation.

® What is a DRAM burst?

A DRAM (Dynamic Random Access Memory) burst is a way of reading
data from or writing data to memory. When accessing DRAM, data isn’t
retrieved one byte at a time, but rather in bursts. A DRAM burst involves
the transfer of multiple bytes of data in a single, continuous sequence,
rather than in separate, discrete chunks.

• Non-Burst Timing. There are gaps between data transfers, result-
ing in inefficiencies.

• Burst Timing. Represents a continuous sequence of data transfer,
illustrating the efficiency of burst mode. Burst bytes are transmit-
ted to the processor, but may be discarded if accesses are not
sequential.
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Figure 29: The figure shows a comparison of non-burst and burst timing in
DRAM systems.

Burst mode minimizes the gaps between data transfers, allowing for
faster and more efficient data flow. This is in contrast to non-burst mode,
where data transfers are inefficient due to gaps.

In more detail, burst mode can be described by the following features:

• Burst operation. When accessing a specific memory address, the
DRAM retrieves an entire block of adjacent data, called a burst.
This allows faster data access than retrieving individual bytes one at a
time.

• Burst Length. The length of the burst indicates how many bytes
are transferred in one operation. Common burst lengths are 4, 8,
or 16 bytes, but larger lengths are used depending on the system and
application.

• Memory efficiency. This method improves memory access efficiency.
Once the initial memory location is accessed, the DRAM can
transfer the rest of the data in the burst with less overhead.

• System Usage. Burst transfers are particularly useful in applications where
large blocks of data must be moved quickly, such as graphics processing
where textures and images are frequently accessed.

Example 6: great analogy with burst technology

We can think of burst mode as a bookshelf, where instead of taking out
one book at a time, we take out a whole section at once. This way, we
get more books (data) in one go, reducing the time it takes to reach for
each book individually.
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The following figure shows a system view of the DRAM burst. Each address
space is divided into burst sections, and when one location is accessed, all other
locations in the same section are also delivered to the processor.

Figure 30: In the figure, a 16-byte address space is divided into 4-byte burst
sections. In practice, address spaces are much larger (e.g., 4 GB) and burst
sections are also larger (e.g., 128 bytes or more).

8 Coalesced access vs un-coalesced access

Memory Coalescing refers to the process of combining (or coalescing)
multiple memory accesses by different threads into a single memory
transaction. This is important in the context of GPUs because they run
many threads in parallel, and efficient memory access can significantly improve
performance.

When threads in a warp (a group of threads running in parallel) access
successive memory locations, these accesses are combined into a single
memory transaction. This means that all requested data is retrieved in one
go.

When threads access memory locations that are scattered or misaligned, mul-
tiple memory transactions are required, leading to inefficiencies. This phe-
nomenon is called Un-Coalesced Access.

Un-Coalesced Accesses occur when the memory requests of multiple
threads in a warp do not fit properly into a single memory transac-
tion. This inefficiency results in increased memory latency and lower overall
performance. It is manifested when:

• Non-Sequential Memory Access. When threads access memory ad-
dresses that are not contiguous, the memory controller must handle
each access individually or in smaller, less efficient chunks.

• Crossing Burst Boundaries. When memory accesses span multiple
DRAM burst sections, multiple memory transactions are required.
Each burst section may only be able to handle a portion of the requested
data, resulting in additional overhead.

• Thread misalignment. If the data being accessed by threads is
misaligned with the natural boundaries of memory bursts, the
accesses cannot be merged effectively. This often happens with poorly
structured data layouts.

The un-coalesced accesses are a penalty for memory optimization because
the memory controller cannot combine these accesses into a single
transaction because they are spread out. Instead, it must handle multiple
transactions, each fetching only a few bytes relevant to the threads.
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The consequences of un-coalesced access are:

• Increased DRAM transactions. Each un-coalesced access re-
quires a separate DRAM burst, increasing the number of memory
transactions.

• Wasted Bandwidth. Not all bytes in a DRAM burst are utilized.
For example, if each burst fetches 32 bytes and only 8 bytes are used by
threads, the remaining 24 bytes are wasted.

• Higher Latency. More transactions means more latency because each
transaction requires setup and transmission time.

Figure 31: When all threads of a warp execute a load instruction, if all accessed
locations are in the same burst section, only one DRAM request is made and
the access is fully merged.

Figure 32: If the accessed locations are spread across burst boundaries, coa-
lescing fails (un-coalesced accesses), multiple DRAM requests are made. This
results in some garbage bytes that are not used by threads.

Example 7: great analogy to un-coalesced access

Think of un-coalesced access as trying to get multiple items from different
aisles in a supermarket, one at a time. We end up walking back and forth
more and taking longer to collect all the items than if we collected items
from a single, well-organized aisle.

156



6 GPU Architecture 6.3 CUDA

Example 8: difference from coalesced and un-coalesced access

Suppose a warp of 32 threads accesses an array in global memory. If
each thread accesses elements sequentially (thread 0 accesses element 0,
thread 1 accesses element 1, and so on), a single memory transaction
retrieves all 32 elements.
In contrast, if the same warp accesses memory in a non-sequential man-
ner (thread 0 accesses element 0, thread 1 accesses element 4, thread 2
accesses element 8, and so on), multiple memory transactions are
required, reducing efficiency.

® How do we guarantee coalesced access?

Accesses in a warp are to consecutive locations if the index in an array
access is in the form of :

(expression with terms independent of threadIdx.x) + threadIdx.x
(12)

This formula ensures coalesced memory access in GPU programming.

• threadIdx.x: represents the thread index within a warp.

• Expression Independent of threadIdx.x: this part of the formula en-
sures that the base index is the same for all threads within a warp.
It’s crucial for aligning memory access.

But why does it work? For two main reasons:

1. Consecutive Access: if the base index (the part of the expression that
is independent of threadIdx.x) is the same for all threads, then adding
threadIdx.x to that base index means that each thread is accessing a
consecutive location.

2. Memory Coalescing: using this formula ensures that all threads within
a warp are accessing adjacent memory locations, resulting in coalesced
access.

Before we continue, we need to understand how a matrix is stored in mem-
ory. It depends on the language, the implementation, and so on, but in general,
when we say linear memory space, a 2-dimensional matrix is stored as in Figure
33 (page 158).
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Figure 33: Linear memory space.

In GPU programming, matrix multiplication involves two main access patterns:

• Matrix A (left operator): the access pattern is A[Row * n + i]

– i is the loop counter in the inner product loop of the kernel code;

– Row is the current row being processed;

– n is the number of columns in matrix A.

• Matrix B (right operator): the access pattern is B[i * k + Col]

– i is the loop counter;

– k is the number of columns in matrix B;

– Col is calculated as:

blockIdx.x * blockDim.x + threadIdx.x

This means that threads access elements in matrix B based on
their column index.

• Matrix B. The accesses are Coalesced. As we can see from the figure 34,
the accesses are coalesced. This is because matrix B is stored in memory in
a linear, one-dimensional array. For a 2D matrix, the elements are stored
row by row.

In a warp, threads are indexed consecutively, like threadIdx.x = 0, 1, . . . .
When i is fixed for a loop iteration, successive threads access successive
memory locations in matrix B. For example:

– Thread 0 accesses B[i * k + 0]

– Thread 1 accesses B[i * k + 1]

– Thread 2 accesses B[i * k + 2]

158



6 GPU Architecture 6.3 CUDA

Figure 34: Coalesced accesses.

The main reason for coalesced access in matrix B is to align thread
indexes with contiguous memory addresses. This optimizes memory
transactions, making data retrieval more efficient and increasing overall
performance.

• Matrix A. The accesses are Un-Coalesced. The figure shows why the
accesses for matrix A are not coalesced.

Figure 35: Un-Coalesced Accesses.

The access pattern A[Row * n + i] means that each thread in a warp
accesses different rows of the matrix A. If we consider consecutive threads
(e.g. thread 0, thread 1, thread 2, thread 3), they access elements in
different rows.

Threads in a warp access elements vertically, not horizontally. For exam-
ple, if Row is fixed for a given iteration of the outer loop, i varies. This
means that thread 0 accesses A[Row * n + 0], thread 1 accesses A[Row
* n + 1], and so on. This results in non-consecutive memory locations
being accessed by consecutive threads.
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T How to optimize the matrix multiplication to avoid un-coalesced
accesses

Corner Turning is a technique used in matrix multiplication to op-
timize memory access patterns, especially in parallel computing environ-
ments like GPU. The goal is to achieve memory coalescing, which improves
performance by ensuring that memory accesses are aligned and contiguous.

Corner Turning works as follows:

• Column-Major Layout. Normally, matrices are stored in a row-major
layout (elements are stored row by row). In corner turning, the second
matrix (B) is stored in a column-major layout (elements are stored
column by column).

• Tiled Access. The matrices are divided into smaller submatrices
or tiles. Each thread loads a tile of the first matrix (A) and a tile of the
second matrix (B) into shared memory.

• Memory Coalescing. By loading tiles into shared memory,
threads can access consecutive memory locations within the tiles.
This ensures that memory accesses are coalesced, reducing memory latency
and increasing bandwidth utilization.

In practice, it works as shown in the following figure:

• Original Access Pattern:

– Matrix d_M. The original access pattern is horizontal. Each thread
accesses consecutive elements in a row.

– Matrix d_N. The original access pattern is vertical. Each thread
accesses elements in different rows.
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• Tiled Access Pattern:

– Matrix d_M. The matrix is divided into smaller horizontal tiles.
Each tile is a small submatrix that fits into shared memory.

– Matrix d_N. Similarly, this matrix is divided into smaller vertical
tiles, which are also small enough to fit into shared memory.

• Shared Memory Operations:

– Loading Tiles into Shared Memory. Both tiles from d_M and
d_N are loaded into shared memory. This allows for more efficient
access patterns.

– Matrix Multiplication. The multiplication of these tiles is
performed using the values stored in shared memory. This
step ensures that the data access is coalesced and reduces latency.

By dividing matrices into tiles and loading them into shared memory, threads
can access successive memory locations within a tile. This ensures
that memory accesses are concatenated , reducing memory transactions
and increasing efficiency.

In addition, using shared memory for these tiles reduces the need to repeatedly
access global memory, which is slower. Shared memory access is much faster,
further improving the performance of matrix multiplication.

From a code point of view, we see:

• Original Pattern:

1 Matrix d_M (Row -major):
2 Thread 0: M[0][0] , M[0][1] , ...
3 Thread 1: M[1][0] , M[1][1] , ...
4

5 Matrix d_N (Column -major):
6 Thread 0: N[0][0] , N[1][0] , ...
7 Thread 1: N[0][1] , N[1][1] , ...

• Tiled Pattern:

1. Load Tiles into Shared Memory:

1 Tile from d_M: [[M00 , M01], [M10 , M11]]
2 Tile from d_N: [[N00 , N10], [N01 , N11]]

2. Perform Multiplication. Threads use values from shared memory for
the multiplication, ensuring coalesced access and reduced memory
latency.
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7 CUDA
Although the CUDA topic has already been discussed in section 6.3.1 (page
103), here we introduce more technical topics, a kind of CUDA laboratory. It is
done because in the Parallel Computing course we have done a CUDA theory
part and a CUDA practice part.

7.1 Introduction
CUDA, which stands for Compute Unified Device Architecture, is a
parallel computing platform and application programming interface
(API) model created by NVIDIA. It allows developers to use the power
of GPUs (Graphics Processing Units) for general-purpose processing, which
enables substantial performance improvements for computationally intensive
tasks.

® Why CUDA?

GPUs, originally designed to render graphics, have evolved into highly efficient
and powerful processors capable of handling thousands of threads si-
multaneously. This transformation has made GPUs, and by extension CUDA,
incredibly valuable for applications requiring massive parallelism, such as scien-
tific simulations, machine learning, and deep learning.

® Why can we not just use the CPU?

Understanding the fundamental differences between CPU and GPU architec-
tures is key to appreciating CUDA’s advantages:

• CPU (Central Processing Unit):

– Designed for sequential processing.
– Features powerful Arithmetic Logic Units (ALUs) with low latency.
– Utilizes large hierarchical caches to optimize access to frequently used

data.
– Employs advanced control mechanisms, such as branch prediction

and data forwarding, to minimize delays.

• GPU (Graphics Processing Unit):

– Optimized for parallel processing.
– Contains a large number of simpler, pipelined ALUs designed for

high-throughput computations, despite having longer latency.
– Relies on smaller caches to facilitate high memory throughput.
– Uses simpler control mechanisms, enabling efficient context switching

and handling many threads concurrently.

CUDA leverages these GPU characteristics to execute programs with a parallel-
first approach, breaking down tasks into smaller, manageable pieces and process-
ing them simultaneously. This approach leads to significant speedups compared
to traditional CPU-only processing, making CUDA a pivotal technology for
high-performance computing.
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[ GPGPU programming paradigms

CUDA helped bring General Purpose computing on Graphics Processing Units
(GPGPU). Initially designed to accelerate rendering and processing of graphics,
GPUs have evolved into versatile processors capable of handling a wide range of
computational tasks beyond graphics. This paradigm shift has allowed GPUs to
be used for general-purpose computing, providing significant performance im-
provements for applications requiring high parallelism and computational power
(the definition and introduction of GPGPU can be found on page 100).

The GPU (called a device) acts as a co-processor for the CPU (host):

• CPU (host):

– General-purpose processor.

– Handles diverse tasks, running an operating system, and executing a
sequence of stored instructions.

– Efficient for tasks requiring low-latency access to cached data.

• GPU (device):

– Specialized for high-throughput computation.

– Contains a large number of processing elements for parallel tasks.

– Relies on dedicated, high-bandwidth memory.

– Best for data-parallel tasks, hiding memory latency effectively.

The relationship of these two concepts:

• Both CPU and GPU have their own memory spaces.

• Optimal performance achieved through cooperation.

• CPU handles complex logic and serial tasks; GPU manages parallel pro-
cessing.

About the architecture, the differences are:

• CPU (host):

– Composed of control units, ALUs, cache, and DRAM.

– Efficient for tasks requiring complex control and low-latency data
access.

• GPU (device):

– Made up of DRAM and a grid of processing units.

– High-throughput design for parallel processing tasks.

GPGPU (General-Purpose computing on Graphics Processing Units) pro-
gramming paradigms are various approaches or models used to lever-
age the GPU for general-purpose computation. These paradigms allow
programmers to write code that runs efficiently on GPUs. The main
paradigms are:
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1. Applications. End-user programs that take advantage of GPU perfor-
mance. Designed to take advantage of the GPU’s processing power to
accelerate performance (such as video processing software, scientific sim-
ulations, and machine learning models).

2. Libraries. Pre-built functions and routines optimized for GPUs. In other
words, a collections of pre-written code and routines that are optimized to
run on GPUs. Using these libraries, developers can avoid writing low-level
GPU code. Examples of libraries are cuBLAS (for linear algebra), cuFFT
(for Fast Fourier Transforms), and TensorFlow (for machine learning).

3. Compiler Directives. Special instructions embedded in the source code
that guide the compiler on how to optimize and parallelize the code for
GPU execution. OpenACC and OpenMP are commonly used directives.

4. Programming Languages. Languages or extensions of languages specif-
ically designed for GPGPU programming. They provide the syntax and
constructs needed to write code that executes on the GPU. Examples are
CUDA and OpenCL (Open Computing Language).

Given an application code, in general:

• Serial Parts run on the CPU (host). These are the parts of the code
that need to be executed sequentially and can benefit from the sophisti-
cated control mechanisms of the CPU.

• Computation-Intensive and Data-Parallel Parts offloaded to the
GPU (device). These parts can be executed in parallel, making use of
the GPU’s many cores for faster computation.

The flow inside the GPU can be described in three general steps:

1. Copy Input Data from CPU Memory to GPU Memory. The data
is transferred over the PCI bus. This step is critical to prepare the data
so that the GPU can access and process it.

2. Load GPU Program and Execute, Caching Data on Chip for
Performance. The GPU program (kernel) is loaded and executed. Data
is cached on the GPU chip to improve performance during execution. This
step takes advantage of the parallel processing power of the GPU.

3. Copy Results from GPU Memory to CPU Memory. After calcula-
tion, the results are transferred back to the CPU memory via the PCI bus.
This step is necessary to integrate the results into the larger application
or for further processing on the CPU.

164



7 CUDA 7.1 Introduction

® Common GPGPU issues and solutions

• Data Movement between CPU and GPU is the main Bottleneck.

– Low Bandwidth. Data transfers between the CPU and GPU are
relatively slow because they use the PCI Express (PCIe) bus, which
has a bandwidth of about 12-14GB/s. This is much lower compared
to the internal memory bandwidth of the CPU and GPU.

– Relatively High Latency. Data transfer times can be significant,
introducing delays that affect overall performance.

– Data Transfer can take more time than the actual compu-
tation. In some cases, moving data between the CPU and GPU can
take longer than the time it takes to perform the actual computa-
tions on the GPU. This is a critical point to consider when designing
GPU-accelerated applications.

• Issues Porting CPU Applications to GPGPU.

– Ignoring Data Movement can destroy GPU Performance
Benefits. When converting CPU applications to run on a GPU,
it’s crucial to manage data transfers efficiently. Failing to do so can
negate the performance advantages of using a GPU.

– Solutions to Hide/Automate Data Transfer. Some program-
ming techniques and tools can help hide or automate the data transfer
process. These solutions can optimize performance by reducing the
manual overhead of managing data movement.

In other words, efficient data management is the key to performance. In fact,
the performance of GPGPU applications depends heavily on how well data is
managed between the CPU and the GPU. Efficient data transfer strategies are
essential to unleash the full computing power of GPUs.
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7.2 CUDA Basics
CUDA, developed by NVIDIA, is a parallel computing platform and program-
ming model that enables developers to harness the immense computational
power of NVIDIA GPUs (Graphics Processing Units).

CUDA allows programmers to write code for GPUs using familiar programming
languages like C, C++, and Fortran. This accessibility lowers the learning
curve, enabling more developers to take advantage of GPU acceleration without
requiring extensive knowledge of graphics programming.

The CUDA programming model evolves with the underlying hardware architec-
ture, ensuring that developers can maximize performance gains from the latest
GPU advancements. By writing a program for a single thread and instantiating
it across many parallel threads, developers can achieve significant speedups for
data-parallel tasks.

{ The most important function: the kernel

A kernel is a function that runs on the GPU. When a kernel is launched,
thousands of threads execute its code simultaneously. The programmer
specifies the number of threads, each acting independently on different data
elements. This approach leverages Single Instruction, Multiple Data (SIMD)
and Single Program, Multiple Data (SPMD) parallelism.

Example 1: comparison between C and CUDA C program

1 void vsum(int* a, int* b, int* c) {
2 int i;
3 for (i=0; i<N; i++) {
4 c[i] = a[i] + b[i];
5 }
6 }
7

8 void main() {
9 int va[N], vb[N], vc[N];

10 ...
11 vsum(va , vb, vc);
12 ...
13 }
14

1 __global__ void vsum(int* a, int* b, int* c) {
2 int i = ... // get unique thread ID
3 c[i] = a[i] + b[i];
4 }
5

6 void main() {
7 int va[N], vb[N], vc[N];
8 ...
9 vsum <<<N, 1>>>(va , vb , vc);

10 ...
11 }
12
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In the CUDA version, the vsum function is defined as a kernel using the
__global__ keyword, and it is launched on the GPU with a specified
number of threads. Each thread processes a different element of the input
arrays independently, showcasing CUDA’s ability to handle parallel tasks
efficiently.
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7.2.1 GPGPU Best Practices

NVIDIA provides a guide to help developers get the most out of NVIDIA CUDA
GPUs:

CUDA C++ Best Practices Guide

Among the suggestions, NVIDIA explains a process for accelerating an applica-
tion with NVIDIA GPUs called the Cyclical Process for Accelerating Applica-
tions with NVIDIA GPUs.

The Cyclical Process for Accelerating Applications with NVIDIA GPUs
is a systematic approach designed to optimize and enhance the per-
formance of applications by leveraging the computational power of
NVIDIA GPUs. This process ensures that applications can take full advan-
tage of the parallel processing capabilities of GPUs for improved performance
and efficiency. The process consists of four main stages: Assess, Parallelize,
Optimize, and Deploy.

1. Assess.

(a) Locate Bottlenecks. Identify the parts of our application where
performance is limited. This involves profiling our application to
understand where most of the computation time is spent.

(b) Estimate Parallelization Benefits. Determine the potential per-
formance improvements from parallelizing the application. Evaluate
how much of the workload can be efficiently offloaded to the GPU.

2. Parallelize.

(a) Apply Libraries, Compiler Directives, or CUDA. Utilize GPU-
optimized libraries (such as cuBLAS for linear algebra operations),
apply compiler directives (like OpenACC) to guide the paralleliza-
tion, or write custom CUDA kernels to parallelize the identified com-
putational bottlenecks.

3. Optimize.

(a) Apply Optimizations. Fine-tune our GPU code to improve per-
formance. This can include optimizing memory access patterns to
reduce latency, ensuring efficient data transfer between the CPU and
GPU, and maximizing thread utilization to fully exploit the GPU’s
parallel architecture.

(b) Measure Performance Improvements. Continuously profile and
benchmark our application to monitor the impact of the optimiza-
tions and ensure that they lead to significant performance gains.
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4. Deploy.

(a) Compare with Performance Estimations. Verify that the per-
formance improvements achieved through parallelization and opti-
mization meet the initial estimations. This step ensures that the
application performs as expected in a real-world environment.

(b) Move to Production. Once satisfied with the performance, deploy
the optimized application to production. This involves integrating
the GPU-accelerated code into the main application and ensuring it
runs efficiently in the production environment.

The process is depicted as a continuous cycle, indicating that optimization
and assessment are ongoing activities. This iterative approach ensures
that the application remains optimized and continues to benefit from
GPU acceleration over time.

By following this cyclical process, developers can systematically identify per-
formance bottlenecks, efficiently parallelize and optimize their applica-
tions, and achieve significant performance improvements using NVIDIA
GPUs. This methodical approach helps ensure that the application takes full
advantage of GPU capabilities, leading to faster, more efficient computing.
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7.2.2 Compilation

The compilation of a CUDA file follows a structured process that involves both
the CPU and GPU components.

1. .cu File. The source file containing CUDA kernels and the rest of the
application code is usually saved with a .cu extension.

2. CUDA Kernels. The CUDA-specific code within the .cu file is processed
by the NVIDIA CUDA Compiler (NVCC). This includes all the functions
intended to run on the GPU.

2. Rest of the Application. The non-CUDA parts of the code, intended
to run on the CPU, are processed by the host CPU compiler.

3. NVCC Compiler. NVCC compiles the CUDA kernels into CUDA object
files, which are specific to the GPU.

3. CPU Compiler. The CPU compiler processes the remaining application
code into CPU object files, which are specific to the CPU.

4. Linker. The linker combines the CUDA object files and CPU object files
into a single executable that can run on both the CPU and GPU.

An example of a compilation is the command:

1 nvcc -arch=sm_70 -o hello -gpu 01-hello /01-hello -gpu.cu -run

That demonstrates how to compile and execute a CUDA file using NVCC. The
-arch=sm_70 flag specifies the architecture of the GPU, in this case, the Volta
architecture (sm_70).

Useful Compilation Flags for NVCC:

Flags Description

-x Treat all input files as .cu files.
-Xcompiler Pass a host compiler flag that is not supported

by NVCC.
-g Include host debugging symbols.
-G Include device debugging symbols.
-lineinfo Include line information with symbols.

Table 5: Some compilation flags.
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Figure 36: CUDA Compilation Trajectory, source: NVIDIA CUDA Compiler
Driver NVCC
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7.2.3 Debugging

Given the complexity and parallel nature of GPU programming, effective de-
bugging tools are essential to ensure code correctness and optimize performance.
NVIDIA provides a suite of debugging tools specifically designed for CUDA
applications, helping developers identify and resolve issues in their code.

• cuda-memcheck is a comprehensive tool that detects memory-related er-
rors in CUDA applications. It helps identify issues such as memory leaks,
out-of-bounds accesses, and race conditions. Its capabilities:

– Memory Leaks. Finds memory that is allocated but not freed,
preventing unnecessary resource consumption.

– Memory Errors. Detects accesses to invalid memory locations,
which can cause unpredictable behavior.

– Race Conditions. Identifies scenarios where multiple threads access
shared data concurrently, potentially leading to incorrect results.

– Illegal Barriers. Spots improper use of synchronization barriers in
parallel code.

– Uninitialized Memory. Flags the use of uninitialized memory,
which can lead to unreliable outcomes.

• cuda-gdb is an extension of the GNU Debugger (GDB) tailored for de-
bugging CUDA applications. It offers a familiar debugging environment
for those already comfortable with GDB. Its capabilities:

– Setting Breakpoints. Allows developers to pause execution at spe-
cific points in the code to inspect the state of the program.

– Inspecting Memory. Enables examination of variables and mem-
ory contents to ensure they hold expected values.

– Stepping Through Code. Provides the ability to step through
code line by line, both on the CPU and GPU, to trace the execution
flow.

With the debugging tools, there are also some profiling tools provided by NVIDIA.

CUDA profiling9 is the process of measuring various aspects of a CUDA pro-
gram’s performance to identify inefficient code segments, resource bot-
tlenecks, and opportunities for optimization. Profiling helps developers
understand how their applications are utilizing GPU resources and make in-
formed decisions to enhance performance.

• NVPROF is a command-line profiler provided by NVIDIA that gives
detailed timing information for each CUDA kernel and memory
operation. Its capabilities:

9Profiling is a process used in software development to analyze and measure the
performance characteristics of a program. The goal of profiling is to identify parts of
the code that are consuming the most resources or taking the most time, so that developers
can optimize these areas and improve the overall performance of the application.
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– Kernel Execution Time. Measures the time taken by each CUDA
kernel to execute.

– Memory Transfers. Monitors the time spent on data transfers
between the CPU and GPU.

– API Calls. Tracks the duration of CUDA API calls.

– Occupancy. Analyzes the utilization of GPU resources, helping to
identify potential underutilization or over-subscription of resources.

Developers use NVPROF to run their applications and generate detailed
profiling reports, which can then be analyzed to pinpoint performance
bottlenecks.

• NVIDIA Visual Profiler (NVVP) is a graphical profiling tool that
provides a visual representation of the application’s performance, making
it easier to identify and address bottlenecks. Its capabilities:

– Timeline Visualization. Displays a timeline of kernel executions,
memory transfers, and API calls, allowing developers to see the se-
quence and overlap of events.

– Detailed Metrics. Offers in-depth metrics on kernel performance,
memory usage, and other critical aspects of CUDA applications.

– Optimization Suggestions. Provides recommendations for opti-
mizing code based on the profiling results.

NVVP is particularly useful for visualizing complex interactions within
CUDA applications and understanding how different parts of the code
affect overall performance.

• NSIGHT is an integrated development environment that includes ad-
vanced profiling and debugging features for CUDA applications. Its
capabilities:

– Advanced Profiling. Combines the features of NVPROF and
NVVP, offering a comprehensive set of profiling tools within a single
interface.

– Interactive Analysis. Allows developers to interactively analyze
performance data and make real-time adjustments to their code.

– Unified Development. Integrates debugging and profiling, pro-
viding a seamless environment for developing and optimizing CUDA
applications.

NSIGHT is ideal for developers who need a powerful, all-in-one tool for
debugging and profiling their CUDA applications.

• Third-Party Profiling Tools:

– TAU (Tuning and Analysis Utilities). A performance analysis tool
that can be used to profile CUDA applications along with other types
of programs. TAU provides detailed performance data and
visualization capabilities.
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– VampirTrace. Captures performance data and visualizes it
to help optimize parallel applications. It supports a range of
profiling features for CUDA and other programming models.

Another powerful profiling system is Nsight. Nsight Systems offers both a
command-line profiler and a graphical user interface (GUI), providing
comprehensive insights into the execution of CUDA applications. It helps iden-
tify performance bottlenecks, understand GPU utilization, and improve overall
application efficiency.

• Nsight Command-Line Profiler. nsys can be used to profile an accel-
erated application by launching it and gathering detailed statistics about
its performance. The information reported are:

– GPU Activity. Insights into how the GPU is utilized during the
application’s execution.

– CUDA API Calls. Details on the usage of CUDA API functions.

– Memory Activity. Information about memory operations, includ-
ing transfers between CPU and GPU.

An example command is:

1 nsys profile --stats=true -o vector -add -no-prefetch -report ./
vector -add -no -prefetch

This command profiles the application vector-add-no-prefetch and gen-
erates a report with detailed statistics.

• Nsight Systems GUI. Provides a visual representation of the profil-
ing data collected by nsys, making it easier to analyze and interpret the
results. Its capabilities:

– Timeline View. Displays a comprehensive timeline of CPU and
GPU activities, showing how different tasks are executed over time.

– Detailed Metrics. Offers in-depth metrics on kernel performance,
memory usage, and other critical aspects.

– Interactive Analysis. Allows developers to zoom into specific re-
gions of the timeline and examine detailed activities.
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7.2.4 CUDA Kernel

Launching a CUDA kernel involves defining a function that will run on the
GPU and then executing this function from the host (CPU) code.

1. Defining functions.

• CPU Function:

1 void CPUFunction () {
2 printf("This function is defined to run on the CPU.");
3 }

This function runs on the CPU and prints a message.
• GPU Function:

1 __global__ void GPUFunction () {
2 printf("This function is defined to run on the GPU.");
3 }

This function is defined to run on the GPU, indicated by the
__global__ qualifier, and it prints a message when executed.

2. Launching the Kernel. In the main function, we launch the GPU
function using a special syntax:

1 int main() {
2 CPUFunction ();
3

4 // Launch the GPU kernel
5 // with 1 block and 1 thread
6 GPUFunction <<<1, 1>>>();
7 cudaDeviceSynchronize ();
8 }
9

• The CPUFunction() is called normally, as it’s a CPU function.
• The GPUFunction«<1, 1»>(); syntax launches the GPU kernel with

a specified execution configuration: «<1, 1»> means 1 block and 1
thread per block.

• cudaDeviceSynchronize() is called to ensure that the CPU waits
for the GPU to finish executing the kernel before continuing.

Just like with variables (table 4, page 132), CUDA provides specific keywords
that define the scope and lifetime of functions.

Function Declaration Executed on Callable from

__device__ type DeviceFunc() Device Device
__global__ void KernelFunc() Device Host
__host__ type HostFunc() Host Host

Table 6: CUDA function qualifiers.
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® How can we customize the kernel?

Kernel configuration in CUDA involves specifying how many blocks and
threads will be used to execute a kernel on the GPU. The key parameters
are:

• Number of Blocks. Specifies how many blocks of threads will be
launched on the GPU.

• Number of Threads per Block. Specifies how many threads will be
in each block.

For a 1D hierarchy, we use simple integer numbers to specify these values be-
cause a 1D grid or block can be represented by a single dimension:

1 // Example of launching a kernel with 1 block and 256 threads in 1D
2 KernelFunc <<<1, 256>>>();

For higher dimensions (2D or 3D), CUDA uses the dim3 type to represent
the grid and block dimensions. dim3 is a CUDA-specific type that can
hold three unsigned integer values, representing the dimensions in the x, y, and
z directions. This provides a flexible way to configure more complex thread
hierarchies:

1 // Example of launching a kernel with a 2D grid and blocks
2 dim3 gridDim (16, 16); // 16 blocks in x and y dimensions
3 dim3 blockDim (16, 16); // 16 threads per block in x and y

dimensions
4 KernelFunc <<<gridDim , blockDim >>>();

T CPU-GPU Synchronization

In CUDA, kernel executions are asynchronous, meaning that the CPU
can continue to execute other instructions while the GPU is running
the kernel. However, there are times when synchronization is required to
ensure that the CPU is waiting for the GPU to complete its tasks.

• Asynchronous Kernel Launch. When a kernel is launched, the CPU
can proceed with subsequent instructions without waiting for the GPU to
finish.

1 KernelFunc <<<1, 256>>>();
2 // The CPU immediately continues executing the next

instructions

• Synchronizing CPU and GPU. To synchronize, CUDA provides run-
time functions such as cudaDeviceSynchronize(), which ensures that the
CPU waits until the GPU has completed all preceding tasks.

1 KernelFunc <<<1, 256>>>();
2 // Wait for the GPU to finish
3 cudaDeviceSynchronize ();
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[ Error handling

The errors in CUDA can be caught in two ways:

• Return type: most CUDA runtime functions return a variable of
type cudaError_t. This type is an enumerated value that indicates the
success or failure of the function call.

• Kernels return void: CUDA kernel functions return void, meaning they
do not provide direct feedback about errors. Instead, errors are checked
using specific functions, such as: cudaGetLastError(). It returns
the last error that occurred during the execution of a CUDA
function.

1 cudaError_t err = cudaGetLastError ();
2 if (err != cudaSuccess) {
3 printf("CUDA error: %s\n", cudaGetErrorString(err));
4 }
5

Asynchronous errors (during kernel execution) are reported as error states of
cudaDeviceSynchronize(). It blocks the CPU thread until the GPU has
completed all previously requested tasks. This includes kernel executions,
memory transfers, and other asynchronous operations issued.

1 kernel <<<blocks , threads >>>();
2 cudaError_t err = cudaDeviceSynchronize ();
3 if (err != cudaSuccess) {
4 printf("CUDA error: %s\n", cudaGetErrorString(err));
5 }

Example 2: error handling

1 cudaError_t err1 , err2;
2 err1 = cudaMallocManaged (&a, N);
3 SomeKernel <<<1, -1>>>(); // Invalid thread number
4 err2 = cudaGetLastError ();
5 if (err1 != cudaSuccess || err2 != cudaSuccess) {
6 printf("Error 1: %s\n", cudaGetErrorString(err1));
7 printf("Error 2: %s\n", cudaGetErrorString(err2));
8 }

• err1 = cudaMallocManaged(&a, N); attempts to allocate man-
aged memory and returns an error code if it fails.

• cudaGetErrorString(err1) converts the error code to a readable
string.

• SomeKernel«<1, -1»>(); intentionally uses an invalid thread con-
figuration to generate an error.

• err2 = cudaGetLastError(); captures the error from the kernel
launch.

• cudaGetErrorString(err2) converts the kernel launch error code
to a readable string.

177



7 CUDA 7.3 Execution Model

7.3 Execution Model
The CUDA execution model defines how parallel computing tasks are
organized and executed on NVIDIA GPUs. It consists of both soft-
ware and hardware components that work together to efficiently process large
amounts of data in parallel.

{ Software Hierarchy

• Grid. A grid is a collection of thread blocks that execute a given
kernel function. Each grid is associated with a specific kernel launch.
Grids can be one-dimensional, two-dimensional, or three-dimensional, de-
pending on the problem’s complexity.

• Thread Block. A thread block is a group of threads that execute to-
gether and can cooperate by sharing data through shared mem-
ory. Each block is independent, allowing the scheduler to execute blocks
in any order. Thread blocks can also be organized in one, two, or three
dimensions.

• Thread. The smallest unit of execution in CUDA. Each thread
executes the same code but operates on different data elements.
Threads within a block can communicate and synchronize with each other,
enabling collaborative computation.

: Hardware Hierarchy

• GPU. The physical hardware that executes the parallel tasks. A
GPU consists of multiple Streaming Multiprocessors (SMs).

• Streaming Multiprocessor (SM). Each SM can execute multiple
threads concurrently. Thread blocks are assigned to SMs for execution.
SMs manage and execute warps of threads.

• GPU Core. Individual cores within the SMs that perform the ac-
tual computation. Cores execute threads in groups called warps,
typically comprising 32 threads.

. What happens if the kernel startup doesn’t match the input
dataset?

Execution configuration mismatches occur when the number of
threads configured for a kernel launch does not perfectly match the
size of the dataset being processed. This can lead to inefficiencies or the
need for additional handling in the kernel code.

• Optimal Thread Configuration: multiple of 32 threads. It’s gen-
erally desirable to configure blocks with a multiple of 32 threads for per-
formance reasons. This is because GPUs execute threads in groups of 32,
known as warps. Ensuring the number of threads per block is a multiple
of 32 can prevent under-utilization of GPU resources.
As the warp dimension changes, the optimal thread configuration should
also change.
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Figure 37: Graphical representation of the CUDA execution model.

• Dealing with Non-Multiple of 32 threads. If the dataset size (e.g.,
N=1000) is not a multiple of 32, we can create more than 1000 threads and
use an extra check within the kernel to handle the excess threads.

1. We pass the dataset size N as an argument to the kernel.
2. Inside the kernel, we check if the thread ID is greater than or equal

to N. If it is, those threads should not perform any operations.

1 __global__ void kernelFunction(float* data , int N) {
2 int tid = blockIdx.x * blockDim.x + threadIdx.x;
3 if (tid < N) {
4 // Perform operations only if thread ID
5 // is within the dataset size
6 data[tid] = data[tid] * 2.0f;
7 }
8 }
9

• Insufficient threads. In some cases, there may be fewer threads than
data elements to process, either for performance reasons or because the
dataset is very large.
In this case, the solution is using a Stride Factor. We can use a stride
factor corresponding to the total number of threads. The stride
factor is calculated as gridDim.x * blockDim.x, representing the total
number of threads in the grid. Each thread processes multiple ele-
ments by iterating with a step size equal to the stride.

1 __global__ void kernelFunctionWithStride(float* data , int N) {
2 int tid = blockIdx.x * blockDim.x + threadIdx.x;
3 int stride = gridDim.x * blockDim.x;
4 for (int i = tid; i < N; i += stride) {
5 data[i] = data[i] * 2.0f;
6 }
7 }
8
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7.4 Querying Device Properties
Different GPUs have varying capabilities and configurations, such as the num-
ber of Streaming Multiprocessors (SMs), maximum thread dimensions, memory
size, etc. Knowing these properties helps developers optimize their code to run
efficiently on different hardware. The main properties are:

• Get Device ID: cudaGetDevice; to retrieve the current device ID.

1 int deviceId;
2 cudaGetDevice (& deviceId);

• Query Device Properties: cudaGetDeviceProperties; to get the prop-
erties of the specified device.

1 cudaDeviceProp props;
2 cudaGetDeviceProperties (&props , deviceId);

• Understanding the cudaDeviceProp Structure. This structure con-
tains numerous attributes of the device. Some key attributes include:

– name. Name of the device.

– totalGlobalMem. Total global memory available on the device.

– sharedMemPerBlock. Shared memory available per block.

– regsPerBlock. Number of registers available per block.

– warpSize. Number of threads in a warp.

– maxThreadsPerBlock. Maximum number of threads per block.

– maxThreadsDim. Maximum dimension sizes of a thread block (x, y,
z).

– maxGridSize. Maximum dimension sizes of a grid (x, y, z).

– clockRate. Clock frequency of the device.

– multiProcessorCount. Number of streaming multiprocessors on the
device.

Example 3: common queries

Some common queries are:

• Maximum Dimensions of a Thread Block:

1 printf("Max Thread Dimensions: %d x %d x %d\n",
2 props.maxThreadsDim [0], props.maxThreadsDim [1],
3 props.maxThreadsDim [2]);

• Maximum Number of Threads in a Block:

1 printf("Max Threads per Block: %d\n",
2 props.maxThreadsPerBlock);
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• Maximum Size of GPU Global Memory:

1 printf("Total Global Memory: %zu bytes\n",
2 props.totalGlobalMem);

• Warp Size:

1 printf("Warp Size: %d\n", props.warpSize);

• Number of Streaming Multiprocessors (SM):

1 printf("Number of SMs: %d\n",
2 props.multiProcessorCount);
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7.5 Thread hierarchy
The CUDA thread hierarchy is a fundamental concept in CUDA program-
ming that allows for organizing and managing parallel computation tasks effi-
ciently on NVIDIA GPUs. As we presented in Section 6.3.1, on page 103, the
hierarchy consists of:

1. Threads

• Basic Execution Unit. A thread is the smallest unit of execution
in CUDA. Each thread executes a portion of the overall computation.

• Unique Thread ID. Each thread within a block has a unique ID,
which can be accessed using built-in variables like threadIdx.

2. Thread Blocks

• Group of Threads. Threads are grouped into blocks. A thread
block can contain up to 1024 threads, depending on the GPU archi-
tecture.

• Cooperation and Communication. Threads within the same
block can cooperate and share data through shared memory, and
they can synchronize using __syncthreads().

• Unique Block ID. Each block within a grid has a unique ID, which
can be accessed using blockIdx.

3. Grids

• Collection of Blocks. Blocks are grouped into a grid. A grid can
contain up to 231 − 1 blocks10.

• Grid Dimensions. Grids can be one-dimensional, two-dimensional,
or three-dimensional. Each block within a grid has a unique posi-
tion within the grid, identified using blockIdx.x, blockIdx.y, and
blockIdx.z.

: GPU hierarchy

This hierarchy maps directly to the NVIDIA GPU architecture (hardware
hierarchy):

1. Streaming Multiprocessor (SM).

• Block Execution. Each Streaming Multiprocessor (SM) on a GPU
executes one or more thread blocks.

• Warps. Threads within a block are executed in groups of 32, known
as warps. Warps are the basic unit of execution on the GPU.

10The limit of 231−1 blocks in CUDA grid comes from the maximum range of signed 32-bit
integer. CUDA uses signed 32-bit integers to represent the indices of blocks within a grid. A
signed 32-bit integer can represent values from −231 to 231 − 1. Since negative block indices
don’t make sense in the context of a grid, CUDA only uses positive values. Therefore, the
maximum positive value that can be used is 231 − 1, which equals 2′147′483′647.
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2. GPU Core.

• Thread Execution. Each GPU core executes a single thread from
a warp. Multiple GPU cores within an SM work together to execute
all the threads in a warp.

3. Execution of Grids.

• Multiple Grids. A GPU can execute one or more grids of thread
blocks. Each grid corresponds to a single kernel launch.

• Interleaved Execution. If the number of blocks exceeds the num-
ber of SMs, the execution of blocks is interleaved among the SMs.

® How to use the hierarchy

The CUDA thread hierarchy (and hardware hierarchy) provides a structured
way to manage and organize parallel computation on the GPU. Unconsciously,
when we coordinate parallel threads to execute a task, we leverage this hierarchy
to maximize performance and resource utilization:

• Kernel Launch Configuration. When launching a kernel, we specify
the grid and block dimensions. For example:

1 // 256 threads per block
2 dim3 dimBlock (256);
3 // Grid size to cover all elements
4 dim3 dimGrid ((N + 256 - 1) / 256);
5 MyKernel <<<dimGrid , dimBlock >>>(a, b, N);

This configuration ensures that the kernel has enough threads to process
all elements in parallel.

• Mapping Threads to Data. Each thread calculates its unique index
based on its position within the block and grid, allowing it to process a
specific element of the data array. For example:

1 int i = blockIdx.x * blockDim.x + threadIdx.x;
2 if (i < N) {
3 // Each thread processes a unique element
4 a[i] = a[i] + b;
5 }

• Handling Data Beyond Block Size. If the data size exceeds the num-
ber of threads per block, the grid dimension ensures all data is covered.
For example:

1 dim3 dimGrid ((N + blocksize - 1) / blocksize);

This calculation ensures that even if N is not a multiple of the block size,
the entire dataset is processed.

• Scalability. The hierarchy allows the program to scale across different
GPU architectures by adjusting the grid and block sizes to match the
hardware capabilities (e.g., number of SMs, maximum threads per block).
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{ Thread hierarchy Variables

CUDA provides several built-in variables to help manage and identify the hier-
archy of threads in our parallel computation. These variables are used within
kernel functions to determine the unique identity of each thread, block, and
grid:

• Grid and Block Dimensions:

– gridDim.x: represents the number of blocks in the grid along the
x-axis.

– blockDim.x: represents the number of threads in a block along the
x-axis.

• Block and Thread Indices:

– blockIdx.x: the block index along the x-axis. It ranges from 0 to
gridDim.x - 1.

– threadIdx.x: the thread index within a block along the x-axis. It
ranges from 0 to blockDim.x - 1.

• Global Thread Index Calculation: to identify the unique index of
each thread across the entire grid, we can use the formula:

globalID = blockIdx.x× blockDim.x+ threadIdx.x (13)

This formula computes the global thread index by combining the block
and thread indices.

• 2D/3D Structures: in more complex applications, such as image pro-
cessing or solving partial differential equations, threads use their IDs to
decide which data to process. This simplifies memory addressing when
dealing with multidimensional data. Example of thread index calculations
in a 2D grid:

globalID = (blockIdx.y× gridDim.x+ blockIdx.x)×
(blockDim.x× blockDim.y)+

(threadIdx.y× blockDim.x+ threadIdx.x)

• Threads Per Block and Thread Number in Block:

– threadsPerBlock: total number of threads in a block.

threadsPerBlock = blockDim.x× blockDim.y = 8

– threadNumInBlock: unique thread number within a block.

threadNumInBlock = threadIdx.x+ blockDim.x× threadIdx.y

– blockNumInGrid: unique block number within the grid.

blockNumInGrid = blockIdx.x+ gridDim.x× blockIdx.y

– tid (Global Thread ID): unique thread ID across the entire grid.

tid = blockNumInGrid× threadsPerBlock+ threadNumInBlock
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7.6 Memory hierarchy
The memory hierarchy in CUDA was explained in Section 6.3.2, page 107. Here
is a small summary:

• Per-thread (registers):

– Scope: Per thread.

– Lifetime: Duration of the thread.

– Speed: Fastest memory in the CUDA memory hierarchy.

– Usage: Used for storing frequently accessed variables and temporary
data.

– Limitations: Limited in size; excessive usage can lead to spilling
into local memory, which is slower.

• Per-block (shared memory, cache):

– Scope: Per block.

– Lifetime: Duration of the block.

– Speed: Much faster than global memory, similar to L1 cache.

– Usage: Used for data sharing among threads within the same block,
enabling efficient inter-thread communication.

– Configuration: Typically user-managed, allowing for explicit con-
trol over data placement.

– Limitations: Limited in size; excessive usage can limit the number
of active blocks per SM.

• Global Memory (off-chip DRAM):

– Scope: All threads.

– Lifetime: Duration of the application.

– Speed: Significantly slower than shared memory and registers due
to higher latency.

– Usage: Used for data that needs to be accessed by multiple threads
or blocks.

– Characteristics: Large in size, but high latency; optimizing access
patterns (coalesced accesses) can improve performance.
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[ Memory Accessibility

• Per-thread:

– Host: cannot directly access registers.

– Device: registers are accessed exclusively by the thread that owns
them.

– Operations:

∗ Host: none. The host cannot allocate, deallocate, or access
registers directly.

∗ Device: each thread can read from and write to its own registers.
But registers are private to the thread, meaning no other thread
can access another thread’s registers.

• Per-block:

– Host: cannot directly access shared memory, but can specify shared
memory size for each kernel launch.

– Device: can read from and write to shared memory within a block.

– Operations:

∗ Host: none directly (can specify size in kernel launch).
∗ Device: Read/Write.

• Global Memory:

– Host: can allocate and deallocate memory using cudaMalloc and
cudaFree. Can copy data to/from global memory using cudaMemcpy.

– Device: can read from and write to global memory directly.

– Operations:

∗ Host: cudaMalloc, cudaFree, cudaMemcpy, cudaMemset.
∗ Device: Read/Write.
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: Memory Management APIs

• cudaMalloc:

– Purpose: allocates memory on the GPU.
– Usage: used when we need to allocate space for variables or arrays

that the GPU will use.
– Function signature:

1 cudaError_t cudaMalloc(void** devPtr , size_t size);

– Parameters:
∗ devPtr: pointer to the allocated device memory.
∗ size: size in bytes of the allocated memory.

– Example:

1 float* d_array;
2 cudaMalloc ((void **)&d_array , N * sizeof(float));

• cudaMallocHost:

– Purpose: allocates pinned memory on the host.
– Usage: used for host memory that can be asynchronously copied to

the device, improving transfer efficiency.
– Function signature:

1 cudaError_t cudaMallocHost(void** ptr , size_t size);

– Parameters:
∗ ptr: pointer to the allocated host memory.
∗ size: size in bytes of the allocated memory.

– Example:

1 float* h_array;
2 cudaMallocHost ((void **)&h_array , N * sizeof(float));

• cudaFree:

– Purpose: frees memory that was allocated on the GPU.
– Usage: used to deallocate memory that was previously allocated

with cudaMalloc.
– Function signature:

1 cudaError_t cudaFree(void* devPtr);

– Parameters:
∗ devPtr: pointer to the memory to be freed.

– Example:

1 float* d_array;
2 cudaFree(d_array);
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• cudaFreeHost:

– Purpose: frees pinned memory that was allocated on the host.
– Usage: used to deallocate memory that was previously allocated

with cudaMallocHost.
– Function signature:

1 cudaError_t cudaFreeHost(void* ptr);

– Parameters:
∗ ptr: pointer to the memory to be freed.

– Example:

1 float* h_array;
2 cudaFreeHost(h_array);

• cudaMemcpy:

– Purpose: copies data between host and device, or between different
regions of device memory.

– Usage: used for transferring data to and from the GPU, or between
different memory regions on the GPU.

– Function signature:

1 cudaError_t cudaMemcpy(void* dst , const void* src , size_t
count , cudaMemcpyKind kind);

– Parameters:
∗ dst: destination pointer.
∗ src: source pointer.
∗ count: size in bytes of the memory to be copied.
∗ kind: type of copy operation (e.g., cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice)

– Example:

1 cudaMemcpy(d_array , h_array , N * sizeof(float),
cudaMemcpyHostToDevice);

. cudaMallocHost/cudaFreeHost can reduce CPU performance

Pinned memory (or page-locked memory) is a region of system memory
that is “locked” and cannot be paged out by the operating system.
This type of memory provides faster data transfer rates between the CPU and
GPU because it allows for direct memory access (DMA) without the need for the
CPU to perform intermediate steps. Since cudaMallocHost and cudaFreeHost
work on this type of memory, the possible worst-case scenarios are:

p Limited System Resources. Pinned memory consumes physical
RAM. When we allocate a large amount of pinned memory, it reduces
the available RAM for other system tasks, which can lead to increased
memory pressure and reduced performance for other applications.

188



7 CUDA 7.6 Memory hierarchy

p Increased Memory Allocation Time. Allocating pinned memory
(cudaMallocHost) is generally more time-consuming than allocating
pageable memory because the operating system must ensure that the
allocated memory pages are locked in RAM and cannot be paged
out.
Similarly, freeing pinned memory (cudaFreeHost) involves unlocking
these pages, which can also be a time-consuming operation.

p Memory Fragmentation. Frequent allocations and deallocations
of pinned memory can lead to memory fragmentation. Over time,
this fragmentation can make it harder for the operating system to find
contiguous blocks of free memory, which can slow down memory allocation
and deallocation operations.

p Reduced Cache Efficiency. Pinned memory allocations can affect the
CPU’s cache efficiency. When a large portion of memory is pinned,
it may reduce the effectiveness of the CPU’s memory caching
mechanisms, leading to increased memory access times for other pro-
cesses.

Is suggest to use the pinned memory when:

✓ Performance-Critical Data Transfers. Use pinned memory for data
transfers that are critical for performance, where the speedup from faster
data transfer rates outweighs the potential downsides.

✓ Async Operations. Pinned memory is particularly beneficial for asyn-
chronous data transfers between the host and device, enabling overlap of
computation and data transfer for better performance.

Example 4: Manual Memory Management - Vector Addition

1 % allocate h_A , h_B , h_C
2 void vecAdd(float *h_A , float *h_B , float *h_C , int n) {
3 int size = n * sizeof(float);
4 float *d_A , *d_B , *d_C;
5

6 // Allocate memory on the GPU (device)
7 // for arrays d_A , d_B , d_C
8 cudaMalloc ((void **)&d_A , size);
9 cudaMalloc ((void **)&d_B , size);

10 cudaMalloc ((void **)&d_C , size);
11

12 // Copy data from host arrays h_A and h_B
13 // to device arrays d_A and d_B
14 cudaMemcpy(d_A , h_A , size , cudaMemcpyHostToDevice);
15 cudaMemcpy(d_B , h_B , size , cudaMemcpyHostToDevice);
16

17 // Kernel invocation code (not shown in the image)
18 // Example kernel launch:
19 // vecAddKernel <<<blocks , threads >>>(d_A , d_B , d_C , n);
20

21 // Copy the result from device array
22 // d_C back to host array h_C
23 cudaMemcpy(h_C , d_C , size , cudaMemcpyDeviceToHost);
24
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25 // Free the allocated memory on the device
26 cudaFree(d_A);
27 cudaFree(d_B);
28 cudaFree(d_C);
29 }
30 % free h_A , h_B , h_C

• Allocate Host Memory. Before the vecAdd function is called,
host memory for arrays h_A, h_B, and h_C is allocated. This mem-
ory is used to store the input data and the result on the host
(CPU).

• Function Definition. The vecAdd function performs the steps in
the code.

• Memory Allocation on Device. cudaMalloc allocates mem-
ory on the GPU for d_A, d_B, and d_C. The size of each array is
determined by n * sizeof(float).

• Copy Data from Host to Device. cudaMemcpy copies data from
the host arrays h_A and h_B to the device arrays d_A and d_B using
the cudaMemcpyHostToDevice flag. This step transfers the input
data from the CPU to the GPU for processing.

• Kernel Invocation. The CUDA kernel (not shown in the image)
is invoked to perform vector addition on the device. Each thread
on the GPU computes one element of the result vector.

• Copy Data from Device to Host. cudaMemcpy copies the result
from the device array d_C back to the host array h_C using the
cudaMemcpyDeviceToHost flag. This step transfers the computed
result from the GPU to the CPU.

• Free Allocated Memory. cudaFree frees the allocated memory
on the GPU for d_A, d_B, and d_C. This ensures that no memory
leaks occur on the GPU.

® How can we allocate memory that is shared between CPU and
GPU?

Unified Memory in CUDA is a single memory space that is accessible
by both the host (CPU) and the device (GPU). It abstracts away the
complexities of explicit memory management, making it easier to develop CUDA
applications. Its features:

• Single Address Space. Both the CPU and GPU can access the
same memory location, eliminating the need for explicit data transfers
between them. This means that the same pointer can be used on both the
host and the device.

• Automatic Data Migration. The CUDA runtime system handles the
movement of data between the host and device automatically. When the
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GPU accesses data that resides in the host memory, the CUDA runtime
migrates the data to the GPU memory and vice versa.

• On-Demand (Page) Migration. Unified Memory uses a demand-
paging mechanism similar to virtual memory in operating systems. When
a page of memory is accessed by the CPU or GPU, and it is not
currently resident in the respective memory, it is migrated on
demand.

¥ Pros

✓ Simplified Memory Management. Developers do not need to
worry about explicit memory copies (cudaMemcpy). The CUDA
runtime manages data movement automatically.

✓ Ease of Programming. Writing CUDA programs becomes easier,
especially for those new to CUDA, as the same pointer can be
used for both host and device operations.

✓ Efficient Use of Memory. Reduces code complexity, as there is no
need for separate host and device memory allocations and
management.

q Cons

p Potential Performance Overhead. The automatic data mi-
gration can introduce runtime overhead due to page faults11

when data is accessed.
Unified Memory uses a similar (to operating system) paging mecha-
nism to manage memory across the CPU and GPU. When a memory
page is accessed by the CPU or GPU and is not present in the re-
spective memory (host or device), a page fault occurs. The CUDA
runtime automatically migrates the page from the current memory
location (host to device or device to host) to the memory where the
access occurred.
This can be less efficient compared to explicitly managed memory
transfers.

p Limited Control. Developers have less control over when and where
data is moved. For performance-critical applications, manual mem-
ory management can sometimes yield better performance.

p Memory Contention. Sharing the same memory space between
the CPU and GPU can lead to contention, potentially impacting
performance if both are trying to access the same memory
simultaneously.

11Modern operating systems use a virtual memory system where the physical memory
(RAM) is abstracted as a larger virtual memory space. This allows programs to use more
memory than physically available by using disk storage (paging). A page fault occurs when
a program tries to access a part of the memory that is not currently in the phys-
ical memory (RAM). The operating system intervenes to load the required memory page
from disk into RAM, allowing the program to continue execution.
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cudaMallocManaged is a function in CUDA that allocates managed memory,
which is accessible by both the host (CPU) and the device (GPU).
This unified memory simplifies the programming model by allowing both the
CPU and GPU to share a single memory space.

1 cudaError_t cudaMallocManaged(void **devPtr , size_t size);

• devPtr: pointer to the allocated unified memory.

• size: size in bytes of the allocated memory.

¥ How to avoid page faults with cudaMallocManaged

Asynchronous memory prefetching is a technique used to proactively
move data between the host and device to avoid page faults and improve
performance. This is particularly useful in Unified Memory, where data can be
accessed by both the CPU and GPU.

Instead of waiting for a page fault to occur (which would trigger an on-demand
data transfer, a scenario we would avoid due to performance overhead), we
prefetch the required data to the desired memory location before it is needed.
This operation is done asynchronously, meaning that it does not block
the execution of other operations. This allows the program to continue
running while the data is being transferred in the background.

In CUDA, this technique is used with the function cudaMemPrefetchAsync:

1 cudaError_t cudaMemPrefetchAsync(
2 void *devPtr , size_t count , int dstDevice , cudaStream_t stream

= 0
3 );

• devPtr: pointer to the memory to be prefetched.

• count: size of the memory to be prefetched, in bytes.

• dstDevice: the destination device (can be a GPU device ID or the result
of the function cudaCpuDeviceId for the host).

• stream: the stream to perform the operation in (optional).

An example of use:

1 int deviceId;
2 cudaGetDevice (& deviceId);
3

4 // Prefetch data to the device
5 cudaMemPrefetchAsync(pointerToSomeUMData , size , deviceId);
6

7 // Prefetch data back to the host
8 cudaMemPrefetchAsync(pointerToSomeUMData , size , cudaCpuDeviceId);
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7.7 Streams
CUDA Streams are sequences of operations (like kernel launches or mem-
ory copies) that execute in order. By default, all operations in CUDA
run in the default stream, which is blocking and sequential.

Is important to understand the CUDA streams, because by changing the default
order, we can gain performance:

• Concurrency. By using multiple streams, we can perform operations
in parallel, leading to better performance.

• Overlap Computation and Data Transfer. For example, while one
stream is running a kernel on the GPU, another stream can
be copying data to or from the GPU.

8 Default vs Non-Default Streams

• Default Stream:

– Executes operations sequentially.

– Blocks all other streams until its operations are complete.

• Non-Default Streams:

– Allow for concurrent execution of operations.

– Operations within the same stream execute sequentially, but
operations in different streams can run in parallel.

{ CUDA implementation

1. Creating Streams. We can create streams using cudaStreamCreate.

1 cudaStream_t stream1 , stream2;
2 cudaStreamCreate (& stream1);
3 cudaStreamCreate (& stream2);

2. Launching Kernels in Streams. Launch kernels in different streams
to execute them concurrently.

1 // Launching a kernel in stream1
2 kernel1 <<<blocks , threads , 0, stream1 >>>(...);
3

4 // Launching a kernel in stream2
5 kernel2 <<<blocks , threads , 0, stream2 >>>(...);
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3. Synchronizing Streams. We can synchronize individual streams or all
streams.

1 // sync specific stream:
2 cudaStreamSynchronize(stream1);
3

4 // sync all streams
5 cudaDeviceSynchronize ();

4. Destroying Streams. Once we’re done with the streams, it’s important
to destroy them to free up resources.

1 cudaStreamDestroy(stream1);
2 cudaStreamDestroy(stream2);

Example 5

Imagine we have two kernels to execute, kernel1 and kernel2. If we
use the default stream, they will execute one after the other:

1. Launch kernel1;

2. Wait for kernel1 to complete;

3. Launch kernel2;

4. Wait for kernel2 to complete.

This sequential execution means the GPU is not fully utilized.
Using two non-default streams, we can launch both kernels to execute
concurrently:

1. Create two streams:

1 cudaStream_t stream1 , stream2;
2 cudaStreamCreate (& stream1);
3 cudaStreamCreate (& stream2);

2. Launch kernel1 in stream1 and kernel2 in stream2:

1 kernel1 <<<blocks , threads , 0, stream1 >>>(...);
2 kernel2 <<<blocks , threads , 0, stream2 >>>(...);

Now, kernel1 and kernel2 can run in parallel, allowing the GPU to be
used more efficiently.
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Example 6: DAG

The following image shows a series of tasks (A1 through A8) organized in
a DAG. The arrows between tasks indicate dependencies, meaning one
task must complete before another can start.

• Default Stream: contains tasks A0, and A8.

• Non-Default Streams: there are three non-default streams that
contain tasks A1, A4, A6, A2, A5, A7, and A3.

The execution flow is:

• Initial Tasks.

– Task A0 starts in the default stream.

– Concurrently, tasks A1, A2, and A3 run in non-default streams
(stream1, stream2, and stream3).

• Dependent Tasks.

– After A1, A2, and A3 complete, A4, A5, A6, and A7 start in the
respective non-default streams.

• Final Task.

– After all dependent tasks are complete, task A8 runs in the
default stream.

The implementation is the following:

1. Task A0 in Default Stream.

1 kernelA0 <<<blocks , threads >>>(...); // Default stream
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2. Tasks A1, A2, and A3 in Different Streams:

1 // Stream 1
2 kernelA1 <<<blocks , threads , 0, stream1 >>>(...);
3 // Stream 2
4 kernelA2 <<<blocks , threads , 0, stream2 >>>(...);
5 // Stream 3
6 kernelA3 <<<blocks , threads , 0, stream3 >>>(...);

3. Synchronize Streams Before Dependent Tasks:

1 cudaStreamSynchronize(stream1);
2 cudaStreamSynchronize(stream2);
3 cudaStreamSynchronize(stream3);

4. Tasks A4, A5, A6, and A7 in Non-Default Streams:

1 // Stream 1
2 kernelA4 <<<blocks , threads , 0, stream1 >>>(...);
3 // Stream 2
4 kernelA5 <<<blocks , threads , 0, stream2 >>>(...);
5 // Stream 1
6 kernelA6 <<<blocks , threads , 0, stream1 >>>(...);
7 // Stream 2
8 kernelA7 <<<blocks , threads , 0, stream2 >>>(...);

5. Synchronize Streams Again Before Final Task:

1 cudaStreamSynchronize(stream1);
2 cudaStreamSynchronize(stream2);
3 cudaStreamSynchronize(stream3);

6. Task A8 in Default Stream:

1 kernelA8 <<<blocks , threads >>>(...); // Default stream

7. Destroying Streams:

1 cudaStreamDestroy(stream1);
2 cudaStreamDestroy(stream2);
3 cudaStreamDestroy(stream3);

Using concurrent CUDA streams helps manage complex task dependencies in
DAG-like applications. By running independent tasks in different streams, we
can achieve parallel execution and optimize the performance of our CUDA ap-
plications. The example shows how to create streams, start kernels in these
streams, synchronize them, and finally destroy the streams to free up resources.
Finally, non-default streams and manual memory management allow
for overlapping data transfers and computations.
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7.8 CUDA and OpenMP or MPI
7.8.1 Motivations

In today’s computing landscape, achieving high performance and effi-
ciency in complex applications often requires the power of parallel pro-
cessing. This need has given rise to several parallel computing frameworks,
each designed to address specific aspects of parallelism. Among these, CUDA,
OpenMP, and MPI stand out as key technologies that enable efficient utiliza-
tion of computing resources, whether on a single machine with multiple GPUs
or across distributed clusters.

T Systems with multiple GPUs - CUDA + OpenMP

• OpenMP

– Purpose: used to dispatch parallel tasks across multiple GPUs.

– Why OpenMP?

∗ Simplified Parallelism. OpenMP provides a straightforward
way to parallelize tasks using compiler directives.

∗ Task Scheduling. It allows for efficient scheduling and man-
agement of tasks across multiple GPUs.

∗ Shared Memory Model. OpenMP works well with shared
memory systems, making it easier to manage and synchronize
tasks.

• CUDA

– Purpose: used for programming NVIDIA GPUs to perform parallel
computations.

– Why CUDA?

∗ Fine-Grained Control. CUDA provides detailed control over
GPU resources and performance optimization.

∗ Massive Parallelism. Enables the execution of thousands of
threads in parallel, maximizing GPU utilization.

∗ Optimized Performance. Designed specifically for NVIDIA
GPUs, ensuring optimal performance and efficiency.

OpenMP is particularly useful for tasks that benefit from shared memory par-
allelism, making it easier to write efficient and portable code for multi-core
processors. It is often used in conjunction with CUDA to manage the CPU-side
parallelism, thereby optimizing the performance of the entire system.
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T Distributed Clusters with Multiple Nodes Containing GPUs -
CUDA + MPI

MPI (Message Passing Interface) is a standardized and portable
message-passing system designed for parallel computing in distributed
memory environments, such as clusters of computers. MPI excels in man-
aging communication between nodes in a distributed system, allowing for ef-
ficient coordination and data exchange. When combined with CUDA, MPI
enables developers to scale their applications across multiple nodes, each lever-
aging the power of GPUs, thus tackling larger and more complex problems than
would be possible on a single machine.

• MPI

– Purpose: used for communication across nodes in a distributed sys-
tem.

– Why OpenMP?

∗ Scalability. MPI is designed for high-performance communica-
tion in distributed memory systems, allowing for efficient parallel
computing across multiple nodes.

∗ Inter-Node Communication. Provides robust mechanisms
for data exchange between nodes, ensuring coordination and syn-
chronization in distributed environments.

∗ Flexibility. Works with various hardware and software con-
figurations, making it versatile for different parallel computing
scenarios.

• CUDA

– Purpose: used within each node’s GPU to perform parallel compu-
tations.

– Why CUDA?

∗ Performance. Ensures that computations within each GPU are
optimized for maximum throughput.

∗ Integration with MPI. CUDA can be effectively combined
with MPI to handle local computations within each node, while
MPI manages communication between nodes.

Example 7: Scenario CUDA + MPI

A distributed cluster with multiple nodes, each containing one or more
GPUs. MPI processes (e.g., MPI Process N, MPI Process N+1) man-
age communication across nodes, while CUDA handles computations
within each GPU.
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Technology When?

OpenMP

• Ideal for managing parallel tasks within a single sys-
tem with multiple GPUs.

• Simplifies task scheduling and synchronization in
shared memory environments.

MPI

• Essential for communication in distributed clusters
with multiple nodes containing GPUs.

• Provides scalable and efficient data exchange be-
tween nodes.

CUDA

• Used for fine-grained parallel computations within
each GPU.

• Ensures optimized performance and maximum GPU
utilization.

Table 7: When to use each technology.

8 Batch processing vs Cooperative patterns

The computation patterns in a Multi-GPU environment are divided into batch
and cooperative patterns.

• Batch Processing. Batch processing is ideal for scenarios where the
same task needs to be performed multiple times with different
data sets. It’s a simple way to maximize GPU utilization. In other
words, run the same independent task multiple times with different data.

Steps involved:

1. Identify the number of available GPUs. Use CUDA APIs to
determine how many GPUs are available for processing.

2. Initialize and allocate memory. Allocate necessary memory on
each GPU. This step involves copying the data required for compu-
tation from the host (CPU) to the device (GPU).

3. Create CUDA streams. CUDA streams enable concurrent execu-
tion of kernels. Creating multiple streams allows us to run multiple
tasks in parallel on the GPU.

4. Launch the kernel. Dispatch the kernels for execution. Each GPU
runs its own copy of the kernel, processing a different subset of the
data.
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5. Synchronize. Ensure all GPU tasks are complete. Use synchroniza-
tion mechanisms to manage dependencies and ensure data integrity.

6. Retrieve results. Copy the results from the device back to the host.

¥ Pros

✓ High throughput. Efficiently handles repetitive tasks.
✓ Scalability. Easy to scale by adding more GPUs.

q Cons

p Limited to independent tasks. Not suitable for tasks that require
inter-GPU communication.

• Cooperative Patterns. Tasks need to work together to achieve a
common goal. These tasks are interdependent and require communi-
cation between GPUs.

Steps involved:

1. Task division. Split the task into smaller sub-tasks that can be
distributed across GPUs.

2. Memory allocation and initialization. Allocate memory for each
sub-task and initialize the required data.

3. Kernel execution. Launch kernels that perform the sub-tasks. Un-
like batch processing, these kernels may need to communicate with
each other.

4. Inter-GPU communication. Implement communication protocols
to share data and results between GPUs. This can involve techniques
like GPU direct RDMA (Remote Direct Memory Access).

5. Synchronization and coordination. Use synchronization mecha-
nisms to coordinate the execution of sub-tasks and ensure they are
completed in the correct order.

6. Result aggregation. Combine the results from all GPUs to produce
the final output.

¥ Pros

✓ Solves complex tasks. Suitable for problems that require collabo-
rative computation.

✓ Efficient use of resources. Leverages the combined power of mul-
tiple GPUs.

q Cons

p Complex implementation. Requires careful design and manage-
ment of inter-GPU communication.

p Potential bottlenecks. Synchronization and communication can
introduce delays.
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The main differences are:

• Task Independence vs. Interdependence. Batch processing ex-
cels with independent tasks, whereas cooperative patterns manage
interdependent tasks.

• Communication Needs. Batch processing minimizes communication
between tasks, while cooperative patterns facilitate necessary inter-
task communication.

• Implementation Complexity. Batch processing is generally sim-
pler to implement, whereas cooperative patterns require more sophis-
ticated design and coordination.

By dividing the computation patterns this way, it becomes easier to choose the
most appropriate approach for different types of workloads, ensuring optimal
performance and efficient use of GPU resources.
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7.8.2 CUDA API for Multi-GPUs

In high-performance computing, the use of multiple GPUs can significantly in-
crease computational throughput and efficiency. CUDA provides several
API calls that allow developers to effectively manage and utilize mul-
tiple GPUs. The most important of these are:

• The cudaSetDevice() function is used to specify which GPU device
should be active for subsequent CUDA operations on the host
thread. By setting the desired GPU device, developers can control where
kernel executions, memory allocations, and other device-specific calls take
place. This feature is especially important when working with systems that
have multiple GPUs, as it allows fine-grained control over which device is
used for specific tasks.

– Function:

1 cudaSetDevice(int device)

– Description:

∗ Sets the GPU device to use for subsequent CUDA operations on
the active host thread.

∗ This function specifies which GPU to use for operations like ker-
nel launches, memory allocations, and other device-specific calls.

– Parameters:

∗ device: the integer ID of the GPU to be set as the active device.

– Usage:

∗ Does not affect other host threads, meaning the device setting is
local to the thread where this function is called.

∗ Does not affect previous asynchronous calls.

– Example:

1 cudaSetDevice (0); // Sets GPU 0 as the active device

T CUDA Runtime Calls Affected by cudaSetDevice()

If cudaSetDevice() is called before:

– Kernel Launch. The kernel will execute on the specified active
device.

– Memory Allocations. All memory allocations will be made on the
specified active device.

– Stream Creation. The stream will be associated with the specified
active device.

– Synchronization Functions. These functions will synchronize
tasks on the specified active device and active host thread only.
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• The cudaGetDevice() function retrieves the ID of the GPU cur-
rently being used by the active host thread. This function is use-
ful for confirming which GPU is set as active, especially in debugging
scenarios. Knowing the active device ensures that operations are being
performed on the intended GPU, preventing potential errors and resource
conflicts.

– Function:

1 cudaGetDevice(int *device)

– Description:

∗ Retrieves the ID of the GPU currently being used by the active
host thread.

∗ Helps to confirm which GPU is currently set as active.

– Parameters:

∗ device: a pointer to an integer where the ID of the active device
will be stored.

– Usage:

∗ This function is useful for debugging and ensuring that the cor-
rect GPU is being utilized.

– Example:

1 int device;
2 // Gets the ID of the current active GPU
3 // and stores it in ’device ’
4 cudaGetDevice (& device);

• The cudaGetDeviceCount() function is used to determine the number
of CUDA-capable GPUs available in the system. This function is
typically called during the initialization phase to understand the GPU
resources available. By knowing the number of GPUs, developers can
design their applications to efficiently distribute workloads across multiple
devices, maximizing performance and resource utilization.

– Function:

1 cudaGetDeviceCount(int *count)

– Description:

∗ Determines the number of CUDA-capable GPUs available in the
system.

∗ Helps in discovering the total number of GPUs that can be uti-
lized for computation.

– Parameters:

∗ count: a pointer to an integer where the number of CUDA-
capable devices will be stored.
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– Usage:

∗ This function is typically called during the initialization phase
to understand the GPU resources available.

– Example:

1 int deviceCount;
2 // Gets the number of CUDA -capable GPUs
3 // and stores it in ’deviceCount ’
4 cudaGetDeviceCount (& deviceCount);
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7.8.3 Memory Management with Multiple GPUs

In systems with multiple GPUs, efficient memory management is critical
to optimizing performance and ensuring smooth operation. There are
two primary approaches to memory management in such environments: manual
memory management and unified memory.

• Manual Memory Management requires setting the active device
using the cudaSetDevice() (page 202) function before any memory
allocation or kernel launch. This ensures that subsequent operations
are directed to the specified GPU.
For example, setting GPU 0 as the active device allows for memory allo-
cation on that particular GPU. This method provides fine-grained control
over which GPU handles specific tasks, allowing for optimized resource
utilization.

• Unified Memory, on the other hand, offers a more automated ap-
proach. If the flag cudaDevAttrConcurrentManagedAccess:

– Is set for all devices, memory can be allocated using the func-
tion cudaMallocManaged() without the need to set the active
device. This simplifies the process by allowing all GPUs to access
the allocated memory automatically.

– Is not set, but devices can still access each other’s memory, it
becomes necessary to set the active device before memory
allocation. This setup ensures that all other devices can access the
data through PCIe, facilitating efficient data transfer and resource
sharing.

Example 8: vector addition with multiple GPUs

This example demonstrates how to perform vector addition using multi-
ple GPUs.

1 float *m_A0 , float *m_B0 , *m_A1 , float *m_B1 , int n;
2 int size = n * sizeof(float);
3

4 // Set the active device to GPU 0
5 cudaSetDevice (0);
6 // Allocate memory on GPU (device) 0
7 cudaMalloc ((void **) &m_A0 , size);
8 cudaMalloc ((void **) &m_B0 , size);
9

10 // Set the active device to GPU 1
11 cudaSetDevice (1);
12 // Allocate memory on GPU (device) 1
13 cudaMalloc ((void **) &m_A1 , size);
14 cudaMalloc ((void **) &m_B1 , size);
15

16 // Memory initialization on the host (CPU) and memory
transfers

17

18 // Set the device for kernel execution
19 cudaSetDevice (0);
20 // Launch kernel on GPU 0
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21 vecAdd <<<gridDim , blockDim >>>(m_A0 , m_B0);
22

23 // Set the device for kernel execution
24 cudaSetDevice (1);
25 // Launch kernel on GPU 1
26 vecAdd <<<gridDim , blockDim >>>(m_A1 , m_B1);
27

28 // Free memory on GPU 0 and GPU 1
29 cudaFree(m_A0); cudaFree(m_B0);
30 cudaFree(m_A1); cudaFree(m_B1);

• Row 5. Setting the Active Device: it sets GPU 0 as the active
device. Any subsequent CUDA operations, such as memory allo-
cation or kernel launches, will be directed to GPU 0.

• Rows 7-8. Memory Allocation on GPU 0: memory is allocated
on GPU 0 for two arrays, m_A0 and m_B0, each of size n *
sizeof(float).

• Row 11. Setting the Active Device to GPU 1: it changes the active
device to GPU 1, directing subsequent operations to this device.

• Rows 13-14. Memory Allocation on GPU 1: similar to GPU 0,
memory is allocated on GPU 1 for two arrays, m_A1 and m_B1.

• Row 16. Memory Initialization and Transfers: the comment men-
tions initializing memory on the host and transferring it to the
devices, although the specific code for this is not shown. Typically,
we would use cudaMemcpy() to transfer data from the host to the
device.

• Rows 19-21. Kernel Execution: after setting GPU 0 as the active
device, the vecAdd kernel is launched to perform vector addition
on the arrays m_A0 and m_B0.

• Row 24-26. Kernel Execution on GPU 1: similarly, GPU 1 is set
as the active device, and the vecAdd kernel is launched on m_A1
and m_B1.

• Row 29-30. Freeing Allocated Memory: after the computations are
complete, the allocated memory on both GPUs is freed to avoid
memory leaks.
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T Memory transfers between GPUs

In CUDA, there are several methods for transferring data between GPUs, each
providing a different level of control and ease of use. The three main methods
for transferring memory regions between GPUs are:

• Fully Explicit Transfer. In this method, we explicitly specify both
the source and destination devices for the memory transfer. This
approach gives us full control over the transfer process, but requires more
detailed management of the transfer operation.
How it works:

1. Set the source device using cudaSetDevice().
2. Allocate memory and perform the necessary operations on the source

device.
3. Set the destination device using cudaSetDevice().
4. Allocate memory on the destination device.
5. Use cudaMemcpyPeerAsync() to transfer data asynchronously be-

tween the two devices.

Example 9: Fully Explicit Transfer

1 int srcDevice = 0;
2 int dstDevice = 1;
3 float *d_src , *d_dst;
4 size_t size = n * sizeof(float);
5

6 cudaSetDevice(srcDevice); // Set source device
7 cudaMalloc (&d_src , size); // Allocate memory on source

device
8

9 cudaSetDevice(dstDevice); // Set destination device
10 cudaMalloc (&d_dst , size); // Allocate memory on

destination device
11

12 // Transfer data from source to destination device
13 cudaMemcpyPeerAsync(d_dst , dstDevice , d_src , srcDevice ,

size , stream);

cudaMemcpyPeerAsync() is a CUDA runtime API function used to per-
form asynchronous memory transfers between two devices. This
function is particularly useful in multi-GPU systems, where it allows for
non-blocking data transfers, enabling concurrent execution of other oper-
ations. Function Prototype:

1 cudaError_t cudaMemcpyPeerAsync(
2 void* dst , // Destination pointer
3 int dstDevice , // Destination device ID
4 const void* src , // Source pointer
5 int srcDevice , // Source device ID
6 size_t count , // Size of the memory to be transferred in

bytes
7 cudaStream_t stream // CUDA stream (optional)
8 );
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Parameters:

– dst: pointer to the destination memory on the destination device.

– dstDevice: ID of the destination device.

– src: pointer to the source memory on the source device.

– srcDevice: ID of the source device.

– count: size of the memory to be transferred in bytes.

– stream: CUDA stream in which the transfer should be performed
(optional). If no stream is specified, the default stream is used.

• Partially Explicit Transfer. This method uses unified addressing,
which simplifies the transfer process by allowing us to use a uni-
fied address space. We only need to specify one of the devices explicitly,
while the CUDA runtime handles the rest.

How it works:

1. Check if unified addressing is supported using:

cudaDeviceGetAttribute()

2. Allocate memory on one device (e.g., the source device).

3. Use cudaMemcpy() with the cudaMemcpyDefault flag to transfer data
to the destination device.

Example 10: Fully Explicit Transfer

1 int srcDevice = 0;
2 int dstDevice = 1;
3 float *d_src;
4 size_t size = n * sizeof(float);
5

6 // Check if unified addressing is supported
7 int unifiedAddressing = 0;
8 cudaDeviceGetAttribute (& unifiedAddressing ,

cudaDevAttrUnifiedAddressing , srcDevice);
9

10 if (unifiedAddressing) {
11 cudaSetDevice(srcDevice); // Set source device
12 cudaMalloc (&d_src , size); // Allocate memory on

source device
13

14 // Transfer data to destination device using unified
addressing

15 cudaMemcpy(d_dst , d_src , size , cudaMemcpyDefault);
16 }
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• Implicit Transfer. In this method, the CUDA driver automatically
handles the transfer of memory between devices without explicit
intervention from the programmer. This is the simplest method in
terms of coding effort, as the driver takes care of the details.

How it works:

– The CUDA driver internally manages memory transfers between
GPUs. This typically involves:

1. Allocate memory (unified memory) on the source device using
cudaMallocManaged(). This memory is accessible to all GPUs
and the host, allowing CUDA to implicitly handle data transfers.

2. Using unified memory or other mechanisms to handle the data
transfer transparently. In other words, access the managed mem-
ory from any GPU by setting the active device and performing
operations on it. CUDA internally manages the data transfer to
ensure the memory is available on the device that needs it.

1 cudaSetDevice (0); // Set device 0 and use the memory
2 kernel <<<gridDim , blockDim >>>(d_managed);
3

4 cudaSetDevice (1); // Set device 1 and use the memory
5 kernel <<<gridDim , blockDim >>>(d_managed);

Example 11: Fully Explicit Transfer

1 float *d_managed;
2 size_t size = n * sizeof(float);
3

4 // Allocate managed memory accessible by both devices
5 cudaMallocManaged (&d_managed , size);
6

7 // Now d_managed can be accessed by any device as needed
8 cudaSetDevice (0); // Set device 0 and use the memory
9 kernel <<<gridDim , blockDim >>>(d_managed);

10

11 cudaSetDevice (1); // Set device 1 and use the memory
12 kernel <<<gridDim , blockDim >>>(d_managed);
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® Communication Channels

There are two main types of communication channels connecting GPUs together:

• Standard PCIe 3.0 Link

– Speed: 32 GB/s

– Description: PCIe (Peripheral Component Interconnect Express)
is a standard communication interface used to connect GPUs to the
CPU and other peripherals. While widely used, PCIe 3.0 has lim-
itations in terms of bandwidth, which can impact performance in
data-intensive applications.

• NVLink

– Speed: 300 GB/s (on the Tesla V100)

– Description: NVLink is a high-speed interconnect technology de-
veloped by NVIDIA. It provides significantly higher bandwidth com-
pared to PCIe, allowing for faster data transfer between GPUs. This
can greatly improve performance in applications that require rapid
communication and data exchange between multiple GPUs.
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7.8.4 Batch Processing and Cooperative Patterns with OpenMP

In this section, we show how to implement batch processing and cooperative
patterns using OpenMP.

[ Batch Processing OpenMP

The code snippet shows how to manage multiple GPU devices using OpenMP.
The process includes:

1 #include <cuda_runtime.h>
2 #include <omp.h>
3 #include <vector >
4

5 __global__ void kernel(float* data , int size) {
6 // Kernel code here
7 }
8

9 int main() {
10 int deviceCount;
11 cudaGetDeviceCount (& deviceCount);
12 std::vector <cudaStream_t > streams(deviceCount);
13

14 // Initialize devices and streams in parallel
15 #pragma omp parallel for num_threads(deviceCount)
16 for(int dev = 0; dev < deviceCount; ++dev) {
17 cudaSetDevice(dev);
18 cudaStreamCreate (& streams[dev]);
19 // Allocate memory and initialize data
20 }
21

22 // Launch kernels in parallel
23 #pragma omp parallel for num_threads(deviceCount)
24 for(int dev = 0; dev < deviceCount; ++dev) {
25 cudaSetDevice(dev);
26 kernel <<<gridDim , blockDim , 0, streams[dev]>>>(/* arguments

*/);
27 }
28

29 // Synchronize streams and clean up
30 #pragma omp parallel for num_threads(deviceCount)
31 for(int dev = 0; dev < deviceCount; ++dev) {
32 cudaSetDevice(dev);
33 cudaStreamSynchronize(streams[dev]);
34 cudaStreamDestroy(streams[dev]);
35 // Free allocated memory
36 }
37

38 return 0;
39 }

1. Rows 10-12. Getting the Device Count. This part of the code re-
trieves the number of CUDA-capable devices (GPUs) in the system using
cudaGetDeviceCount(). It then creates a vector of CUDA streams, with
each stream corresponding to a GPU.

2. Rows 15-20. Allocating Memory and Initializing Streams. This
OpenMP parallel for loop iterates over the number of devices. For each
device, it sets the current device using cudaSetDevice(), creates a CUDA
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stream using cudaStreamCreate(), and then allocates memory and ini-
tializes it. By using num_threads(deviceCount), the loop is parallelized
to run on multiple threads, each handling a different GPU.

3. Rows 23-27. Launching Kernels. This OpenMP parallel for loop is
similar to the previous one. It sets the current device and launches a kernel
on each GPU using the corresponding CUDA stream. The function:

kernel«<gridDim, blockDim, streams[dev]»>(...)

Specifies the grid and block dimensions, along with the stream to be used
for the kernel execution.

Here, the OpenMP code creates some tasks associated with CUDA streams.

[ Cooperative Patterns OpenMP

The following enumeration extends the concept of cooperative patterns using
OpenMP. The code snippet shows how to synchronize CUDA streams using
OpenMP:

1. Initialization of Streams:

1 std::vector <cudaStream_t > streams;
2 // Initialization of the streams on each device
3 // ...

2. Launching Kernels:

1 #pragma omp parallel
2 {
3 // Launch the different kernels on the streams.
4 }

3. Synchronizing Streams:

1 #pragma omp for num_threads(streams.size())
2 for(auto& stream : streams)
3 cudaStreamSynchronize(stream);

4. Barrier Synchronization:

1 #pragma omp barrier

Instead of creating each task independently, OpenMP creates streams but waits
for each to finish using a barrier.
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7.8.5 OpenMP for heterogeneous architectures

Recent versions of OpenMP support parallel execution on heterogeneous archi-
tectures, including:

• Host CPU: the main processor of the system.

• Attached Accelerators: additional hardware such as GPUs, FPGAs,
DSPs, etc. Useful for handling specific tasks to increase performance.

In other words, OpenMP allows the same code to run on both the host
(CPU) and the target device (accelerator). This means that different
types of hardware can be used together to perform parallel computation more
effectively.

To offload the execution of code to an accelerator device, such as a GPU, we
use the target directive in OpenMP. Doc. [

OpenMP: pragma omp target

1 #pragma omp target

• Offloading Execution. The code within the region is executed on
the accelerator device if one is present.

– If no accelerator device is available, the code continues to run on the
host (CPU).

– If there is an if clause that evaluates to false, the code also continues
execution on the host.

• Device Thread Execution. A thread on the target device (e.g.,
GPU) executes the code.

• Synchronous Execution. By default, the host thread blocks (waits)
until the device thread has completed execution. To avoid this
blocking, we can use the nowait clause.

] map clause

OpenMP: map

1 #pragma omp target map(map-type : variables )

The map clause in OpenMP is used to specify how variables are mapped
from the host to the target device (such as a GPU) and back. This is
crucial for ensuring that the data required by the target region is available on
the target device and that any results are brought back to the host. It is used
mainly to:
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• Copying Variables to Device: the variables listed in the map clause
are copied from the host to the target device.

• Copying Variables Back to Host: after the target region execution,
the updated variables can be copied back to the host.

There are several types of map clauses that are used to give information
to the compiler to avoid unnecessary data transfers:

• to clause.

– Syntax: map(to: lst)

– Description: copies variables (list) from the host to the target
device.

– Summary: Host → Target Device

• from clause.

– Syntax: map(from: lst)

– Description: copies variables (list) from the target device to
the host after the target region execution.

– Summary: Host ← Target Device

• tofrom clause.

– Syntax: map(tofrom: lst)

– Description: copies variables from the host to the target de-
vice before the target region and back from the device to
the host after execution.

– Summary: Host ↔ Target Device

The default value is tofrom. Because these operations copy memory from one
device to another, it is important to limit their use. For example, in the
following code:

1 #pragma omp target map(a, b, c, d)
2 {
3 #pragma parallel for
4 for (i = 0; i < N; ++i) {
5 a[i] = b[i] * c + d;
6 }
7 } // End of target

At map-enter, there is a copy of the variables in device memory (expensive).
There is a computation phase where the device memory uses the variables.
Finally, at the map-exit, the device copies the variables to host memory (ex-
pensive).
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Example 12: SAXPY operation

This example demonstrates how to perform a SAXPY operation (Single-
Precision A·X Plus Y) using OpenMP. The SAXPY operation is a basic
linear algebra operation, and here it is implemented to run on a target
device like a GPU.

1 void saxpy() {
2 double a, x[SZ], y[SZ];
3 double t = 0.0;
4 double tb, te;
5 tb = omp_get_wtime ();
6 #pragma omp target map(to:x[0:SZ]) \
7 map(tofrom:y[0:SZ])
8 for (int i = 0; i < SZ; i++) {
9 y[i] = a * x[i] + y[i];

10 }
11 te = omp_get_wtime ();
12 t = te - tb;
13 printf("Time of kernel: %lf\n", t);
14 }

• Variables Initialization.

– a, x[SZ] and y[SZ] are the main variables involved in the
SAXPY operation.

– t, tb, and te are used for timing the operation.

• Timing the Operation.

– tb = omp_get_wtime(); records the start time before the
computation begins.

– te = omp_get_wtime(); records the end time after the com-
putation.

• OpenMP Target Directive.

– map(to:x[0:SZ]): copies the array x from the host to the
target device.

– map(tofrom:y[0:SZ]): copies the array y to the target device
and copies it back to the host after execution.

• SAXPY Operation. The for loop performs the SAXPY computa-
tion on the target device.

• Printing the Time. Finally, calculates the elapsed time for the
kernel execution and prints the time.
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7.8.6 MPI-CUDA applications

® What is MPI?

MPI stands for Message Passing Interface. It is a standardized and portable
message-passing system designed to function on a wide variety of parallel com-
puting architectures.

• Process Communication: MPI allows multiple processes to com-
municate with each other by sending and receiving messages.
This is essential for coordinating tasks in parallel computing environments.

• Distributed Computing: MPI is commonly used in distributed
computing, where processes run on different nodes (computers) in a net-
work and need to work together on a common task.

• Parallel Execution: Each process in an MPI program runs inde-
pendently and can perform computations on different parts of the data,
leading to efficient parallel execution.

• Scalability: MPI can scale from a few processes on a single computer
to thousands of processes on a supercomputer.

In the real-world scenario, it is common to use MPI and CUDA together to
solve a computational problem, specifically focusing on wave propagation and
heat transfer.

On the next page we see the Wave Propagation Stencil. It is a computational
pattern to solve wave propagation problems, such as those found in seismic
imaging or heat transfer simulations. It involves calculating the value of a point
in a grid based on the values of its neighbors, typically using finite difference
methods.

The calculation involves a weighted sum of values from neighboring points in
the volume, which is typical in numerical simulations of physical processes such
as heat transfer. The volume is divided into subdomains (D1, D2, D3, D4) to
parallelize the computation. Domain decomposition is a technique that divides
the computational domain (the volume) into smaller parts that can be pro-
cessed simultaneously by different processors or GPUs. This approach increases
computational efficiency by distributing the workload across multiple processing
units.

® How is the workload shared between MPI and CUDA?

• MPI is used for communication between different processes handling differ-
ent subdomains. It processes exchange boundary data to ensure continuity
and accuracy of the simulation.

• CUDA is used for performing the calculations on each subdomain. Each
GPU handles the computations for its assigned subdomain, performing
the weighted sum calculations at each time step.
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{ Implementation

• Main program: initialize communication, execute process, finalize com-
munication.

1 MPI_Init (&argc , &argv);
2 MPI_Comm_rank(MPI_COMM_WORLD , &pid);
3 MPI_Comm_size(MPI_COMM_WORLD , &np);
4

5 if(np < 3) {
6 if(0 == pid)
7 printf("Needed 3 or more processes .\n");
8 MPI_Abort(MPI_COMM_WORLD , 1);
9 return 1;

10 }
11

12 if(pid < np - 1)
13 compute_node(dimx , dimy , dimz / (np - 1), nreps);
14 else
15 data_server(dimx , dimy , dimz , nreps);
16

17 MPI_Finalize ();

The program starts by initializing MPI, getting the rank of the process
(its ID), and the total number of processes.

– Initializes the MPI environment.

– Gets the rank (ID) of the calling process.

– Gets the number of processes.

So it checks if there are at least 3 processes. If not, it prints an error mes-
sage and aborts. Furthermore, the program decides based on the process
ID (pid) whether the process will be a compute node or a data server.
Finally, the program closes the MPI environment.

• Server process: partition and distribute data.

1 /* Find number of MPI processes */
2 /* Allocate input data */
3 /* Initialize input data */
4 /* Calculate number of points per compute process */
5 for (int process = 1; process <= last_node; process ++) {
6 MPI_Send(send_address , int_num_points , MPI_FLOAT , process ,

DATA_DISTRIBUTE , MPI_COMM_WORLD);
7 send_address += dimx * dimy * (dimz / num_comp_nodes);
8 }
9

10 /* Wait for nodes to compute */
11 MPI_Barrier(MPI_COMM_WORLD);
12

13 /* Collect output data */
14 MPI_Status status;
15 for (int process = 0; process < num_comp_nodes; process ++) {
16 MPI_Recv(output + process * num_points / num_comp_nodes ,

num_points / num_comp_nodes , MPI_FLOAT , process ,
DATA_COLLECT , MPI_COMM_WORLD , &status);

17 }
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The server process first initializes MPI and determines the total number
of MPI processes and the number of compute nodes. It also allocates and
initializes the input data and calculates the number of points per compute
process.

After that, the server process uses a loop to send data to each compute
node.

It calls MPI_Barrier to synchronize all processes. This ensures that all
compute nodes have completed their calculations before continuing.

Finally, the server process uses another loop to receive the computed re-
sults from each compute node.

• Compute process: receive data and offload computation to the GPU.

1 /* Part 1 */
2

3 /* Alloc host memory */
4 float *h_input = (float *) malloc(num_bytes);
5 /* Alloc device memory for input and output data */
6 float *d_input = NULL;
7 cudaMalloc ((void **)&d_input , num_bytes);
8 /* Receive data and move it to device memory */
9 float *rcv_address = h_input + num_halo_points * (0 == pid);

10 MPI_Recv(rcv_address , num_points , MPI_FLOAT , server_process ,
11 MPI_ANY_TAG , MPI_COMM_WORLD , &status);
12 cudaMemcpy(d_input , h_input , num_bytes , cudaMemcpyHostToDevice

);
13

14 /* Part 2 */
15 void launch_kernel(float *next , float *in , float *prev , float

*velocity , int dimx , int dimy , int dimz)
16 {
17 dim3 Gd, Bd, Vd;
18

19 Vd.x = dimx; Vd.y = dimy; Vd.z = dimz;
20

21 Bd.x = BLOCK_DIM_X; Bd.y = BLOCK_DIM_Y; Bd.z = BLOCK_DIM_Z
;

22

23 Gd.x = (dimx + Bd.x - 1) / Bd.x;
24 Gd.y = (dimy + Bd.y - 1) / Bd.y;
25 Gd.z = (dimz + Bd.z - 1) / Bd.z;
26

27 wave_propagation <<<Gd, Bd >>>(next , in, prev , velocity , Vd)
;

28 }
29

30 /* Part 3 */
31 MPI_Status status;
32 int left_neighbor = (pid > 0) ? (pid - 1) : MPI_PROC_NULL;
33 int right_neighbor = (pid < np - 2) ? (pid + 1) :

MPI_PROC_NULL;
34

35 /* Upload stencil coefficients */
36 /* Calculate offsets */
37

38 MPI_Barrier( MPI_COMM_WORLD );
39 /* Compute boundary values needed by other nodes first */
40 launch_kernel(d_output + left_stage1_offset , d_input +

left_stage1_offset , dimx , dimy , 1/2, stream0);
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41 launch_kernel(d_output + right_stage1_offset , d_input +
right_stage1_offset , dimx , dimy , 1/2, stream0);

42 /* Compute the remaining points */
43 launch_kernel(d_output + stage2_offset , d_input +

stage2_offset , dimx , dimy , dimz , stream1);
44 /* Copy the data needed by other nodes to the host */
45 cudaMemcpyAsync(h_left_boundary , d_output + num_halo_points ,

num_halo_bytes , cudaMemcpyDeviceToHost , stream0);
46 cudaMemcpyAsync(h_right_boundary , d_output +

right_stage1_offset + num_halo_points , num_halo_bytes ,
cudaMemcpyDeviceToHost , stream0);

47 cudaStreamSynchronize(stream0);
48

1. Part 1: Receiving Data and Allocating Memory. This part shows
how the compute process receives data and prepares for computation
on the GPU.

2. Part 2: Launching the Kernel. This part shows how to set up and
launch a CUDA kernel for computation.

3. Part 3: Managing Neighbors and Synchronizing Streams. This part
shows how to handle boundary conditions and synchronize computa-
tions.

219



8 Memory Consistency

8 Memory Consistency

8.1 Coherence vs Consistency
® Why Memory Consistency?

Memory consistency models are fundamental to parallel computing because they
define the rules that govern the visibility and ordering of memory operations
across multiple threads. Unlike sequential computing, where the order of op-
erations is straightforward, parallel computing introduces complexity due to
concurrent execution. This concurrency can lead to race conditions, making it
difficult to determine the “latest” value of a shared memory location.

® Why Memory Models are Fundamental to Parallel Computing

In an ideal scenario, loads (reads) should return the most recent value written
to a memory location. However, defining and achieving this “most recent” value
in a parallel environment is complicated because multiple threads may
be interacting with the same memory at the same time. This is where
memory consistency models play a critical role.

When we talk about memory, there are two fundamental concepts to explore:
coherence and consistency.

• Memory Coherence ensures that all processors see a consistent view of
a single memory location.

It defines the requirements for the observed behavior of reads
and writes to the same memory location:

– All processors must agree on the order of reads/writes to
a single memory location (X). This means that if one proces-
sor writes a value to a memory location, all other processors should
eventually see that value.

– A timeline of operations involving the same memory loca-
tion. It is possible to create a timeline such that the observations
of all processors are consistent with that timeline. This ensures that
each processor sees the most recent write to a memory location in
the correct order.

• Memory Consistency extends this concept to the entire memory, en-
suring an apparent ordering of operations, which dictates how memory
operations performed by one thread become visible to other threads.

It defines the behavior of reads/writes to different memory lo-
cations:

– Coherence guarantees eventual propagation. Coherence en-
sures that writes to a single memory location (X) will eventually
propagate to other processors.

– Consistency deals with the timing of propagation. Consis-
tency addresses when writes to one memory location (X) propagate
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to other processors relative to reads and writes to other memory lo-
cations. This means that consistency ensures a predictable order for
operations across multiple memory locations, considering their inter-
actions.

Example 1: Chronology of Operations

Imagine the following chronology of operations on a memory address (X):

t = 1. Write. P0 5−−→ X

t = 2. Read. P1 5←−− X

t = 3. Write. P2 10−−→ X

t = 4. Write. P2 11−−→ X

t = 5. Read. P1 11←−− X

This example demonstrates how:

• Memory coherence ensures that all processors eventually agree
on the order of operations for the same memory location.

• Memory consistency ensures a predictable interaction be-
tween operations on different memory locations.

® What happens if there is a cache system?

Modern parallel computing systems rely heavily on caches to improve perfor-
mance. Therefore, ensuring that all caches maintain a consistent view
of memory (cache coherence) becomes critical to the proper operation
of the system. While memory coherence is about maintaining a consistent
view of memory, cache coherence is about implementing this consistency in sys-
tems where each processor has its own local cache. So here we define again the
concepts of consistency and coherence in the cache environment.

• Cache Coherence. This is a more specific implementation of memory
coherence. In general, caches are used to store copies of frequently accessed
data to speed up processing. However, when multiple processors modify
their cached copies of the same memory location, inconsistencies can occur.

Therefore, the main goal is to ensure that the memory system in a parallel
computer behaves as if the caches were not there. This is similar to how
a memory system in a uni-processor system behaves as if the cache were
not there.

In a system without caches, there would be no need for cache coherence.
Cache coherence ensures that all processors see a consistent view
of memory, even though each processor may have a local cache.
This means that any changes made to a memory location by one processor
will eventually be reflected in the caches of the other processors.
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• Memory Consistency (in the cache environment). Defines the allowed
behavior of loads (reads) and stores (writes) to different addresses in a
parallel system. This behavior should be specified whether or not caches
are present. A memory consistency model specifies the rules for the order
in which memory operations (loads and stores) become visible to other
threads. It ensures that all processors in the system observe memory
operations in a predictable and coherent manner, regardless of the presence
of caches.

In other words, it is the same definition presented on the previous page,
but we emphasize that model should also work with the cache.
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8.2 Definition
After a brief discussion of the difference between coherence and consistency
terms, and why it is important to understand these concepts, here we present
a deeper view of memory consistency. This is because consistency deals with
the broader and more complex issue of how all memory operations (across all
memory locations) are ordered and observed in a parallel system. It is also
necessary to understand the high-level rules that govern the interactions between
processors and memory in a multiprocessor environment.

Definition 1: Memory Consistency

Memory Consistency models define how memory operations
(loads and stores) performed by different processors are ordered
and become visible to one another in a multiprocessor system.

® Why the order decided by the memory consistency model is
important

One main reason:

• Performance. In multiprocessor systems, memory operations can be
reordered to optimize performance. Unfortunately, this reordering can
result in behavior that seems counterintuitive or unusual from
the perspective of a programmer who expects sequential execution.
However, it allows optimizations such as overlapping memory accesses
with computations and reducing memory access latency.

Most application programmers don’t have to deal directly with the effects of
memory reordering, because higher-level constructs and synchronization mech-
anisms handle them. However, understanding memory consistency is critical to
writing correct and efficient parallel programs. Developers of system software,
such as operating systems and compilers, must deal with these issues to ensure
that their low-level code conforms to the hardware’s memory consistency model
and maintains the correct order of memory operations.
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� Memory Operation Ordering

A program defines a sequence of loads and saves. There are four types of
memory operation sequences:

1. WX → RY : Write to X must commit before a subsequent read
from Y .

This means that if a write to memory location X occurs before a read
from another memory location Y in the program order, the write must be
complete and visible before the read.

2. RX → RY : Read from X must commit before a subsequent read
from Y .

This order ensures that if a read from X occurs before a read from Y
in the program, the first read must be completed before the second read
occurs.

3. RX →WY : Read from X must commit before a subsequent write
to Y .

This means that if a read from X occurs before a write to Y in the program
order, the read must be completed before the write is performed.

4. WX → WY : Write to X must commit before a subsequent write
to Y .

This ordering ensures that if a write to X happens before a write to Y in
the program, the first write must be completed before the second write is
performed.

The word “subsequent” means that each left operation must be completed and
its result visible before the right operation can occur.
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8.3 Sequential Consistency Model
[ Sequential Consistency Model

Sequential Consistency is a memory consistency model concept introduced
by Lamport in 1976, which ensures that all operations in a multi-threaded
system are executed in some sequential order, as if they were manipu-
lating a single shared memory. This means that each thread’s operations
occur in program order, maintaining the illusion of a single, consistent
timeline of memory operations. In other words, a sequentially consistent
memory system maintains all four orders of memory operations (the order of
operations seen in the enumerated list on page 224).

Sequential Consistency is the strongest model, because it requires all memory
operations to appear as if they are executed in a strict sequential order. The
degree of reordering of memory operations determines the strength of a model’s
weakness.

[ Relaxing Memory Method

Relaxed Memory method allows certain memory operation orders to
be violated to improve performance. It primarily aim to improve perfor-
mance by hiding memory latency. By allowing some flexibility in the order
of memory operations, these models enable systems to execute instructions more
efficiently. So operations like “Write X then Read Y” can be done out of order
if they are independent.

. Problems with Sequential Consistency Model

There are four main problems associated with the sequential consistency
model in parallel computing systems:

• Performance Overhead. Requires all operations to appear in a
strict sequential order.
Can introduce significant performance overhead due to the necessity of
maintaining order, especially when memory writes take a long time (hun-
dreds of cycles).

• Instruction Dependency. Requires waiting for earlier instruc-
tions to finish, even if they don’t conflict.
Limits the ability of the system to execute independent instructions in
parallel.

• Latency Issues. Memory operations, especially writes, can have
high latency.
Delays in writing data mean that processors must wait before executing
subsequent instructions, leading to inefficiencies.

• Limited Parallelism. Limits the potential for parallel execution
of independent instructions.
Reduces the system’s ability to effectively use parallelism, which affects
overall performance.
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¥ Fix Sequential Consistency Model

The Write Buffer method is a technique used in multiprocessor systems to en-
hance performance and reduce latency. It involves temporarily storing write
operations in a buffer before propagating them to the main memory.
This allows processors to continue executing subsequent instructions
without waiting for the write to complete.

The write buffer method helps in maintaining sequential consistency while re-
ducing the performance overhead and latency issues. By buffering writes
and allowing processors to read from their own write buffers, this method en-
hances the efficiency and parallelism of the system.

Note: The write buffer is only a technique. The model that will use this
feature will be present in the following pages.

® How does Write Buffer work?

• Structure. Each processor has its own write buffer.

• Buffered Writes. When a processor writes to a memory location, the
write is placed in the processor’s write buffer instead of being im-
mediately propagated to the shared memory.

• Read from Buffer. When the processor reads a memory location, it
first checks its write buffer before accessing the shared memory.

Example 2: Write Buffer method

Initial Setup

Processor 0 and Processor 1 both interact with shared memory. They
initialize A = 0 and B = 0.

Instructions

• Processor 0 executes:

1. A = 1

2. r1 = B

• Processor 1 executes:

1. B = 1

2. r2 = A

Question

Can r1 and r2 both be 0 after executing these instructions?
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Answer

• Sequential Consistency. Under sequential consistency, all oper-
ations must appear to be executed in a strict sequential order. r1
cannot be 0 if Processor 1 has written B = 1. Similarly, r2 cannot
be 0 if Processor 0 has written A = 1.

Therefore, no, r1 and r2 cannot both be 0, because the write from
one processor should be visible to the read from the other processor.

• With Write Buffers. Each processor temporarily stores its write
operations in its own write buffer before committing them to main
memory.

– Processor 0:

1. Writes A = 1 to its write buffer.
2. Reads B from the main memory (which is still 0 because

Processor 1’s write is buffered).

– Processor 1:

1. Writes B = 1 to its write buffer.
2. Reads A from the main memory (which is still 0 because

Processor 0’s write is buffered).

The result is that r1 and r2 can both be 0 because each processor
reads from main memory before the other’s buffered write is com-
mitted. So yes, with the buffered write technique, r1 and r2 can
both be 0.

Summary

This example shows how write buffers allow processors to perform and
cache writes independently, resulting in scenarios where reads may not
immediately reflect recent writes from other processors. This can opti-
mize performance by reducing write latency, but introduces complexity
in ensuring memory consistency.
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T Performance: Sequential Consistency vs. Write Buffer

The Figure 38 shows three different benchmarks that were run to compare the
Sequential Consistency and Write Buffer models. The benchmarks executed
are: MP3D (Matterport 3D), LU (Master Lu), PTHOR.

Figure 38: Write Buffer Performance.

• MP3D:

– Base (Sequential Consistency): 100 (normalized execution time)

– W-R (Write Buffer): 71 (normalized execution time)

– Performance Improvement: 29% reduction in execution time.

• LU:

– Base (Sequential Consistency): 100 (normalized execution time)

– W-R (Write Buffer): 95 (normalized execution time)

– Performance Improvement: 5% reduction in execution time.

• PTHOR:

– Base (Sequential Consistency): 100 (normalized execution time)

– W-R (Write Buffer): 80 (normalized execution time)

– Performance Improvement: 20% reduction in execution time.

These results indicate that the write buffer method can significantly improve
performance in multiprocessor systems, especially in scenarios where write la-
tency is a critical factor.
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8.4 Memory Models with Relaxed Ordering
The following models are grouped based on the types of memory opera-
tion reordering they allow. Each model applies the relaxing memory models,
so they allow certain memory operation orders to be violated to improve per-
formance.

Before introducing each memory model, we will talk about problems and possi-
ble solutions for memory models with relaxed order.

. Problems with Memory Reordering

Reordering of memory operations can lead to inconsistencies and unpre-
dictable behavior in multiprocessor systems.

¥ Solutions: Synchronization Primitives

✓ Memory Fence Instructions (Barriers): Prevent reorderings by
ensuring that all memory operations before the fence complete
before any new operations begin.

Fence instructions can be costly in terms of performance but are essential
for maintaining order and consistency.

✓ Read-Modify-Write: Ensures atomic read and write operations to a
memory location.

✓ Compare-and-Swap: Atomically compares a memory location’s value
and swaps it if it matches a specified value.

✓ Transactional Memory: Allows a group of memory operations to be
executed atomically.
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8.4.1 Allowing Reads to Move Ahead of Writes

® Which memory operation is relaxed?

Given the four memory operation sequences (see detailed explanation on page
224), the relaxed operations are marked as cancel:

✓ Relaxed (((((
WX → RY : Write to X must commit before a subsequent

read from Y .

This means that if a write to memory location X occurs before a read
from another memory location Y in the program order, the write must be
complete and visible before the read.

p RX → RY : Read from X must commit before a subsequent read from Y .

p RX →WY : Read from X must commit before a subsequent write to Y .

p WX →WY : Write to X must commit before a subsequent write to Y .
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[ Models

• Total Store Ordering (TSO)

{ How does it work?

It allows a processor to read a variable (e.g., B) before its write to another
variable (e.g., A) is visible to all processors (�����WA → RB).
This enables the processor to hide the latency of write operations by al-
lowing reads to proceed independently.

. Implications

Other processors cannot see the new value of A (the value written to
register A) until the write to A is observed by all processors.
Only WA → RB order is relaxed, while WA → WB constraints still exist,
meaning writes by the same thread occur in program order. Other pro-
cessors see these writes in the correct order, but there might be a delay
before the writes are visible due to buffering.

• Processor Consistency (PC)

{ How does it work?

Similar to TSO, but with slightly more flexibility.
Any processor can read the new value of A before the write is observed
by all processors, allowing reads to be even more independent of
writes.

. Implications

Like TSO, only WA → RB order is relaxed, and WA → WB constraints
remain, ensuring that writes by the same thread occur in program order.

8 Main differences between TSO and PC

1. Read Flexibility

• TSO: Reads by a processor can move ahead of its own writes.
• PC: Reads by any processor can observe new values of writes before

they are globally visible , allowing even more flexibility.

2. Write Order

• Both Models: Maintain the order of writes within the same pro-
cessor, ensuring that WA →WB order is preserved.

3. Performance vs. Complexity

• TSO: Strikes a balance between performance and simplicity
by allowing limited reordering of reads and writes.

• PC: Offers greater flexibility in read operations, potentially im-
proving performance but at the cost of slightly increased com-
plexity .
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8.4.2 Allowing writes to be reordered

® Which memory operation is relaxed?

Given the four memory operation sequences (see detailed explanation on page
224), the relaxed operations are marked as cancel:

✓ Relaxed (((((
WX → RY : Write to X must commit before a subsequent

read from Y .

This means that if a write to memory location X occurs before a read
from another memory location Y in the program order, the write must be
complete and visible before the read.

p RX → RY : Read from X must commit before a subsequent read from Y .

p RX →WY : Read from X must commit before a subsequent write to Y .

✓ Relaxed ((((((
WX →WY : Write to X must commit before a subsequent

write to Y .

This ordering ensures that if a write to X happens before a write to Y in
the program, the first write must be completed before the second write is
performed.

[ Models

• Partial Store Ordering (PSO)

{ How does it work?

PSO allows more aggressive reordering of write operations compared
to TSO (page 231) and PC (page 231).

. Implications

– Thread 1 on Processor 1 (P1)

1 A = 1;
2 flag = 1;

– Thread 2 on Processor 2 (P2)

1 while (flag == 0);
2 print A;

P2 may observe the change to flag before the change to A. This shows
that PSO allows writes to A and flag to be reordered, improving write
performance but potentially complicating program reasoning.
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¥ Benefits

– WX → WY . Write Buffering: Processors can reorder write
operations in a write buffer. For example, one write might be
a cache miss while another is a cache hit, and reordering them can
optimize performance.

– RX → RY , RX → WY . Instruction Reordering: Processors
can reorder independent read and write instructions within
the instruction stream, leveraging out-of-order execution to max-
imize efficiency.

These reorderings and optimizations are particularly effective in single
instruction streams, where dependencies between instructions are well
understood and managed.
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8.4.3 Allowing all reorderings

® Which memory operation is relaxed?

Given the four memory operation sequences (see detailed explanation on page
224), the relaxed operations are marked as cancel:

✓ Relaxed (((((
WX → RY : Write to X must commit before a subsequent

read from Y .

This means that if a write to memory location X occurs before a read
from another memory location Y in the program order, the write must be
complete and visible before the read.

✓ Relaxed (((((RX → RY : Read from X must commit before a subse-
quent read from Y .

This order ensures that if a read from X occurs before a read from Y
in the program, the first read must be completed before the second read
occurs.

✓ Relaxed (((((
RX →WY : Read from X must commit before a subse-

quent write to Y .

This means that if a read from X occurs before a write to Y in the program
order, the read must be completed before the write is performed.

✓ Relaxed ((((((
WX →WY : Write to X must commit before a subsequent

write to Y .

This ordering ensures that if a write to X happens before a write to Y in
the program, the first write must be completed before the second write is
performed.

[ Models

• Weak Ordering (WO)

{ How does it work?

Operations are divided into critical and non-critical sections. Reordering
is allowed outside of critical sections to maximize performance.

Example: Can reorder any non-critical operations to enhance efficiency,
executing them independently.

• Release Consistency (RC)

{ How does it work?

Divides operations into acquire and release categories, allowing extensive
reordering within these categories.

Example: Reorders operations within acquire or release phases, enabling
significant performance gains.
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In these models, there are no strict guarantees about the order of oper-
ations on data. Essentially, everything can be reordered.

® Why allow all reorders?

By overlapping multiple reads and writes, the system can execute reads as
early as possible and delay writes as late as possible, effectively hiding
memory latency and increasing performance.
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8.5 Languages Need Memory Models Too
Memory models are critical not only for hardware systems, but also for program-
ming languages. They provide a framework that defines how memory operations
(reads and writes) can be ordered and observed by multiple threads. This chap-
ter discusses the importance of memory models in programming languages and
how they help maintain consistency and predictability in multi-threaded pro-
grams.

{ Compiler Optimizations

• Invisible Optimizations. Compilers can optimize code in ways that are
not directly visible to the programmer, such as reordering instructions to
enhance performance.

Example 3: optimization not visible to programmer

Code written by the programmer:

1 X = 0
2 for i = 0 to 100:
3 X = 1
4 print X

Code optimized by the compiler:

1 X = 1
2 for i = 0 to 100:
3 print X

These optimizations can lead to unexpected behaviors in multi-
threaded programs if not properly managed.

• Visible Optimizations. When optimizations are visible to the program-
mer, it becomes essential to understand how these changes affect the exe-
cution order and consistency of memory operations.

Example 4: optimization is visible to programmer

Code written by the programmer:

– Thread 1

1 X = 0
2 for i = 0 to 100:
3 X = 1
4 print X

– Thread 2

1 X = 0

– Expected result: 111111111...

– Result obtained: 111110111...
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Code optimized by the compiler:

– Thread 1

1 X = 1
2 for i = 0 to 100:
3 print X

– Thread 2

1 X = 0

– Expected result: 111111111...

– Result obtained: 111110000...

[ Need for Language-Level Memory Models

• Contract to Programmers. Memory models provide a contract to
programmers, ensuring that memory operations will be reordered
by the compiler in a way that maintains consistency. For example,
there should be no reordering of shared memory operations that could lead
to race conditions.

• Guarantees. Modern languages like C11, C++11, and Java 5 guaran-
tee sequential consistency for data-race-free programs, meaning that the
program’s behavior will be predictable if there are no data races.

. Importance of Synchronization

• Data Races. Without proper synchronization, data races can oc-
cur, leading to non-deterministic and buggy behavior. Programs
with data races do not have any guarantees and can produce unpredictable
results.

• Synchronization Libraries. Using synchronization primitives like locks,
barriers, and memory fences ensures that memory operations are executed
in the correct order, preventing data races and maintaining program cor-
rectness.

� Summary

Memory models at the language level are essential for maintaining consistency
and predictability in multi-threaded programs. They help manage compiler
optimizations and provide a framework for programmers to ensure that their
code behaves correctly, even when memory operations are reordered.
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8.6 Implementing Locks
8.6.1 Introduction

Locks are essential in concurrent programming for managing access to shared
resources and preventing data races. A common mistake in implementing locks
is using a simple Load-Test-Store lock sequence, which can lead to severe issues
such as data races due to its non-atomic nature.

. Simple but Incorrect Lock Implementation: Load-Test-Store lock

The idea behind the Load-Test-Store lock is to check if the lock is avail-
able (i.e., not held by any other processor) and then acquire it by setting
it. This process involves loading the current value of the lock, checking its state,
and storing a new value if it’s free. Here’s the pseudo-code for the implementa-
tion:

1 lock:
2 // Load the value at address into register R0
3 ld R0, mem[addr]
4

5 // Compare the value in R0 to 0
6 cmp R0, #0
7

8 // If R0 is not zero , jump back to ’lock ’ (retry)
9 bnz lock

10

11 // Store 1 at the address to indicate the lock is acquired
12 st mem[addr], #1
13

14 unlock:
15 // Store 0 at the address to release the lock
16 st mem[addr], #0

In this implementation, a processor repeatedly loads and checks a memory ad-
dress, acquiring the lock by storing a value to indicate it is locked. However,
this sequence is not atomic, leading to a potential data race:

• Processor 0 (P0) attempts to acquire the lock:

– ld R0, mem[addr]: P0 loads the value from memory address addr
into register R0. Suppose the value is 0 (lock is free).

– cmp R0, #0: P0 compares R0 with 0. Since R0 is 0, the comparison
is true.

– st mem[addr], #1: P0 stores 1 at mem[addr], indicating it has
acquired the lock.

• Processor 1 (P1) attempts to acquire the lock simultaneously:

– ld R1, mem[addr]: P1 loads the value from memory address addr
into register R1. Suppose the value is still 0 (before P0 updates the
lock).

– cmp R1, #0: P1 compares R1 with 0. Since R1 is 0, the comparison
is true.
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– st mem[addr], #1: P1 stores 1 at mem[addr], indicating it has
acquired the lock.

Both P0 and P1 believe they have acquired the lock because they both observed
the lock as free (0) and updated it to 1. This leads to a data race where two
processors think they have the lock, causing inconsistent states and
potential conflicts in accessing the critical section.

® Why does Load-Test-Store suffer from Data Race?

• Non-Atomic Operations: The sequence of load, compare, and store
operations are not atomic. During this sequence, other processors can
interrupt and perform their own operations, leading to race conditions.

• Lack of Synchronization: There is no mechanism to ensure that the
load-test-store sequence is executed as a single, uninterruptible operation,
which is necessary to prevent data races.

¥ Solution: Advanced Locking Techniques

To address these issues, more sophisticated lock implementations are neces-
sary. The following sections will explore Test-and-Set Based Lock (page 240)
and Test-and-Test-and-Set Lock (page 244), which provide reliable and efficient
synchronization mechanisms to prevent data races and ensure proper access
control.
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8.6.2 Test-and-Set based lock

The Test-and-Set instruction is a fundamental atomic operation used
for synchronization in multiprocessor systems. It checks the value of a
lock variable and sets it to a new value in one uninterruptible action.
The operation ensures that no other processors can modify the lock variable
simultaneously, preventing race conditions.

® How does it work?

It performs two actions in one uninterruptible step:

1. It loads the value from a memory address into a register;

2. Then sets the memory address to a specified value (usually indicating the
lock is acquired).

1 ts R0 , mem[addr] // load mem[addr] into R0
2 // if mem[addr] is 0, set mem[addr] to 1

� Lock Implementation

To implement a lock using the test-and-set instruction, we must repeatedly
attempt to acquire the lock until it is free.

1 lock:
2 ts R0, mem[addr] // Attempt to acquire the lock
3 bnz R0, lock // If the lock was not free (R0 ̸= 0),
4 // retry

• ts R0, mem[addr]: Atomically loads the value at mem[addr] into register
R0 and sets mem[addr] to 1 if it was 0.

• bnz R0, lock: If R0 is non-zero (meaning the lock was already held), it
branches back to the start and retries.

� Unlock Implementation

To release the lock, simply we set the lock variable back to 0.

1 unlock:
2 st mem[addr], #0 // Release the lock by storing 0

• st mem[addr], #0: Stores 0 at the memory address addr, indicating the
lock is now free.
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. Coherence Protocol

Using test-and-set based locking is fundamental to maintaining consistency
across multiple processor caches by ensuring that all processors have
the same view of the lock variable. So it involves invalidating and updating
cache lines across processors as the lock state changes.

• Processor 1 (P1):

– Acquiring Lock:

∗ BusRdX Request: P1 sends a Bus Read Exclusive (BusRdX)
request to acquire the lock.

∗ Cache Update: P1 sets the lock value to 1 in its cache, indi-
cating the lock is held.

∗ Invalidation: Other processors’ caches are invalidated for the
lock variable.

– Releasing Lock:

∗ BusRdX Request: P1 sends another BusRdX request to release
the lock.

∗ Cache Update: P1 sets the lock value to 0 in its cache, indi-
cating the lock is free.

∗ Invalidation: Other processors’ caches are invalidated for the
lock variable.
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• Processor 2 (P2) and Processor 3 (P3):

– Attempting to Acquire Lock:

∗ Invalidation: Their cache lines for the lock are initially invali-
dated.

∗ BusRdX Request: Both processors send BusRdX requests to
acquire the lock.

∗ Retry Loop: If the lock is not free, they continuously retry,
causing repeated BusRdX requests.

® Implications of Coherence Traffic

• Contention. High contention occurs when multiple processors
compete for the same lock at the same time.

Each processor continuously attempts to execute the test-and-set instruc-
tion, resulting in repeated BusRdX requests. This competition generates
significant traffic on the memory bus and forces processors to
repeatedly invalidate each other’s cache lines for the lock vari-
able.

The result is a high level of contention that can cause delays and inef-
ficiencies as processors wait for the lock to become available.

• Performance Impact. The frequent BusRdX requests and result-
ing cache invalidations can significantly degrade system perfor-
mance, especially as the number of processors increases.

Each BusRdX request incurs a cost in terms of memory bus usage and
latency. As more processors contend for the lock, the cumulative effect of
these requests becomes more pronounced, leading to:

p Increased Latency: The time taken for processors to acquire and
release the lock increases, slowing down the overall execution of the
program.

p Memory Bus Saturation: The memory bus becomes saturated
with coherence traffic, reducing the available bandwidth for other
memory operations.

p Inefficiency: Processors spend more time waiting and retrying to
acquire the lock, leading to inefficient use of processing resources.
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T Test-and-Set Performance

The following graph plots the performance of the test-and-set lock in terms of
time (in microseconds) versus the number of processors. It specifically measures
the time taken to acquire and release the lock as the number of processors
increases.

• X-Axis: Number of processors (ranging from 0 to 16).

• Y-Axis: Time in microseconds (ranging from 0 to 20).

• Initial Increase: As the number of processors increases from 1 to 4, the
time taken to acquire and release the lock increases significantly.

• Fluctuations: There is a noticeable dip in time around 7 processors,
followed by fluctuations as the number of processors continues to increase.

• Overall Trend: Despite the fluctuations, the general trend shows an
upward increase in time with more processors, indicating higher
contention.

The performance of the test-and-set lock shows that with an increasing num-
ber of processors, the time to acquire and release the lock increases
due to contention and coherence traffic.
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8.6.3 Test-and-Test-and-Set lock

The Test-and-Test-and-Set lock mechanism improves upon the simple Test-
and-Set lock by reducing interconnect traffic and contention. It com-
bines an initial test phase with a subsequent atomic Test-and-Set
operation.

{ Implementation

1 void Lock(int* lock) {
2 while (1) {
3 // Spin -wait until the lock appears free
4 // (assume *lock is NOT register allocated)
5 while (*lock != 0);
6

7 // Try to acquire the lock atomically
8 if (test_and_set (*lock) == 0)
9 return;

10 }
11 }
12

13 void Unlock(int* lock) {
14 *lock = 0; // Release the lock
15 }

• Initial Spin Phase:

– Purpose: Processors continuously check the value of the lock
variable (*lock) in a loop until it becomes 0 (free). This spin-
wait phase helps reduce contention on the interconnect by delaying
the atomic test-and-set operation until the lock appears free.

– Implementation: while (*lock != 0); causes the processor to
repeatedly check the lock value without sending any bus re-
quests.

• Atomic Test-and-Set Operation:

– Purpose: Once the lock appears free, the processor attempts
to acquire it using the atomic test_and_set instruction. This
operation is performed in one uninterruptible step to ensure that only
one processor can acquire the lock at a time.

– Implementation: The line of code if (test_and_set(*lock) ==
0) return; checks if the lock was successfully acquired (i.e.,
the function test_and_set returns 0) and exits the loop if it was.

• Unlock Operation:

– Purpose: To release the lock, the processor sets the lock variable
back to 0, indicating that the lock is free.

– Implementation: *lock = 0; simply sets the lock value to 0.
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. Coherence Traffic

• Processor 1 (P1)

– BusRdX: P1 sends a Bus Read Exclusive (BusRdX) request to acquire
the lock.

– Update Line in Cache: P1 updates its cache line, setting the lock
value to 1, indicating that it has acquired the lock.

– [P1 is holding lock...]: P1 holds the lock and performs its critical
section work.

– BusRdX (Release): P1 sends another BusRdX request when it
releases the lock.

– Update Line in Cache (Release): P1 updates its cache line, set-
ting the lock value to 0, indicating that the lock is now free.

– Invalidate Line: Other processors’ caches are invalidated for the
lock variable.

• Processor 2 (P2)

– Invalidate Line: Initially, P2’s cache line for the lock is invalidated.
– BusRd: P2 reads the lock value.
– [Many Reads from Local Cache]: P2 spins, repeatedly reading

the lock value from its local cache until it becomes free.
– Invalidate Line: When the lock is acquired/released, P2’s cache

line is invalidated again.
– BusRd: P2 reads the updated lock value.
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• Processor 3 (P3)

– Invalidate Line: Initially, P3’s cache line for the lock is invalidated.
– BusRd: P3 reads the lock value.
– [Many Reads from Local Cache]: P3 spins, repeatedly reading

the lock value from its local cache until it becomes free.
– Invalidate Line: When the lock is acquired/released, P3’s cache

line is invalidated again.
– BusRd: P3 reads the updated lock value.
– BusRdX: P3 sends a BusRdX request to acquire the lock.
– Update Line in Cache: P3 updates its cache line, setting the lock

value to 1, indicating that it has acquired the lock.
– Invalidate Line: Other processors’ caches are invalidated for the

lock variable.
– BusRdX (Failed Attempt): If P3’s test-and-set operation fails

(because another processor acquires the lock), it continues to spin
and retry.

8 Comparison with Test-and-Set

• Slightly Higher Latency than Test-and-Set in Uncontended
Cases

– The test-and-test-and-set lock involves an initial test phase before
the atomic test-and-set operation. This extra step can introduce
slightly higher latency when there is no contention, as pro-
cessors spend additional time in the spin-wait phase.

• Generates Much Less Interconnect Traffic

– One Invalidation per Waiting Processor per Lock Release:
Each waiting processor experiences one cache invalidation per lock
release, resulting in O(P ) invalidations, where P is the number of
processors.

– Comparison to Test-and-Set Lock: The test-and-set lock gener-
ates one invalidation per waiting processor per test, leading to sig-
nificantly higher interconnect traffic.

– O(P 2) Interconnect Traffic: If all processors have the lock cached,
the interconnect traffic can be quadratic (O

(
P 2

)
). However, this is

still less than the traffic generated by the simple test-and-set
lock.

• More Scalable (Due to Less Traffic):

– Scalability: The reduced interconnect traffic makes the test-and-
test-and-set lock more scalable. It can handle an increasing
number of processors more efficiently than the simple test-and-set
lock.
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– Impact: As the number of processors grows, the performance impact
of the test-and-test-and-set lock remains more manageable, making
it suitable for larger multiprocessor systems.

• Storage Cost Unchanged (One Integer):

– Storage Requirements: The storage cost of the test-and-test-and-
set lock remains the same as the simple test-and-set lock, requiring
only one integer to represent the lock.

• Still No Provisions for Fairness:

– Fairness12: The test-and-test-and-set lock does not include mecha-
nisms to ensure fairness. This means that some processors may
experience longer waiting times to acquire the lock, leading
to potential starvation.

– Implications: While the lock reduces interconnect traffic and im-
proves scalability, the lack of fairness can still be a significant draw-
back in systems where equitable access to resources is important.

The test-and-test-and-set locking mechanism offers several advantages
over the simple test-and-set lock, including reduced interconnect traffic and
improved scalability. However, it introduces slightly higher latency in
uncontended cases and does not address fairness issues. Overall, it is a
more efficient and scalable locking solution for multiprocessor systems, though
not without its limitations.

12Fairness in the context of lock mechanisms refers to the equitable distribution of
opportunities for multiple processors or threads to acquire the lock. A fair locking
mechanism ensures that all processors have a roughly equal chance of acquiring the lock,
preventing any single processor from being starved of access to the critical section.
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