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Preface
Every theory section in these notes has been taken from the sources:

• Course slides. [1]

About:

§ GitHub repository

These notes are an unofficial resource and shouldn’t replace the course mate-
rial or any other book on quantum computing. It is not made for commercial
purposes. I’ve made the following notes to help me improve my knowledge and
maybe it can be helpful for everyone.

As I have highlighted, a student should choose the teacher’s material or a
book on the topic. These notes can only be a helpful material.
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1 Introduction

1 Introduction

1.1 Complex Numbers recap
Complex Numbers play a fundamental role in quantum mechanics and quantum
computing. For this reason, here is a brief summary of the most important
concepts:

• Definition of a Complex Number. A complex number z is written as:

z = x+ iy

Where:

– x is the real part (Re(z) = x).
– y is the imaginary part (Im(z) = y).
– i is the imaginary unit, satisfying i2 = −1.

A complex number can also be expressed in polar form:

z = reiφ

Where:

– r = |z| =
√
x2 + y2 is the modulus (also called magnitude).

– φ = arg(z) = tan−1
(
y
x

)
is the argument (also called phase angle).

Using Euler’s formula:

eiφ = cosφ+ i sinφ

We can rewrite z as:
z = r (cosφ+ i sinφ)

• Complex Conjugate. The Complex Conjugate of z is:

z̄ = x− iy = re−iφ

Properties:

– z · z̄ = |z|2 =
(√

x2 + y2
)2

= x2 + y2

– The conjugate reverses the sign of the imaginary part.

• Operations on Complex Numbers

– Addition and Subtraction:

(a+ ib) + (c+ id) = (a+ c) + i (b+ d)

(a+ ib)− (c+ id) = (a− c) + i (b− d)

– Multiplication. Using the distributive property:

(a+ ib) (c+ id) = ac+ iad+ ibc+ i2bd

Since i2 = −1, we get:

(ac− bd) + i (ad+ bc)
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1 Introduction 1.1 Complex Numbers recap

– Division. To divide
z1
z2

, multiply by the conjugate of the denomina-
tor:

a+ ib

c+ id
=

(a+ ib)(c− id)

c2 + d2

Expanding:
(ac+ bd) + i(bc− ad)

c2 + d2

• Complex Exponentiation. Using Euler’s formula:

eiθ = cos θ + i sin θ

For integer powers:
(eiθ)n = ei·n·θ

For fractional exponents (roots):

z
1
n = r

1
n e

i(φ+2πk)
n , k = 0, 1, . . . , n− 1

• Rotation Using Complex Numbers. Multiplying by eiψ rotates a
complex number by an angle ψ:

z′ = zeiψ

Since:
eiψ = cosψ + i sinψ

This means:
(x+ iy)︸ ︷︷ ︸

z

(cosψ + i sinψ)︸ ︷︷ ︸
eiψ

Expanding:
(x cosψ − y sinψ) + i(x sinψ + y cosψ)

Thus, the new coordinates are:

x′ = x cosψ − y sinψ, y′ = x sinψ + y cosψ

Which is a standard 2D rotation matrix:[
x̄
ȳ

]
=

[
cosψ − sinψ
sinψ cosψ

] [
x
y

]
And it rotates a point counterclockwise by an angle ψ in the 2D plane.
This is important because rotations in the Bloch sphere (which represents
qubits) are described by operations similar to this matrix.

• Hermitian (Conjugate Transpose) of a Vector. For a vector of
complex numbers:

z =

[
a
b

]
The Hermitian conjugate (denoted z† or zH) is:

zH =
[
ā b̄

]
Where ā and b̄ are the complex conjugates.

These concepts are fundamental because complex numbers describe quantum
states. Also, Euler’s formula provides a powerful tool for representing phase
shifts. Finally, rotation and multiplication are key to quantum operations, and
the hermitian conjugate is crucial in quantum mechanics.
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1 Introduction 1.2 Dirac’s Notation

1.2 Dirac’s Notation
Dirac Notation, also called bra-ket notation, is a powerful mathematical
framework used in quantum mechanics to describe quantum states and
their transformations.

® What is a Ket?

A Ket |v⟩ (is equal to the linear algebra annotation −→v ) is a column vector in
a Hilbert space, that represents a quantum state.

|v⟩ =
[
a
b

]
Where a and b are complex numbers (amplitudes of the quantum state). In
other words, a ket |v⟩ is a state vector, and what we usually require is that it
has unit norm, meaning:

⟨v|v⟩ = 1

This ensures that the total probability of measurement outcomes is 1. So, a ket
is a normalized column vector in a Hilbert space, meaning it has unit norm.

® What is a Superposition and why is it related to the Ket?

Superposition is a fundamental principle of quantum mechanics that applies
to all quantum systems, not just qubits.

Definition 1: Superposition

Superposition means that a system can exist in several possible
states at the same time until a measurement is made.

More in general, a quantum state |ψ⟩ in a system with multiple possible states
can exist in a linear combination of these states:

|ψ⟩ = c1 |ψ1⟩+ c2 |ψ2⟩+ · · ·+ cn |ψn⟩

Where:

• |ψ1⟩ , |ψ2⟩ , . . . , |ψn⟩ are basis states of the system.

• c1, c2, . . . , cn are complex probability amplitudes.

• The system is in all states at the same time, with the probability of
measuring each state given by |ci|2.

• The state is normalized, meaning:

|c1|2 + |c2|2 + · · ·+ |cn|2 = 1
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1 Introduction 1.2 Dirac’s Notation

Example 1: Single-Particle Systems (Quantum Mechanics)

In general quantum mechanics, a particle can exist in multiple posi-
tions simultaneously as a wave function Ψ(x):

|Ψ⟩ =
∫

Ψ(x) |x⟩ dx

• The particle is in a superposition of all possible positions |x⟩.

• Measurement collapses the wave function to a single position.

® How Can a Particle Exist in Multiple States at Once? This question
touches the heart of quantum mechanics, where our everyday intuition breaks
down. The key idea is that a quantum particle is not just a tiny ball, it is
a wave function that spreads across multiple possibilities at once.

1. Quantum Particles Are Waves, Not Just Points. In classical physics,
we think of particles as tiny, solid objects, like a small ball that always
has a precise position and velocity.

In quantum mechanics, however, particles behave more like waves. These
waves are described by a wave function Ψ(x), which represents the prob-
ability of finding the particle at different locations.

The key idea is:

• The wave function spreads across space, meaning the particle
does not have a single location before measurement.

• Instead, it exists in a superposition of all possible locations.

2. The Double-Slit Experiment: Proof That a Particle Can Be in
Two Places at Once. The double-slit experiment demonstrates that
light and matter can exhibit behavior of both classical particles and clas-
sical waves. In 1927, Davisson and Germer and, independently, George
Paget Thomson and his research student Alexander Reid demonstrated
that electrons show the same behavior, which was later extended to atoms
and molecules.

Double Slit Experiment explained! by Jim Al-Khalili

® What Happens in Classical Physics? If we throw tiny balls at a
screen with two slits, each ball will pass through one slit or the other.
After many throws, we get two lines behind the slits, corresponding
to the two possible paths.

® What Happens in Quantum Mechanics? If we send a single
electron (or photon) towards two slits, it behaves like a wave.
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1 Introduction 1.2 Dirac’s Notation

It passes through both slits at the same time and interferes
with itself, creating an interference pattern. This means the electron
was in a superposition of passing through both slits at once.
If we try to measure which slit the electron goes through, the super-
position collapses, and it behaves like a classical particle!

3. Quantum Superposition: More Than Just Probability. A common
misconception is that a particle in superposition is just an unknown
state, like a coin that is either heads or tails, but we just don’t know
which. This is wrong, because quantum superposition is much deeper.

A quantum state is a combination of all possibilities. Until measure-
ment, the system is in all possible states at once.

Mathematically, for an electron in two locations x1 and x2:

|ψ⟩ = a |x1⟩+ b |x2⟩

• The electron is literally in both places simultaneously.

• The coefficients a and b are complex numbers representing the
probability amplitudes.

• Interference between these amplitudes creates quantum effects
that cannot be explained by classical probability.

4. Superposition in Quantum Computing. Quantum computing di-
rectly uses the fact that a particle can be in multiple states at once.

• A classical bit can only be 0 or 1.

• A qubit (quantum bit) (we will explain this later) can be in a
superposition:

|ψ⟩ = a |0⟩+ b |1⟩

This means a quantum computer can perform many calculations si-
multaneously. Therefore, superposition allows quantum comput-
ers to process information exponentially faster than classical
computers for certain tasks.

5. Why Don’t We See Superposition in Everyday Life? In our daily
experience, objects are not in multiple states at once because of a
process called quantum decoherence.

Quantum superposition is fragile. When a quantum system interacts
with the environment (air, light, etc.), the superposition collapses into
one definite state. This is why large objects (like humans or cars) do
not appear in multiple places at once.

However, experiments (like the Double-Slit experiment) confirm that su-
perposition is real at microscopic scales (electrons, photons, atoms, and
even molecules).
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1 Introduction 1.2 Dirac’s Notation

The key properties of Superposition are:

1. Linearity: Any combination of valid quantum states is also a valid quan-
tum state.

2. Interference: Quantum states in superposition can interfere, leading to
constructive or destructive interference.

3. Measurement Collapse: When measured, the superposition collapses
into a single outcome.

4. Phase Information: Unlike classical probabilities, quantum superposi-
tions include complex phases that affect interference patterns.

® What is a Bra?

A Bra ⟨v| (is equal to the linear algebra annotation −→v H) is the conjugate
transpose (Hermitian conjugate) of the ket |v⟩.

Mathematically, if we start with the ket |v⟩:

|v⟩ =
[
a
b

]
The bra is obtained by:

1. Transposing the ket (switching it from column to a row).

2. Taking the complex conjugate of each element.

So the bra ⟨v| is:
⟨v| = (⟨v|)† =

[
ā b̄

]
A bra is a mathematical object that allows us to compute inner prod-
ucts and measure probabilities.

® But why do we need another topic called “Bra”?

A bra ⟨v| does not represent a physical system by itself. Instead, it is a math-
ematical tool used to:

1. Extract information from a quantum state.

2. Compute inner products (which determine probabilities).

3. Define quantum operators and measurements.

The key idea of bras and kets working together is:

• A ket |v⟩ represents a quantum system.

• A bra ⟨v| is like a test function that helps us extract measurable informa-
tion from a quantum system.

When they are combined as ⟨v|v⟩ = 1, we obtain a probability amplitude.
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1 Introduction 1.2 Dirac’s Notation

[ Dirac’s Notation: Multiplications

The following list shows how Dirac’s notation is used to describe how kets and
bras interact through inner products, matrix-vector multiplications, and opera-
tor applications:

• Inner (Scalar) Product: ⟨x|y⟩
The inner product (or scalar product) between two quantum states |x⟩
and |x⟩ is written as:

⟨x|y⟩

Where:

– The bra ⟨x| is the conjugate transpose (row vector) of the ket |x⟩.
– The ket |y⟩ is a column vector.

– The inner product is the dot product of these two vectors, re-
sulting in a scalar (complex number).

The inner product tells us how much two quantum states “overlap” .

– If ⟨x|y⟩ = 0, the states are orthogonal (completely different).

– If ⟨x|y⟩ = 1, the states are identical.

Example 2: Inner (Scalar) Product

Suppose we have two quantum states:

|x⟩ =

[
a
b

]
|y⟩ =

[
c
d

]
Then:

⟨x|y⟩ =
[
ā b̄

] [c
d

]
= āc+ b̄d

• Matrix-Ket Multiplication: M |v⟩
A quantum system evolves by applying a matrix (operator) M to a
quantum state (ket):

M |v⟩

Where:

– |v⟩ is a column vector (a quantum state).

– M is a matrix (a quantum operator).

The result is a new quantum state (a transformed column vector).

Matrix-Ket Multiplication shows how quantum gates (unitary matri-
ces) transform quantum states.
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1 Introduction 1.2 Dirac’s Notation

Example 3: Matrix-Ket Multiplication

Let’s take:
M =

[
0 1
1 0

]
|v⟩ =

[
a
b

]
Then:

M |v⟩ =
[
0 1
1 0

] [
a
b

]
=

[
b
a

]

• Concatenated Multiplications: ⟨x|M |y⟩
A general quantum mechanical expression is:

⟨x|M |y⟩

This is the expected value or transition amplitude, which means:

1. Apply the operator M to |y⟩ first:

M |y⟩

Which gives a new quantum state.

2. Take the inner product with ⟨x|:

⟨x| (M |y⟩)

Which results in a scalar (complex number).

The result is a scalar that tells us the probability amplitude of tran-
sitioning from |y⟩ to |x⟩ via M .

Example 4

Let’s compute:
⟨x|M |y⟩

Using:

|x⟩ =
[
a
b

]
|y⟩ =

[
c
d

]
M =

[
0 1
1 0

]
1. Compute M |y⟩:

M |y⟩ =
[
0 1
1 0

] [
c
d

]
=

[
d
c

]
2. Compute: ⟨x| (M |y⟩):

⟨x| (M |y⟩) =
[
ā b̄

] [d
c

]
= ād+ b̄c
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1 Introduction 1.3 Single Qubits

1.3 Single Qubits
A Qubit is a two-level quantum system, meaning it has only two basis
states:

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
Any quantum state of a single qubit can be written as a linear combination
(superposition) of these two basis states:

|ψ⟩ = α |0⟩+ β |1⟩ α ∧ β ̸= 0

Where:

• α, β are complex numbers called Probability Amplitudes. If either
α = 0 or β = 0, the state is NOT in superposition (it is a pure basis
state).

• The normalization condition holds:

|α|2 + |β|2 = 1

To ensure total probability is 1.

Therefore, a single qubit is described as a 2D complex vector in a Hilbert
space.

b Matrix Representation of Qubit States

Quantum states can be expressed in matrix form as column vectors:

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
And, a general qubit state is:

|ψ⟩ =
[
α
β

]
Where α and β are complex numbers.

® What is a Basis?

A Basis is a set of vectors that define a coordinate system in which we
describe quantum states. Furthermore, basis should always be orthonor-
mal (orthogonal and norm equal to one) because it ensures that quantum states
are independent, complete, and allow meaningful probability calculations. For
a single qubit, we typically use two orthonormal basis states |0⟩ and |1⟩,
forming the computational basis:

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
Any qubit state can be written as:

|ψ⟩ = α |0⟩+ β |1⟩

12



1 Introduction 1.3 Single Qubits

Where α and β are complex numbers satisfying |α|2 + |β|2 = 1.

In other words, a basis allows us to describe quantum states as linear
combinations of simpler states.

® Why do we have a choice of different bases and why should we
choose them?

While the computational basis {|0⟩ , |1⟩} is the standard, we are not forced
to use it! We can choose other bases depending on the situation, and they help
in different computations. This is because a different basis simply provides
a new way to describe the same quantum state.

Another common basis is the Hadamard basis, defined as:

|+⟩ =
1√
2
(|0⟩+ |1⟩)

|−⟩ =
1√
2
(|0⟩ − |1⟩)

The basis is also important because the choice of basis affects the measure-
ment results. For example, let’s take the qubit state:

|ψ⟩ = 1√
2
|0⟩+ 1√

2
|1⟩

• If measured in the computational basis {|0⟩ , |1⟩}, it has a 50% chance
of collapsing to |0⟩ and 50% to |1⟩.

• If measured in the Hadamard basis {|+⟩ , |−⟩}, it always collapses
to |+⟩. Then, the probability of collapsing into |+⟩ is 100%, and the
probability of collapsing into |−⟩ is 0%.

Proof. We measure |ψ⟩ in the Hadamard basis, therefore we must express
it using |+⟩ and |−⟩.
Since:

|+⟩ = 1√
2
(|0⟩+ |1⟩)

If we manipulate |ψ⟩ a bit, we can see this:

|ψ⟩ =
1√
2
|0⟩+ 1√

2
|1⟩

=
1√
2
(|0⟩+ |1⟩)

= |+⟩

And there is no component of |−⟩. QED
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1 Introduction 1.3 Single Qubits

® What happens when we measure a Qubit?

In classical computing, a bit is either 0 or 1. In quantum computing, a qubit
exists in a superposition of |0⟩ and |1⟩, but when measured, it collapses
into one of these basis states. This is because the measurement is proba-
bilistic and destroys the superposition.

If a qubit is in state:
|ψ⟩ = α |0⟩+ β |1⟩

Measurement forces the qubit to collapse into either |0⟩ or |1⟩. The prob-
ability of each outcome is given by the squared magnitudes of the coeffi-
cients:

P (0) = |α|2 P (1) = |β|2

After measurement, the qubit loses superposition and remains in the mea-
sured state.

Example 5: Qubit Measurement

Consider the qubit:

|ψ⟩ = 3

5
|0⟩+ 4

5
|1⟩

• The probability of measuring |0⟩ is:

P (0) =

(
3

5

)2

= 0.36

• The probability of measuring |1⟩ is:

P (1) =

(
4

5

)2

= 0.64

If we measure the qubit:

• With 36% probability, it collapses to |0⟩.

• With 64% probability, it collapses to |1⟩.

After measurement, the qubit remains in that state until modified by
another operation.

In the previous example, we can observe that the measurement collapses the
quantum state into one of the basis states with a probability determined
by its amplitude.
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1 Introduction 1.3 Single Qubits

® What happens if we measure twice?

If the qubit collapses to |0⟩ in the first measurement, a second measurement
in the same basis will return |0⟩ with probability 1. This is because the qubit
is already in |0⟩ and has no component of |1⟩ left. Therefore, repeating a
measurement in the same basis always gives the same result.

[ Measurement as a Fundamental Axiom

The behavior of quantum measurement is not derived from other principles,
it is an axiom of quantum mechanics:

1. Measurement collapses the quantum state.

2. The probability of each outcome is given by the squared amplitude.

3. A second measurement (in the same basis) gives the same result with
probability 1.

Therefore, the measurement is a fundamental rule of quantum mechanics.

. Fundamental limitation of Quantum Computing

Unlike a classical bit, which can be only 0 or 1, a qubit can exist in any super-
position:

|ψ⟩ = a |0⟩+ b |1⟩

Where a and b are complex numbers that satisfy |a|2 + |b|2 = 1. Since a and b
can take infinitely many values, a single qubit theoretically has an infinite
number of possible states.

® Can a Qubit Store More than One Classical Bit? One might hope
that because a qubit has infinitely many states , it could store and transmit
more than one classical bit of information. However, this is not possible
because:

p A single measurement only gives one classical bit. Measuring |ψ⟩
forces it to collapse into |0⟩ or |1⟩. The outcome follows probabilities
P (0) = |a|2 and P (1) = |b|2. Since the result is just one binary out-
come, it cannot reveal both a and b at the same time.

p Measurement Destroys the Quantum State. Once we measure a
qubit, its original state is lost. This means we cannot measure a and b
separately, even if we repeat the measurement.

Unfortunately, this is a limitation, because a single qubit contains infinite in-
formation theoretically, but in practice, we can only extract one classical
bit per measurement.
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Furthermore, another problem is that we cannot copy a quantum state. The
no-cloning theorem (explained later) states that it is impossible to perfectly
copy an arbitrary quantum state. This has major consequences:

• We cannot measure a qubit’s twice. In classical computing, we can
copy and measure a bit multiple times. In quantum computing, copying
is not possible. Once a qubit is measured, the original superposition is
destroyed.

• Why can’t we just copy and measure? Suppose we want to copy a qubit
|ψ⟩ and measure both copies. Quantum mechanics forbids perfect
duplication of unknown quantum states. This prevents duplicating
quantum information and extracting more than one bit of classical infor-
mation per qubit. A proof will be provided later with a better explanation.

[ The state space of a Single Qubit

A single qubit exists in a two-dimensional complex Hilbert space:

|ψ⟩ = α |0⟩+ β |1⟩

Where:

• α and β are complex numbers (probability amplitudes).

• The normalization condition ensures:

|α|2 + |β|2 = 1

Since α and β can take complex values, a qubit is more than just a point in
2D, it has four real parameters (two from each complex number). However,
due to normalization and global phase invariance, only two real parameters
are needed to describe a qubit.

Therefore, the space of all possible qubit states is a continuous space,
not just discrete values like classical bits.
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® Block Sphere representation of the qubit (and why)

The bloch sphere is a geometric representation of a qubit’s state that helps
visualize its properties. Since a general qubit state is:

|ψ⟩ = α |0⟩+ β |1⟩

We can rewrite it using two angles θ and ϕ (as spherical coordinates):

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ (1)

Where:

• θ is called polar angle (latitude). It determines how much of |0⟩ and |1⟩
are mixed (the qubit is not just in one state, but in both simultaneously).

– When θ = 0 → |ψ⟩ = |0⟩
It is a pure state.

– When θ = π → |ψ⟩ = |1⟩
It is a pure state.

– When θ = π
2 → |ψ⟩ = 1√

2
|0⟩+ eiϕ 1√

2
|1⟩

It is called equal superposition.

• ϕ is called relative phase (longitude). It controls the phase relation-
ship between |0⟩ and |1⟩. Changing ϕ does not affect measurement
probabilities, but it affects interference when qubits interacts with other
qubits.

In general, on the block sphere:

• The north pole (0, 0, 1) is |0⟩.

• The south pole (0, 0,−1) is |1⟩.

• Any other point represents a superposition state (eq. 1, page 17).

So, the Bloch sphere shows how a qubit evolves under quantum operations,
making it easier to understand rotations, phase shifts, and measurements.

® Why is the bloch sphere important? The bloch sphere helps us visu-
alize superposition, phase, and quantum operations intuitively.

1. It gives a visual representation of qubit states. Classical bits are just
points (0 or 1), whereas a qubit exists everywhere on the sphere.

2. It shows quantum gates as rotations. As we will see in the following
pages, quantum gates rotate the qubit around the sphere. For example,
the Hadamard gate rotates |0⟩ to |+⟩, moving from the north pole to the
equator.

3. It helps understand measurement. Measuring a qubit collapses it to either
|0⟩ or |1⟩, removing phase information.
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® Unfortunately, the eiϕ factor does not affect the global sphere?

Wrong! Two quantum state vectors are considered equivalent if they differ
only by a global phase factor. This means that if we have two quantum
states:

|ψ⟩ = α |0⟩+ β |1⟩
|ψ′⟩ = eiγ (α |0⟩+ β |1⟩)

Where eiγ is a global phase factor (a complex number with magnitude 1),
then these two states are physically identical.

A global phase is a complex factor of the form:

eiγ = cos γ + i sin γ

Which multiplies the entire quantum state but has no physical impact on mea-
surement probabilities.

Therefore, a qubit state is not changed by multiplying it by a global phase
factor eiγ , meaning that:

|ψ⟩ ∼ eiγ |ψ⟩

This means that the block sphere represents only unique qubit states,
since the global phase doesn’t affect the measurement.

Example 6: Identical Qubit States

Suppose we have two quantum states:

|ψ⟩ = 1√
2
|0⟩+ 1√

2
|1⟩

And:
|ψ′⟩ = e1π

(
1√
2
|0⟩+ 1√

2
|1⟩

)
Since eiπ = −1, we can simplify:

|ψ′⟩ = − 1√
2
|0⟩ − 1√

2
|1⟩

Even though |ψ⟩ and |ψ′⟩ look different mathematically, they are physi-
cally the same because they only differ by a global phase factor eiπ.
The global phase does not affect the measurement results. In fact, the
probabilities remain for both ψ and ψ′:

P (0) =

∣∣∣∣− 1√
2

∣∣∣∣2 =
1

2
P (1) =

∣∣∣∣− 1√
2

∣∣∣∣2 =
1

2

Since measurement gives the same results for both states, we consider
them physically identical.
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Figure 1: Bloch sphere representation of qubit.
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2 Single Qubit Gates

2.1 Operations on Qubits
In quantum computing, operations on qubits are fundamental to information
processing and computation. These operations can be broadly classified into:

• Logic Gates

• Measurements

• Initialization Procedures

Each of these plays a distinct role in the manipulation and evolution of quantum
states, which are represented as superpositions of basis states |0⟩ and |1⟩.

[ Logic Gates: Reversible Transformations

Quantum Logic Gates serve as the building blocks of quantum circuits.
Unlike classical logic gates, quantum gates operate under the principles of quan-
tum mechanics, notably unitarity and reversibility. These gates can act on a
single qubit or on multiple qubits simultaneously, and their primary function
is to transform the state of the qubit(s) involved.

Key properties of quantum logic gates include:

• They are reversible: this implies that any operation performed by a gate
can be undone by applying its inverse. In quantum mechanics, reversibility
is linked to the requirement that gates be unitary matrices.

• They preserve the norm of the quantum state, a direct consequence of
unitarity.

• Gates change the qubit’s state in a way that aligns with the no-cloning
and no-deleting theorems; in other words, information is neither dupli-
cated nor destroyed, only transformed.

[ Measurement: Irreversible Collapse of State

Measurement is a fundamentally different operation from logic gates because
it is irreversible. When a qubit is measured, information about its state is
extracted, and as a consequence, the qubit’s quantum state collapses to
one of the basis states |0⟩ or |1⟩. This collapse causes the loss of superposition
and, if entanglement is involved, the loss of entanglement as well (explained
later).

Important points:

• Measurement provides probabilistic outcomes based on the ampli-
tudes of the quantum state.

• After measurement, the qubit is no longer in a superposition; it is
deterministically in |0⟩ or |1⟩.
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• This operation is non-unitary and hence non-reversible.

[ Initialization: Preparing Known States

The Initialization of qubits is the process of setting them into a known,
well-defined state, most commonly |0⟩ or |1⟩. Initialization is essential be-
cause quantum algorithms require precisely defined input states.

Key facts:

• Initialization can often be implemented via measurement: by mea-
suring a qubit and then applying a gate if necessary, we can prepare it in
the desired state.

• As with measurement, initialization collapses the quantum state, mak-
ing it irreversible.

• While measurement discards the quantum coherence, initialization en-
sures a clean starting point for computations.

8 Comparison between Initialization and Measurement

• Purpose

– Measurement: To extract information about the qubit’s state.

– Initialization: To prepare the qubit in a known state (|0⟩ or |1⟩).

• Reversibility

– Measurement: Irreversible, collapses superposition.

– Initialization: Irreversible, collapses superposition to set a state.

• Effect on Qubit

– Measurement: Collapses to |0⟩ or |1⟩ randomly (probabilistic).

– Initialization: Collapses to a specific state, often |0⟩ (deterministic
or controlled).

• Information Gained

– Measurement: Yes, outcome of measurement is known.

– Initialization: No, goal is not to gain information, just set state.

• How Implemented

– Measurement: Via a measurement operator.

– Initialization: Often via measurement + gate correction.
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• Post-operation Use

– Measurement: Qubit may be discarded or reused depending on
outcome.

– Initialization: Qubit is now ready for computation.

In other words:

• Measurement tells we what state the qubit is in.

• Initialization sets the qubit to a desired state so we can start a com-
putation.

22



2 Single Qubit Gates 2.2 Quantum Logic Gates Overview

2.2 Quantum Logic Gates Overview
In quantum computing, quantum logic gates are the primary tools used to ma-
nipulate qubits. These gates perform unitary transformations on the state
of one or more qubits, meaning they preserve the norm of the quantum state
and are reversible. The design of quantum algorithms and the execution of
quantum circuits rely entirely on the sequential application of these gates.

� Types of Quantum Gates

Quantum Gates can be classified into:

• Single-Qubit Gates: These gates operate on individual qubits, mod-
ifying their state in isolation.

• Multiple-Qubit Gates: These gates act on two or more qubits si-
multaneously, allowing for entanglement and complex correlations be-
tween qubits.

In this section we will focus on single qubit gates.

) Mathematical Framework: Qubit as Vectors, Gates as Matrices

A key distinction of quantum logic compared to classical logic is that qubits
are vectors, while quantum gates are matrices.

• A qubit’s state, as we discussed on page 12, is a vector in a 2-
dimensional complex vector space, often written as:

|ψ⟩ = a |0⟩+ b |1⟩ with |a|2 + |b|2 = 1

• A Quantum Gate that acts on a single qubit is a 2×2 complex matrix,
specifically a unitary matrix, denoted by U .

The action of a gate U on a qubit |ψ⟩ is simply matrix-vector multi-
plication:

|ψ′⟩ = U |ψ⟩ (2)

This transforms the qubit into a new quantum state, while ensuring
that probabilities remain normalized.

] Unitarity: The Fundamental Constraint

A quantum gate must be unitary, which means:

U†U = UU† = I (3)

Where:

• U† is the Hermitian transpose (conjugate transpose) of U .

• I is the identity matrix.
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® Why is it important? Because unitarity ensures reversibility: every
gate has an inverse, and information is never lost, only transformed. This is in
contrast to measurement, which is non-unitary and irreversible.

® Why must gates be unitarity?

1. No-Cloning Theorem: It is impossible to create an identical copy of an
unknown qubit. Unitary transformations respect this by not duplicating
information.

2. No-Deleting Theorem: We cannot delete quantum information arbi-
trarily. Since unitarity gates are invertible, they do not erase information.

3. Preservation of Probability: The normalization condition |a|2+ |b|2 =
1 must hold after any operation, and only unitarity matrices preserve this
norm.

[ Physical Intuition

In classical circuits, logic gates like AND, OR, NOT process bits deterministi-
cally. In quantum circuits:

• Gates rotate the quantum state on the bloch sphere.

• These rotations correspond to unitary transformations.

• The physical implementation of quantum gates may vary across hard-
ware (e.g., superconducting qubits, trapped ions), but mathematically,
the same unitary matrix describes the gate.

Quantum gates do not correspond to physical gates in the classical
sense. They are abstract operations realized by controlled interactions in
quantum systems.
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2.3 Main Single-Qubit Gates
2.3.1 Identity Gate (I)

The Identity Gate, denoted I, is the most elementary gate in quantum com-
puting. Its action on a qubit is trivial, yet it serves important roles in
quantum circuits, particularly when managing multi-qubit systems or timing
synchronization.

) Matrix Representation

The Identity gate is represented by the 2× 2 identity matrix:

I =

(
1 0
0 1

)
(4)

Applying the Identity gate to any qubit leaves the state unchanged. For-
mally, for a qubit in state |ψ⟩:

I |ψ⟩ = |ψ⟩

[ Physical Interpretation

Although it may appear useless at first glance, the Identity gate has conceptual
and practical utility:

✓ It acts as a placeholder or “do nothing” operation when required by
circuit timing.

✓ In multi-qubit circuits, it allows one qubit to remain unchanged
while other qubits are operated on.

✓ In matrix composition of gates, it serves to align dimensions when
performing tensor products (e.g., I⊗H applies Hadamard to the second
qubit only).

® Bloch Sphere Perspective

In the Bloch sphere (remember? page 19), the identity gate does not rotate.
The qubit’s position on the sphere remains fixed, reinforcing the idea that
no transformation has taken place.
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2.3.2 Pauli-X (NOT) Gate

The Pauli-X Gate, often called the quantum NOT gate, is one of the fun-
damental single-qubit quantum gates. It is denoted X and corresponds to
the σX Pauli matrix in quantum mechanics. This gate flips the state of a
qubit, similar to how a classical NOT gate inverts a bit.

Remark: Pauli Matrix

In quantum mechanics, the Pauli matrices are a set of three 2 × 2
Hermitian and unitary matrices that represent spin operators for
spin- 12 particles and are widely used in quantum computing to describe
single-qubit gates. They are:

σX =

(
0 1
1 0

)
σY =

(
0 −i
i 0

)
σZ =

(
1 0
0 −1

)
Key properties:

• Hermitian: σ†
i = σi (observable-related)

• Unitary: σ†
iσi = I (reversible transformations)

• Involution: σ2
i = I

• Non-commuting: [σi, σj ] = 2iεijkσk (with ε the Levi-Civita sym-
bol)

) Matrix Representation

X = σX =

(
0 1
1 0

)
(5)

This matrix swaps the |0⟩ and |1⟩ basis states:

X |0⟩ = |1⟩ and X |1⟩ = |0⟩ (6)

[ Action on a General Qubit

Let’s consider a qubit in the general state:

|ψ⟩ = a |0⟩+ b |1⟩

Applying the X gate:

X |ψ⟩ = aX |0⟩+ bX |1⟩ = a |1⟩+ b |0⟩ = b |0⟩+ a |1⟩

As a result, the amplitudes a and b are swapped.
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® Geometric Interpretation: Rotation on the Bloch Sphere

The Pauli-X gate corresponds to a rotation around the x-axis by π radians
(180◦) on the Bloch sphere.

To understand this, recall the general qubit state in spherical coordi-
nates:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩

After a π rotation around the x-axis:

• θ → π − θ

• ϕ→ −ϕ

This rotation mirrors the qubit across the x-axis, flipping its position
between |0⟩ and |1⟩, and adjusting the phase accordingly.

� Key Properties of X Gate

1. Involution. Applying X twice returns the original state:

XX = X2 = I

This reflects reversibility and matches the intuition of two 180◦

rotations around x-axis equaling no rotation.

2. Entanglement Tool. The X gate is crucial in entangling qubits when
combined with CNOT in multi-qubit circuits.

3. Measurement Preparation. Used to flip the measurement out-
come, e.g., preparing |1⟩ from |0⟩.
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2.3.3 Pauli-Z (Phase Flip) Gate

The Pauli-Z Gate, also called the Phase Flip Gate, is one of the core Pauli
operators used in quantum computing. It acts only on the phase of the
qubit, leaving the |0⟩ amplitude unchanged but flipping the sign of the
|1⟩ amplitude.

) Matrix Representation

Z = σZ =

(
1 0
0 −1

)
(7)

[ Action on a General Qubit

For a general state:
|ψ⟩ = a |0⟩+ b |1⟩

Applying Z:
Z |ψ⟩ = aZ |0⟩+ bZ |1⟩ = a |0⟩ − b |1⟩

As a result, Z flips the sign of the |1⟩ amplitude, this is why it’s called a
phase flip. Finally, it’s trivial to show that:

Z |0⟩ = |0⟩ (unchanged), Z |1⟩ = − |1⟩ (sign flip)

® Geometric Interpretation: Rotation around the z-axis

On the Bloch sphere, the Pauli-Z gate performs a π radians (180◦) rotation
around the z-axis. In spherical coordinates:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩

After Z rotation:

• The angle ϕ→ ϕ+ π

• This phase shift changes the sign of the complex amplitude for |1⟩

Since measurement probabilities depend on |a|2 and |b|2, which remain un-
changed, the Z gate does not affect measurement outcomes in the standard
basis. It only affects interference and future gate interactions.

[ Interpretation and Use Cases

• Phase Shift: Z is a special case of a phase shift gate, shifting the phase
by π.

• No effect on |0⟩: Useful for controlled operations, where only |1⟩ paths
acquire a phase.
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• Circuit Simplification: Often used in error correction and phase-
sensitive algorithms.

� Key Properties

1. Involution: Z2 = I

2. Diagonal Matrix: Easy to compute and simulate.

3. Commutes with Z and Phase gates, but anticommutes with X
and Y.
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2.3.4 Pauli-Y Gate

The Pauli-Y Gate, denoted Y , is one of the three fundamental Pauli matrices
in quantum mechanics. It is less intuitive than Pauli-X and Z, but equally
important, especially for its role in complex rotations and quantum interference.

) Matrix Representation

Y = σY =

(
0 −i
i 0

)
Like the other Pauli gates, Y is Hermitian and unitary, which guarantees
that it is observable (measurable) and reversible.

[

Given a qubit in state:
|ψ⟩ = a |0⟩+ b |1⟩

Apply the Y gate:

Y |ψ⟩ = aY |0⟩+ bY |1⟩ = a (−i |1⟩) + b (i |0⟩) = ib |0⟩ − ia |1⟩

So the amplitudes are swapped and multiplied by ±i. This shows Pauli-Y
introduces a complex phase shift alongside the swap.

® Geometric Interpretation: Rotation on the Bloch Sphere

The Pauli-Y gate corresponds to a rotation around the y-axis by π radians
(180◦). The effect on Bloch sphere coordinates:

• θ → π − θ

• ψ → π − ψ

This rotates the qubit across the y-axis, altering both amplitudes and their
phases.

[ Pauli-Y as a Composite Gate

Interestingly, Y = iXZ. Let’s verify this:

XZ =

(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
Now, multiply by i:

iXZ = i

(
0 −1
1 0

)
=

(
0 −i
i 0

)
= Y

This identity confirms that Pauli-Y can be viewed as a combination of
Pauli-X and Pauli-Z (page 28) with a global phase factor i, which does
not affect measurement outcomes.
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� Key Properties of Y Gate

1. Involution: Y 2 = I

2. Anticommutation: XY = −Y X

3. Phase Sensitive: introduces imaginary coefficients, unlike X and Z.
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2.3.5 Phase Gate (S)

The Phase Gate (S) is a single-qubit gate that adds a phase shift of π
2

(90◦) to the amplitude of the |1⟩ state. It leaves |0⟩ unchanged, like the
Pauli-Z gate, but instead of a sign flip (π phase), it introduces a complex
phase factor i.

) Matrix Representation

S =

(
1 0
0 i

)
(8)

[ Action on a General Qubit

For a state:
|ψ⟩ = a |0⟩+ b |1⟩

Apply S:
S |ψ⟩ = a |0⟩+ ib |1⟩

Only the |1⟩ amplitude gains a phase of i, affecting interference but not
measurement probabilities in the computational basis.

S |0⟩ = |0⟩ (unchanged), S |1⟩ = i |1⟩
(
phase +

π

2

)

® Geometric Interpretation: Rotation around z-axis
(
π
2

)
On the Bloch sphere, S performs a rotation of π

2 radians around the z-axis.
This rotation shifts the phase angle ϕ → ϕ + π

2 , altering how the qubit
interferes in later operations, especially when Hadamard gates are involved.

+ Relationship to Pauli-Z

Two applications of S equal Z:

S · S =

(
1 0
0 i

)
·
(
1 0
0 i

)
=

(
1 0
0 i2

)
=

(
1 0
0 −1

)
= Z

Thus, S2 = Z, this is a useful identity in circuit simplifications.

¥ Applications and Significance

• Superposition Control: S adjusts relative phases, crucial in algo-
rithms like Quantum Fourier Transform and Grover’s Search.

• Building Block: S helps construct higher-order phase gates, such as
the T gate, which introduces a π

4 phase.

• Error Correction: Used in stabilizer codes for fault-tolerant quan-
tum computing.
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� Key Properties

1. Unitary: S†S = I

2. Not Hermitian: Unlike Pauli gates, S ̸= S†

3. Diagonal Matrix: Efficient in simulation.

33



2 Single Qubit Gates 2.3 Main Single-Qubit Gates

2.3.6 Hadamard Gate (H)

The Hadamard Gate (H) transforms a qubit from a definite state
(|0⟩ or |1⟩) into a superposition of both. It is the gateway to quantum
parallelism, allowing quantum computers to process multiple possibilities
simultaneously.

) Matrix Representation

H =
1√
2

(
1 1
1 −1

)
(9)

This matrix is unitary and Hermitian: H† = H and H2 = I.

[ Action on Basis States

H |0⟩ =
1√
2
(|0⟩+ |1⟩) = |+⟩ (superposition state)

H |1⟩ =
1√
2
(|0⟩ − |1⟩) = |−⟩

The |+⟩ and |−⟩ states are known as the Hadamard basis, or superposition
states, with equal probability amplitudes for |0⟩ and |1⟩.

® Bloch Sphere Interpretation

On the Bloch sphere, the Hadamard gate performs two sequential rota-
tions:

1. Rotation around the y-axis by π
2 radians (90◦).

2. Followed by a rotation around the x-axis by π radians (180◦).

This brings |0⟩ to the +x-axis (|+⟩) and |1⟩ to the −x-axis (|−⟩). As a result,
qubit moves from pole to equator, entering maximum superposition.

[ Superposition and Measurement

After applying H to |0⟩, the resulting qubit is:

|ψ⟩ = 1√
2
(|0⟩+ |1⟩)

Upon measurement:

• Probability of 0: ∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2

• Probability of 1:
1

2
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This equal probability reflects maximum uncertainty, a hallmark of quan-
tum superposition.

� Key Properties of H Gate

1. Involution: H2 = I → applying H twice restores the original state.

2. Self-adjoint: H = H† → H is its own inverse and adjoint.

3. Basis Change: H converts between the computational basis {|0⟩ , |1⟩}
and the Hadamard basis {|+⟩ , |−⟩}.

¥ Applications

• Quantum Parallelism: Prepares qubits for simultaneous computa-
tion paths.

• Quantum Algorithms: Found in Grover’s Search, Quantum Fourier
Transform, Shor’s Algorithm.

• Entanglement Creation: Combined with CNOT, H creates Bell states.

• Interference: Enables constructive and destructive interference in
algorithms.

35



2 Single Qubit Gates 2.4 Properties

2.4 Properties
Single-qubit gates exhibit a rich set of mathematical and geometric properties,
all of which stem from their nature as unitary transformations on a two-level
quantum system. Understanding these properties is key to predicting gate
behavior, designing quantum circuits, and analyzing quantum algo-
rithms.

1. All Quantum Gates Are Equivalent to Rotations

A profound insight in quantum computing is that every single-qubit unitary
gate corresponds to a rotation of the qubit’s state vector on the Bloch
sphere.

• Bloch Sphere is a geometric representation of a qubit’s state, where any
point on the sphere represents a valid pure state.

• A unitary operation on qubit results in rotating the vector on this
sphere without changing its length (preserving probability).

Some examples of rotations:

• X Gate → Rotation π around x-axis (section 2.3.2, page 26)

• Z Gate → Rotation π around z-axis (section 2.3.3, page 28)

• Y Gate → Rotation π around y-axis (section 2.3.4, page 30)

• S Gate → Rotation π
2 around z-axis (section 2.3.5, page 32)

• H Gate → Rotation π
2 around y, then π around x (section 2.3.6, page 34)

® Why is this important? Quantum computation is fundamentally about
state rotations, understanding gates as rotations helps visualize interference,
phase shifts, and entanglement creation.

2. Reversibility: Applying a Gate Twice

Many single-qubit gates, especially the Pauli gates, exhibit the property of in-
volution: applying the same gate twice returns the qubit to its original
state. Mathematically it can be expressed as:

X2 = Y 2 = Z2 = I

This is due to the fact that two 180◦ rotations around the same axis bring
the vector back to its original position on the Bloch sphere.

Proof that X Gate has involution.

X2 =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
= I

These identities confirm that Pauli gates are their own inverses, and all
unitary gates are reversible. QED
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3. Global Phases Do Not Matter

Quantum gates may introduce a global phase (a constant complex factor
eiϕ) to a state. Physically, global phases are unobservable, meaning they
do not affect measurement probabilities. For example:

• States |ψ⟩ and eiϕ |ψ⟩ are physically indistinguishable.

• The Y gate = iXZ, where i is a global phase that can be ignored in
practice.

4. Composite Gates and Commutativity

• Gates can be combined by matrix multiplication (note: non commu-
tative in general).

• Order matters: AB ̸= BA for most gates.

• Exception: Gate Z and Gate S are commuted because they are both
diagonal phase gates.

Property Pauli Gates (X, Y, Z) Phase Gate (S) Hadamard (H)

Rotation Axis x, y, z (π radians) z
(
π
2 radians

)
y
(
π
2

)
+ x (π)

Involution G2 = I ✓ p (S² = Z) ✓

Self-adjoint G = G† ✓ p ✓

Unitary ✓ ✓ ✓

Phase Introduction Z, S i for |1⟩ ✓ (interference)
Creates Superposition? p (X, Y, Z alone) p ✓

Table 1: Summary of Properties.

37



2 Single Qubit Gates 2.5 When Does a Gate Create Superposition?

2.5 When Does a Gate Create Superposition?
In this section, our goal is to determine what structural properties a quan-
tum gate must have to create superposition when applied to a basis
state (|0⟩ or |1⟩).

Let’s consider a generic 2× 2 gate A, given by:

A =

(
a11 a12
0 a22

)
This matrix has a zero in the lower-left corner, suggesting no mixing from |0⟩
to |1⟩ via the first column. In other words:

|0⟩ =
(
1
0

)
⇒ A |0⟩ =

(
a11 a12
0 a22

)(
1
0

)
=

(
a11
0

)
That zero blocks (in the lower-left corner) blocks any |1⟩ component from arising
when we apply A to |0⟩. So no superposition is created from |0⟩, it stays “pure”.
Note that to create a superposition, the output of A |0⟩ must contain both |0⟩
and |1⟩ components, so both entries are non-zero.

Step 1: Apply A to |0⟩

A |0⟩ =
(
a11 a12
0 a22

)(
1
0

)
=

(
a11
0

)
The output is purely |0⟩, no superposition.

Step 2: Apply A to |1⟩

A |1⟩ =
(
a11 a12
0 a22

)(
0
1

)
=

(
a12
a22

)
We have both |0⟩ and |1⟩ components, potential superposition. But now the
key insight: superposition requires that both amplitudes (coefficients)
are non-zero. This only happens if a12 ̸= 0 and a22 ̸= 0.

Proof that Gate A cannot create a superposition

Proof that Gate A cannot create a superposition. Quantum gates operate accord-
ing to the principles of quantum mechanics, unitarity and reversibility. There-
fore, Gate A must satisfy the following unitarity condition:

A†A = I

Let’s simplify the discussion by assuming A is real, so A† = AT . We compute
ATA:

AT =

(
a11 0
a12 a22

)
A =

(
a11 a12
0 a22

)
ATA =

(
a211 a11a12

a11a12 a212 + a222

)
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Set equal to identity:

ATA =

(
1 0
0 1

)
From this, we get:

1. a211 = 1 ⇒ a11 = ±1

2. a11a12 = 0 ⇒ a12 = 0

3. a212 + a222 = 1 ⇒ a22 = ±1

The superposition is eliminated by a12 = 0, because both columns must have
non-zero elements. QED

In conclusion, to create superposition, a gate must have non-zero ele-
ments in both columns. In fact, gates like Hadamard H, with all non-zero
elements, can create superposition. However, diagonal gates like Z or S cannot
produce superposition.
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2.6 Single-Qubit Quantum Circuits
A Quantum Circuit is a mathematical model for quantum computation,
composed of sequential operations applied to qubits. These operations
include initializations, unitary gates, and measurements. In this section, we
focus on circuits involving a single qubit, which form the foundation for under-
standing multi-qubit systems.

� Circuit Elements

1. Initialization

• Qubit is prepared in a known state, typically |0⟩ or |1⟩.
• Essential starting point for any computation.

2. Gates

• Single-qubit unitary operations (e.g., X, Z, H, S).

• Transform the qubit’s state reversibly.

3. Measurement

• Irreversible process.

• Collapses the qubit to |0⟩ or |1⟩ with probabilities dictated by the
quantum state’s amplitudes.

{ Quantum Circuit Diagram: Visual Language

• Horizontal lines represent the timeline of a single qubit.

|vin⟩ |vout⟩

• Boxes on the line represent gates (letters) or measurements (tachome-
ter icon).

|vin⟩ A B · · · N

• Double lines (if present) represent classical information (e.g., mea-
surement result).

|vin⟩ A B |vout⟩

• Left to right: The circuit evolves over time from left (input) to
right (output).
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[ Gate Sequence: Serial Gates

Consider two gates A and B applied in sequence:

|vin⟩ A B |vout⟩

1. First apply A, then B.

2. Mathematically, this is expressed as:

vout = BAvtextin

3. The combined effect of the two gates is equivalent to a single gate C =
BA:

|vin⟩ BA |vout⟩

vout = Cvin = BAvin

Matrix multiplication is from right to left, which may seem counterintu-
itive. The last gate applied (B) is on the left of the product BA.

Example 1: Hadamard followed by Hadamard

Let’s compute H followed by H to |0⟩:

|0⟩ H H |vout⟩

1. Apply H:

H |0⟩ =
1√
2
·
(
1 1
1 −1

)
·
(
1
0

)

=
1√
2
·
(
1
1

)

=
1√
2
·
((

1
0

)
·
(
0
1

))
=

1√
2
(|0⟩+ |1⟩) = |+⟩

2. Applying H again, we restore the original state due to the
involution properties (H2 = I):

H (H |0⟩) = 1√
2

(
1 1
1 −1

)
· 1√

2

(
1
1

)
=

1

2

(
2
0

)
=

(
1
0

)
= |0⟩
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2.7 Outer Product of Kets
In quantum mechanics, Bra-Ket notation (introduced by Dirac) is a concise
and powerful tool for representing quantum states and operations. It uses kets
|ψ⟩ for vectors (states), and bras ⟨ψ| for their Hermitian adjoints (dual
vectors).

Given two kets:
|a⟩ =

(
a1
a2

)
|b⟩ =

(
b1
b2

)
The Outer Product |a⟩⟨b| is a matrix, formed by:

|a⟩ ⟨b| = |a⟩ ⊗ ⟨b| =
(
a1
a2

)(
b1 b2

)
=

(
a1b1 a1b2
a2b1 a2b2

)
(10)

Where the symbol ⊗ is the tensor product operator. This operation maps
a vector to a matrix.

The Inner Product ⟨b|a⟩ is a scalar:

⟨b|a⟩ = b1a1 + b2a2 (11)

So:

• Inner product → projection, result is number.

• Outer product → matrix, result is operator.

[ Associativity between outer and inner products

|a⟩ · ⟨b|c⟩ = ⟨b|c⟩ · |a⟩ (12)

This is a fundamental identity in quantum mechanics, showing how outer prod-
ucts interact with inner products.

Proof the Associativity. Let’s define:

|a⟩ =
(
a1
a2

)
|b⟩ =

(
b1
b2

)
|c⟩ =

(
c1
c2

)
1. Compute inner product ⟨b|c⟩:

⟨b|c⟩ = b1c1 + b2c2 = α

Where α is a scalar value.

2. Multiply scalar α with ⟨a|:

α ⟨a| = α

(
a1
a2

)
=

(
α · a1
α · a2

)
=

((
b1c1 + b2c2

)
· a1(

b1c1 + b2c2
)
· a2

)
=

(
b1c1 + b2c2

)
·
(
a1
a2

)
3. Compute outer product |a⟩⟨b| (matrix):

|a⟩ ⟨b| =
(
a1
a2

)(
b1 b2

)
=

(
a1b1 a1b2
a2b1 a2b2

)
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4. Multiply |a⟩⟨b| by |c⟩:

(|a⟩ ⟨b|) |c⟩ =
(
a1b1 a1b2
a2b1 a2b2

)(
c1
c2

)
=

(
a1

(
b1c1 + b2c2

)
a2

(
b1c1 + b2c2

))
Factor out the scalar

(
b1c1 + b2c2

)
:

(
b1c1 + b2c2

)
·
(
a1
a2

)
= ⟨b|c⟩ · |a⟩

This proves that outer product applied to a ket is equivalent to inner
product ⟨b|c⟩ scaled by |a⟩. QED
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2.8 Measurement
In quantum computing, measurement is a special type of operation that differs
fundamentally from unitary gates. While gates perform reversible transforma-
tions, measurement is irreversible. It allows us to gain information about
the state of a qubit, but at the price of collapsing the quantum state.

) Measurement Operator: Matrix Form

A measurement operator is a non-unitary, non-invertible matrix. For a
measurement along a specific direction, represented by a ket |k⟩, the associ-
ated projector is:

Mk = |k⟩⟨k| (13)

This is called a Projection Operator, it projects any vector onto the direc-
tion of |k⟩.

. Effect of Measurement

Given a qubit |ψ⟩, applying Mk yields the (unnormalized) projected vector:

|ψk⟩ =Mk |ψ⟩ = |k⟩ ⟨k|ψ⟩ = ⟨k|ψ⟩ |k⟩

To obtain the new normalized state, we divide by the square root of the
probability:

|ψnorm
k ⟩ = Mk · |ψ⟩√

⟨ψ |Mk|ψ⟩
=

⟨k|ψ⟩ · |k⟩√
|⟨k|ψ⟩|2

= |k⟩

So after measurement, the qubit collapses to |k⟩, the eigenstate correspond-
ing to the measurement outcome.

Remark: ⟨ψ |Mk|ψ⟩

This is called a quadratic form in linear algebra, and in quantum me-
chanics it represents the probability of the measurement outcome
k when measuring the qubit |ψ⟩ with measurement operator Mk.
Suppose a qubit ψ:

|ψ⟩ =
(
a
b

)
with |a|2 + |b|2 = 1

If we apply the measurement operator M0:

M0 |ψ⟩ =
(
1 0
0 0

)(
a
b

)
=

(
a
0

)
And we finally calculate the bra ⟨ψ|:

⟨ψ|
(
a
0

)
=

(
a b

)(a
0

)
= a · a = |a|2

In other words, this is the probability of measuring 0: p0.
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� Probability of Outcome

The probability of measuring the qubit in the state |k⟩ is:

pk = ⟨ψ |Mk|ψ⟩ = |⟨k|ψ⟩|2 =
∣∣k1 · ψ1 + k2 · ψ2

∣∣2 (14)

This is the Born rule, a fundamental postulate of quantum mechanics. In
quantum computing we have:

p0 = ⟨ψ |M0|ψ⟩ = |⟨0|ψ⟩|2 = |1 · ψ1 +���0 · ψ2|

p1 = ⟨ψ |M1|ψ⟩ = |⟨1|ψ⟩|2 = |���0 · ψ1 + 1 · ψ2|

[ Standard Basis Measurement

In quantum computing, we usually measure in the computational basis
{|0⟩ , |1⟩}. The projectors are:

M0 = |0⟩ ⟨0| =

(
1 0
0 0

)
M1 = |1⟩ ⟨1| =

(
0 0
0 1

) (15)

For a general qubit |ψ⟩ = a |0⟩+ b |1⟩, the probabilities are:

p0 = |a|2 p1 = |b|2 (16)

After measurement, the qubit collapses to |0⟩ with probability |a|2, or to
|1⟩ with probability |b|2.

⋆ Key Properties of Measurement Operator

• Idempotent: once applied, applying it again does nothing:

M2
k =Mk

A simple proof:

M2
k = |k⟩ |k⟩⟨k| ⟨k| = |k⟩ ⟨k| =Mk

This reflects that after projection, the qubit is already in the state
|k⟩.

• Non-unitary and Non-reversible: measurement destroys superpo-
sition and cannot be undone.
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3 Multiple Qubit Gates

3.1 Multiple Qubit States
In quantum computing, the description of systems involving multiple qubits re-
lies on a mathematical operation known as the tensor product. This operation
enables us to formally construct the joint state of two or more qubits
starting from their individual states.

⋆ The Tensor Product

Suppose we have two qubits, each in its own superposition:

|vA⟩ = a0 |0⟩+ a1 |1⟩ and |vB⟩ = b0 |0⟩+ b1 |1⟩

Our goal is to describe the joint state of the system, i.e., the probability
amplitudes for:

• Both qubits being in state |0⟩

• Qubit A in |0⟩ and qubit B in |1⟩

• Qubit A in |1⟩ and qubit B in |0⟩

• Both in |1⟩

To construct the combined state mathematically, we use the Tensor Product
⊗. Give the vectors of vA and vB :

|vA⟩ = a0

[
1
0

]
+ a1

[
0
1

]
=

[
a0
a1

]
|vB⟩ = b0

[
1
0

]
+ b1

[
0
1

]
=

[
b0
b1

]
The tensor product |vA⟩ ⊗ |vB⟩ gives:

|vA⟩ ⊗ |vB⟩ = (a0 |0⟩+ a1 |1⟩)⊗ (b0 |0⟩+ b1 |1⟩)

=

[
a0
a1

]
⊗

[
b0
b1

]
= a0b0 |00⟩+ a0b1 |01⟩+ a1b0 |10⟩+ a1b1 |11⟩

= a0b0

[
1
0

]
⊗
[
1
0

]
+ a0b1

[
1
0

]
⊗
[
0
1

]
+

a1b0

[
0
1

]
⊗
[
1
0

]
+ a1b1

[
0
1

]
⊗
[
0
1

]

= a0b0


1
0
0
0

+ a0b1


0
1
0
0

+ a1b0


0
0
1
0

+ a1b1


0
0
0
1



=


a0b0
a0b1
a1b0
a1b1



(17)
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This four-dimensional vector fully describes the joint system of two qubits in
the computational basis. The tensor product preserves the linearity of the
system and ensures that the resulting state is still a valid quantum state.

About the notation, the ket |00⟩ can be explicitly rewritten as the tensor product
|0⟩ ⊗ |0⟩. These two notations are the same.

% Measurement Probabilities

Each coefficient in the final four-dimensional vector corresponds to an ampli-
tude for a specific measurement outcome. For instance:

• The probability of observing |00⟩ is |a0b0|2

• The probability of observing |01⟩ is |a0b1|2

• The probability of observing |10⟩ is |a1b0|2

• The probability of observing |11⟩ is |a1b1|2

This reflects the Born rule: the probability of an outcome is the square modulus
of the corresponding amplitude (page 45).

[ Normalization of Two-Qubit Quantum State

The normalization of a quantum state means that the total probability of
all possible outcomes must sum to 1. The reason we need normalization
is due to the Born rule: the probability of measuring a quantum state |ψ⟩ and
finding it in basis state |i⟩ is |ci|2. Since total probability must equal 1, we must
have: ∑

i

|ci|2 = 1

Normalization of two-qubit quantum state. Given two normalized single-qubit
states:

|vA⟩ = a0 |0⟩+ a1 |1⟩ |vB⟩ = b0 |0⟩+ b1 |1⟩
We know that (because they are normalized, and the total probability of all
possible outcomes must sum to 1):

|a0|2 + |a1|2 = 1 |b0|2 + |b1|2 = 1

The combined state, via the tensor product, is:

|vAB⟩ = a0b0 |00⟩+ a0b1 |01⟩+ a1b0 |10⟩+ a1b1 |11⟩

The question is: does this state remain normalized? We need to verify
that the sum of the squared moduli (i.e., squared magnitudes) of the coefficients
equals 1:

|a0b0|2 + |a0b1|2 + |a1b0|2 + |a1b1|2 = 1

We use the property of modulus:

|aibj |2 = |ai|2 · |bj |2
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Hence:

• |a0b0|2 = |a0|2 |b0|2

• |a0b1|2 = |a0|2 |b1|2

• |a1b0|2 = |a1|2 |b0|2

• |a1b1|2 = |a1|2 |b1|2

We regroup the terms:

|a0|2
(
|b0|2 + |b1|2

)
+ |a1|2

(
|b0|2 + |b1|2

)
Factor out: (

|a0|2 + |a1|2
)
·
(
|b0|2 + |b1|2

)
Since both vA and vB are normalized:

|a0|2 + |a1|2 = 1 |b0|2 + |b1|2 = 1

So: 1 · 1 = 1. QED

The combined two-qubit state vAB = vA ⊗ vB is indeed normalized, pro-
vided the original qubits are normalized. This confirms that the tensor prod-
uct of two normalized states is itself a normalized state, a crucial result
that ensures consistency.

48



3 Multiple Qubit Gates 3.2 Introduction to Multiple Qubit Gates

3.2 Introduction to Multiple Qubit Gates
In quantum computing, the transition from single-qubit to multi-qubit systems
represents a fundamental leap in computational expressiveness. While single-
qubit gates manipulate isolated quantum bits, the true power of quantum com-
putation emerges only when we consider operations on multiple qubits. This is
because multi-qubit gates allow for the creation and manipulation of
quantum entanglement, a uniquely quantum phenomenon with no classical
analog, and a critical resource for quantum advantage.

The behavior of multi-qubit systems is governed by the tensor product struc-
ture of quantum mechanics. That is, the state space of a system composed of
multiple qubits is described by the tensor product of the state spaces of the indi-
vidual qubits. For example, a system of two qubits is represented by a vector in
a four-dimensional Hilbert space C2⊗C2 = C4, and similarly, an n-qubit system
is described by a vector in C2n . This exponential growth in state space
dimensionality is one of the key reasons why quantum computers can,
in principle, outperform classical ones for certain tasks.

Multi-qubit gates are therefore defined as unitary transformations acting
on these higher-dimensional vector spaces. A simple extension of single-
qubit operations to the multi-qubit context is given by applying gates in a
factorized way (e.g., applying a Hadamard gate on the first qubit and an identity
on the second corresponds to H ⊗ I). However, more powerful and interesting
operations arise when gates do not decompose as tensor products of single-
qubit gates. These non-separable gates, such as the Controlled-NOT (CNOT)
gate, are capable of generating entangled states, and as such, are essential for
universal quantum computation.

Thus, the study of multi-qubit gates is not merely a generalization of single-
qubit logic; it is the gateway to fundamentally quantum phenomena. Un-
derstanding these gates, their representations, and their implications is central
to designing quantum algorithms and circuits that go beyond classical capabil-
ities.
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3.3 Tensor Product of Quantum Gates
In a quantum system composed of multiple qubits, it is common to apply gates
independently and simultaneously to different qubits. This operations
is known as parallel execution, and it is described formally using the Tensor
Product of Quantum Gates.

® Motivation

Suppose we have two qubits in individual states:

|vA⟩ = a0 |0⟩+ a1 |1⟩ |vB⟩ = b0 |0⟩+ b1 |1⟩

The joint state of the system is represented using the tensor product (page
46):

|vAB⟩ = |vA⟩ ⊗ |vB⟩

Now assume we wish to apply:

• A gate A to the first qubit |vA⟩

• A gate B to the second qubit |vB⟩

How do we describe this combined operation?

[ Formal Definition

The combined transformation on the system is represented by the tensor prod-
uct of the operators:

(A⊗B) (vA ⊗ vB)

This is not the same as applying A and B separately and then multiplying
the results. It’s a structured, mathematically-defined operation where:

• A acts only on the first qubit

• B acts only on the second qubit

The overall effect on the joint state vAB is captured by applying the composite
operator A⊗B.

> Circuit Interpretation

In a quantum circuit diagram, each horizontal line represent a qubit, and gates
are applied along these lines. The parallel application of gates is captured
mathematically by A ⊗ B, and visually by applying gates side-by-side in
the circuit.

|vA⟩ A

(A |vA⟩)⊗ (B |vB⟩)
|vB⟩ B

=
|vA⟩

A⊗B (A⊗B) |vAB⟩
|vB⟩
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[ Applying a Gate to One Qubit

Let’s say we have two qubits:

|vAB⟩ = vA ⊗ vB

We want to apply:

• No operation to qubit A (i.e., we want it to stay as it is)

• Gate B to qubit B

But since we’re working in the joint system, we need to describe the total gate
as acting on the full state vector in C4. We cannot apply gate B directly on the
2nd qubit in isolation.

To formalize “do nothing” to qubit A, we use the Identity Gate:

I =

[
1 0
0 1

]
(18)

Then, the correct total operation on the two-qubit state is:

(I ⊗B) (vA ⊗ vB)

This notation ensures that:

• I acts on qubit A and leaves it unchanged

• B is applied to qubit B

• The full operator still acts on the tensor product state space C4

In the circuit diagram, this is shown as:

|vA⟩
(I |vA⟩)⊗ (B |vB⟩)

|vB⟩ B

=
|vA⟩

I ⊗B (I ⊗B) |vAB⟩
|vB⟩

Even if we don’t draw the identity gate, it is implicitly applied to all un-
touched qubits, because we are still working in the joint space.

® Hadamard Transform on Multiple Qubits

In Section 2.3.6 page 34, we saw how to apply the Hadamard operation to a
single qubit system. Now that we are on multiple qubit systems, we want to
understand how to use the Hadamard operation.

The Hadamard Gate (H) creates superposition states. When applied to each
qubit in a system, it transforms a basis state into a uniform superposi-
tion of all possible states. To apply the Hadamard gate to two qubits in
parallel, we compute the tensor product of two Hadamard matrices:

H⊗2 = H ⊗H
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This results in a 4× 4 matrix:

H⊗2 = H ⊗H =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


For example, if we want to apply the Hadamard gate to the state |00⟩, mathe-
matically we have:

H⊗2 |00⟩ = 1

2


1
1
1
1

 =
1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩)

This is a uniform superposition over all possible two-qubit basis states.
From a circuit point of view:

|0⟩ H

(H ⊗H) |00⟩
|0⟩ H

The Hadamard operation can be generalized to n qubits:

H⊗n |0⟩⊗n =
1√
2n

2n−1∑
i=0

|i⟩ (19)

This creates a uniform quantum state across all 2n possibilities. Something im-
possible in classical computing without explicitly listing all combinations.
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3.4 Controlled NOT (CNOT) Gate
The Controlled-NOT (CNOT) gate is one of the most fundamental and
widely used two-qubit gates in quantum computing. It serves as a canonical
example of a quantum gate that cannot be decomposed into single-qubit
operations, and it plays a central role in the generation of entanglement, error
correction, and universal gate constructions.

{ How does it work?

The CNOT gate operates on two qubits:

• The control qubit |c⟩

• The target qubit |t⟩

Its defining action is conditional flipping of the target qubit. If the control
qubit is in the state:

• |1⟩, the CNOT gate applies the Pauli-X (NOT) gate (page 26) to the
target (so the target qubit flips and 0 becomes 1 and 1 becomes 0).

• |0⟩, the target is left unchanged.

This behavior can be expressed algebraically as:

CNOT |c⟩ |t⟩ = |c⟩ |t⊕ c⟩ (20)

Where:

• Qubit Input: two-qubit basis state |c⟩|t⟩ (|c⟩ |t⟩ = |c t⟩).

• CNOT operator: if c = 0, leave t unchanged, otherwise, flip t.

• XOR ⊕ symbol: denotes addition modulo 2.

t⊕ c =

{
0 if t = c

1 if t ̸= c

It flips t if and only if c = 1. The Addition modulo 2, often denoted
as ⊕, is a simple binary operation where the result is the remainder after
dividing the sum of two bits by 2. It’s also known as the exclusive OR
(XOR) operation.

a b a⊕ b
0 0 0
0 1 1
1 0 1
1 1 0

So, t ⊕ c means: “flip the target qubit t if and only if the control qubit c
is 1”.

• The control qubit |c⟩ stays the same.

• The target qubit |t⟩ becomes |t⊕ c⟩ (flipped if c = 1).
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) Matrix Representation

The matrix representation of the CNOT gate is:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (21)

It operates on two-qubit states ordered as:

{|00⟩ , |01⟩ , |10⟩ , |11⟩}

This matrix is clearly unitary, preserving the norm of quantum states, and
it interchanges the basis vectors |10⟩ and |11⟩ while leaving |00⟩ and |01⟩
unchanged, consistent with its definition.

For example, let a general two-qubit quantum state written as a linear combi-
nation of basis states:

|ψ⟩ = c0 |00⟩+ c1 |01⟩+ c2 |10⟩+ c3 |11⟩

Where:
c0, c1, c2, c3 ∈ C and

∑
|ci|2 = 1

Now apply the CNOT gate:
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·


c0
c1
c2
c3

 =


c0
c1
c3
c2


The amplitudes of the |10⟩ and |11⟩ components have been swapped. This
corresponds to flipping the target qubit only when the control is |1⟩:

|ψ⟩ = c0 |00⟩+ c1 |01⟩+ c2 |11⟩+ c3 |10⟩

¥ Who is the Control Qubit?

We have discussed that the CNOT gate operates on two qubits: control |c⟩
and target |t⟩. In the operations, how can we understand which is the control
qubit or the target qubit? By convention, the control qubit is the most
significant qubit, i.e., the leftmost one in the tensor product |c t⟩. So:

• |00⟩: control = 0, target = 0

• |01⟩: control = 0, target = 1

• |10⟩: control = 1, target = 0

• |11⟩: control = 1, target = 1
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Thus, in a state like:

|ψ⟩ = c0 |00⟩+ c1 |01⟩+ c2 |10⟩+ c3 |11⟩

The first qubit is the control, and the second is the target.

[ Generate Entanglement

An important aspect of the CNOT gate is its ability to generate entangle-
ment. For instance, if the control qubit is prepared in a superposition state
using a Hadamard gate H, such that the input to the CNOT is:

(H ⊗ I) |00⟩ = 1√
2
(|00⟩+ |10⟩)

Then applying the CNOT produces the entangled Bell state:

CNOT
(

1√
2
(|00⟩+ |10⟩)

)
=

1√
2
(|00⟩+ |11⟩)

This outcome exemplifies how CNOT combined with single-qubit gates
can prepare maximally entangled states, a prerequisite for many quantum
protocols including teleportation and superdense coding.

{ Visual representation of a CNOT

Finally, in quantum circuit diagrams, the CNOT is represented with a solid dot
on the control qubit and a ⊕ symbol on the target qubit, connected by a vertical
line. This visual notation helps emphasize the logical dependence between the
two qubits.

|c⟩ |c⟩

|t⟩ |c⟩ ⊕ |t⟩
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3.5 Generic Controlled Gate
After introducing the CNOT gate as controlled-X operation, we generalize the
idea to any unitary gate. In quantum computing, we often want to apply a
certain gate U to a target qubit vB , but only if the control qubit vA is
in state |1⟩. This leads us to the concept of a generic controlled gate, usually
denoted CU or CU .

The Generic Controlled Gate has the matrix form:

CU = CU =

[
I 0
0 U

]
(22)

This matrix acts on a two-qubit system, where:

• I is the 2× 2 identity matrix

• U is the any single-qubit unitary gate (Pauli-X, Z, Y, ...)

• The upper block (top-left 2× 2 block) acts when the control qubit is
|0⟩

• The lower block (bottom-right 2× 2 block) applies U when the control
qubit is |1⟩

This form is not separable, so the operator CU cannot be written as a tensor
product of two individual single-qubit gates: CU ̸= A⊗B. The reason is simple:

• A tensor product like I ⊗ U always applies U to the second qubit
regardless of the state of the first qubit.

• But CU applies U to the second qubit only if the first qubit is |1⟩.

So CU is a conditional operation that links the behavior of one qubit to the
value of the other.

{ How it works

Suppose we have two qubits:

vA = a0 |0⟩+ a1 |1⟩ vB = b0 |0⟩+ b1 |1⟩

Their joint state is:

vAB = vA ⊗ vB =


a0b0
a0b1
a1b0
a1b1


Then the result of applying the generic controlled gate is:

CU (vA ⊗ vB) =

[
I 0
0 U

]
a0b0
a0b1
a1b0
a1b1


This matrix selectively applies U to the last two components (i.e., when vA = 1),
leaving the first two unchanged.
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1. Control is |0⟩. If vA = |0⟩, then:

• a0 = 1

• a1 = 0

Consequently:

vAB =


a0b0
a0b1
a1b0
a1b1

 =


1 · b0
1 · b1
0 · b0
0 · b1

 =


b0
b1
0
0


Using the generic controlled gate, there is no change:

CU (vAB) =

I ·
b0
b1

U · 0
0


Because the upper block is multiplied by the identity matrix. So the
generic controlled gate does nothing when the control qubit is in state
|0⟩.

2. Control is |1⟩. If vA = |1⟩, then:

• a0 = 0

• a1 = 1

Now:

vAB =


a0b0
a0b1
a1b0
a1b1

 =


0 · b0
0 · b1
1 · b0
1 · b1

 =


0
0
b0
b1


Using the generic controlled gate:

CU (vAB) =

 I · 0
0

U · b0
b1


So the gate U is only applied to the target qubit when the control
qubit is |1⟩.
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3.6 SWAP Gate
The SWAP gate is a two-qubit gate that exchanges the states of the two
qubits. That is, if qubit A is in state vA and qubit B in state vB , then after
applying SWAP, their roles are reversed.

) Matrix Representation

The SWAP gate is defined by the following 4× 4 unitary matrix:
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (23)

This matrix operates on the basis states in the usual order:

{|00⟩ , |01⟩ , |10⟩ , |11⟩}

And swaps the coefficients of |01⟩ and |10⟩, leaving |00⟩ and |11⟩ unchanged.

{ How it works

Suppose we have two qubits in superposition:

vA = a0 |0⟩+ a1 |1⟩ vB = b0 |0⟩+ b1 |1⟩

Their joint state is:

vAB = vA ⊗ vB = a0b0 |00⟩+ a0b1 |01⟩+ a1b0 |10⟩+ a1b1 |11⟩

After applying the SWAP gate:

SWAP (vAB) = a0b0 |00⟩+ a1b0 |01⟩+ a0b1 |10⟩+ a1b1 |11⟩

But this result can be obtained also doing vB ⊗ vA:

vBA = b0a0 |00⟩+ b0a1 |01⟩+ b1a0 |10⟩+ b1a1 |11⟩

Note that the coefficients ai and bj are scalar: ai · bj = bj · ai. So the SWAP
gate effectively implements:

vA ⊗ vB
SWAP gate−−−−−−−→ vB ⊗ vA (24)

> Circuit Representation

In circuit diagrams, the SWAP gate is often draw using crossed lines with ×
symbols:

|vA⟩ |vB⟩
|vB⟩ |vA⟩

58



3 Multiple Qubit Gates 3.6 SWAP Gate

⋆ SWAP as Three CNOTs

An important implementation detail is that SWAP can be decomposed
into three CNOT gates (page 53). This is crucial because SWAP is not
a native gate on most quantum hardware, but CNOT often is.

The decomposition is represented graphically as:

swap

|vA⟩ |vB⟩

|vB⟩ |vA⟩

1. First CNOT:

• Control qubit: vA
• Target qubit: vB

2. Second CNOT:

• Control qubit: vB
• Target qubit: vA

3. Third CNOT:

• Control qubit: vA
• Target qubit: vB

|0⟩ |0⟩ |1⟩ |1⟩

|1⟩ |1⟩ |1⟩ |0⟩

And:

|1⟩ |1⟩ |0⟩ |0⟩

|0⟩ |1⟩ |1⟩ |1⟩
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3.7 Toffoli Gate (CCNOT)
The Toffoli Gate, or CCNOT (Controlled-Controlled-NOT), is a three-
qubit gate where two qubits act as controls and one as the target. It
generalizes the behavior of the CNOT gate by requiring both control qubits
to be in the state |1⟩ before the NOT operation is applied to the target.

) Matrix Representation

The matrix form of the Toffoli gate is an 8 × 8 identity matrix with only two
elements swapped:

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


This matrix swpas the |110⟩ ↔ |111⟩ entries. In other words, all basis states
remain unchanged except:

• |110⟩ becomes |111⟩

• |111⟩ becomes |110⟩

® Gate Behavior

The CCNOT gate can be described as follows:

• Inputs: v0, v1 as control qubits, and v2 as target qubit.

• Output:
v2 → v2 ⊕ (v0 ∧ v1)

This means:

• If v0 logically combined with v1 returns true, then flip v2. In other words,
flip if and only if v0 and v1 are 1.

• Otherwise, leave v2 unchanged.

This behavior is nonlinear in the classic sense, and it’s what makes Toffoli es-
pecially powerful: it can simulate universal classical logic within a quantum
system. So any logic circuit that we can build using AND, OR and NOT gates,
can also be implemented using only Toffoli gates.
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> Circuit Notation

In quantum circuit diagrams, the CCNOT gate is drawn with:

• Two control dots on the top two lines (for v0, v1)

• A ⊕ symbol on the third line (for the target qubit v2)

• Vertical lines connecting the three

This shows the conditional behavior clearly: the NOT is triggered only when
both controls are active.

|v0⟩ |v0⟩

|v1⟩ |v1⟩

|v2⟩ |v2⟩ ⊕ |v0⟩ ∧ |v1⟩
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3.8 Foundations of Universal Quantum Circuits
To implement arbitrary quantum computations, we must answer two fundamen-
tal questions:

1. Which gates are sufficient to build any quantum circuit?

2. How do we mathematically model a circuit built from those gates?

This section addresses both: it first introduces the concept of universal gate
sets, and then explains how to formally represent quantum circuits as matrices
acting on the full system state.

[ Universal Quantum Gate Sets

Quantum computation occurs within the framework of unitary transformations
on quantum states. However, since the space of all unitary operations is infinite
(continuous), we cannot construct every possible unitary matrix exactly with a
finite number of gates. Instead, we aim for approximate universality: the
ability to approximate any unitary operation to arbitrary precision using a small
set of elementary gates.

A Universal Quantum Gate Set is a finite collection of quantum gates from
which any unitary operation on any number of qubits can be approximated
arbitrarily well.

Example 1

One of the most commonly used universal sets includes:

{H,T,CNOT}

• H: Hadamard gate, creates superposition

• T :
π

8
phase gate, a non-Clifford gate necessary for universality

• CNOT: a two-qubit entangling gate

With these gates alone, it is possible to approximate any quantum circuit.
This is backed by the Solovay-Kitaev, which ensures efficient approxima-
tion of unitaries using such a discrete set.

The set of Clifford gates alone is not universal. To achieve universality, we
must include at least one non-Clifford gate, like T gate. Without it, the
resulting circuits can be efficiently simulated classically, and therefore cannot
exhibit true quantum advantage.
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[ Modelling Quantum Circuits as Matrices

Quantum circuits are not only visual tools; they correspond to precise math-
ematical transformations. Every complete circuit defines a unitary matrix
acting on the system’s joint state vector. Understanding how to construct this
matrix from a sequence of gates is crucial for analysis and simulation.

When building the matrix of a circuit composed of multiple gates and
qubits, we follow three formal rules:

1. Tensor product across qubits. Gates applied simultaneously on dif-
ferent qubits are composed using the tensor product. For example:

A on qubit 1, B on qubit 2 ⇒ A⊗B

2. Matrix product along time (sequential composition). Gates ap-
plied in sequence (over time) are composed via matrix multiplication,
applied from right to left. This reflects the order of function composi-
tion.

3. Identity padding for untouched qubits. If a gate acts only on some
of the qubits, we insert the identity matrix I for those that are not
affected, to preserve the tensor product structure.
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3.9 Entanglement
In a multi-qubit quantum system, Entanglement refers to the phenomenon
in which the quantum state of each qubit cannot be described inde-
pendently of the state of the orders. Entangled states are non-separable,
meaning they cannot be expressed as the tensor product of individual qubit
states.

• The state of a n-qubit system is described by 2n complex ampli-
tudes.

® Why? Because a general quantum state is a superposition of all
basis states. For n qubits, there are 2n possible basis states (e.g., |000⟩,
|001⟩, . . . , |111⟩). So a general state is:

|ψ⟩ = c0 |0 . . . 0⟩+ c1 |0 . . . 1⟩+ · · ·+ c2n−1 |1 . . . 1⟩

Where:

– c0, c1, . . . , c2n−1 ∈ C.

– So we need 2n complex numbers = 2 · 2n = 2n+1 real numbers.

• Accounting for normalization and the irrelevance of global phase,
it takes 2n+1 − 2 real numbers to fully specify the state.

If we want to completely describe the quantum state of an n-qubit
system, so that we can simulate it, reconstruct it, or predict its evolution,
we need to know 2n+1 − 2 real numbers.

In other words, if someone gives us:

– A list of 2n+1 − 2 real values

– And tells us “these specify the quantum state”

Then:

1. We can reconstruct the full state vector

2. We know everything we need to calculate outcomes of any measur-
able

3. We can simulate unitary evolution, or compute entanglement, etc.

Example 2: n = 1 qubit

The state is:

|ψ⟩ = α |0⟩+ β |1⟩ with α, β ∈ C

That’s 4 real numbers (2 complex), but minus:

– 1 for normalization: |α|2 + |β|2 = 1

– 1 for global phase: eiθ is physically irrelevant
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So, to fully describe a single qubit, we need:

21+1 − 2 = 2 real numbers

And this make sense, because we can describe any pure qubit with
two real angles θ, ϕ on the block sphere (page 19).

® Why 2n+1?

– 2n complex amplitudes for an n-qubit system (because there are 2n

basis states).

– Each complex number is made up of 2 real numbers: the real part
and the imaginary part. So we have to add one to n.

® Why do we subtract 2?

– Normalization. Quantum states must always be normalized:

2n−1∑
i=0

|ci|2 = 1

This is one constraint on the set of amplitudes. Since it’s a real-
valuated equation, it removes 1 real degree of freedom from the total.

– Global Phase. In quantum mechanics, multiplying a quantum state
by a global phase eiθ doesn’t change anything physically measurable:

|ψ⟩ and eiθ |ψ⟩

Are physically indistinguishable, they lead to the same mea-
surement outcomes. So we treat two such states as equivalent.
That means we’re overcounting one extra complex degree of free-
dom, which corresponds to the global phase. This removes another
real parameter (the angle θ).

• In contrast, n independent (separable, then not entangled)
qubits would only require 2n real parameters.

® What about independent qubits? If the qubits are not entangled,
each qubit can be written separately as:

|ψi⟩ = αi |0⟩+ βi |1⟩

Each qubit needs:

– αi, βi ∈ C
– But again, we subtract 2 real numbers (normalization and global

phase) for each qubit.

So one single qubit state needs 2 real parameters.
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• Since 2n ≫ 2n, most quantum states are entangled.
® What does this mean? If a state can be written as:

v1 ⊗ v2 ⊗ · · · ⊗ vn

Then it only uses 2n real numbers. But a general n-qubit state needs
2n+1 − 2 ≫ 2n real numbers. So: almost all quantum states cannot
be written as tensor products of single-qubit states. These are the
entangled states.

® How is this possible? The full space of quantum states is expo-
nentially larger (2n+1 − 2) than the subspace of separable states (2n).
We can think of the space of all quantum states as a huge-dimensional
sphere of radius 1 (because of normalization).

– The set of separable states is a tiny curved surface embedded inside
that space.

– It’s so tiny that if we pick a random point on the full sphere (a random
quantum state), we will almost surely land outside the separable
surface.

The probability of randomly choosing a separable state from the set of all
quantum states is essentially zero.

Note that this is not a mathematical trick! This is experimentally ob-
servable. If we:

– Generate random quantum states (e.g. using random circuits)
– Or simulate the uniform distribution over the Hilbert space

We’ll find that:

– With high probability, the state cannot be written as a product of
individual qubit states.

– In fact, the expected entanglement entropy of a randomly chosen
pure state is very close to maximal.

Example 3: Bell State

One of the canonical examples of an entangled state is the Bell state:∣∣Φ+
〉
=

1√
2
(|00⟩+ |11⟩) (25)

Suppose we try to write this as product of two qubits:

• Let vA = a0 |0⟩+ a1 |1⟩

• Let vA = b0 |0⟩+ b1 |1⟩

Their tensor product becomes:

vA ⊗ vB = a0b0 |00⟩+ a0b1 |01⟩+ a1b0 |10⟩+ a1b1 |11⟩
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To match the Bell state, we would require:

a0b0 =
1√
2
, a1b1 =

1√
2
, a0b1 = 0, a1b0 = 0

But if a0b1 = 0, then at least one of a0 or b1 must be zero. Similarly,
if a1b0 = 0, one of a1 or b0 must be zero. This leads to a contradic-
tion, because we also need a0b0 ̸= 0 and a1b1 ̸= 0. Therefore, no such
a0, a1, b0, b1 exist.
Conclusion: the Bell state cannot be written as a tensor product of two
individual qubit states, it is entangled.

[ The Nature of Entanglement

Entanglement is a structural property of the quantum state, not dependent
on the basis. This contrasts with superposition, which is basis-dependent.

• Whether a state is entangled depends on the decomposition of the system.

• A state can be entangled with respect to one partitioning of subsystems,
and separable under another.

• In most contexts, when we say a state is entangled, we refer to its en-
tanglement with respect to the individual qubits (standard tensor
product structure).

So we can change the basis of the individual qubits (rotate them, use Hadamard
basis), but we will not be able to write Bell state state as |ψA⟩ ⊗ |ψB⟩. No
matter what basis we use, we will not be able to “break” the entanglement.
Entanglement is about whether the state can be written as a product of
parts, this is a property of the whole structure, not of how we write it.

> Entangling Gates

A gate is said to be entangling if it is capable of producing entangled
states from separable inputs. Not all two-qubit gates are entangling.

• A generic 2-qubit gate is a 4×4 unitary matrix, with 16 complex entries
(minus constraint from unitarity).

• Two single-qubit gates acting independently on two qubits use only 2×4 =
8 complex parameters.

Thus, most two-qubit gates are not tensor products of single-qubit gates.
If a gate cannot be written as U1⊗U2, it is non-separable and can generate
entanglement.
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Example 4: CNOT as an Entangling Gate

The CNOT gate can transform separable states into entangled states,
for example:

CNOT
(
|0⟩+ |1⟩√

2
⊗ |0⟩

)
=

|00⟩+ |11⟩√
2

=
∣∣Φ+

〉
(Bell state)

This demonstrates the key role of CNOT in quantum-algorithms, it cre-
ates entanglement, which is a resource for quantum advantage.

® What are Bell States?

Bell States are four special two-qubit states:

|Φ+⟩ =
1√
2
(|00⟩+ |11⟩) |Φ−⟩ =

1√
2
(|00⟩ − |11⟩)

|Ψ+⟩ =
1√
2
(|01⟩+ |10⟩) |Ψ−⟩ =

1√
2
(|01⟩ − |10⟩)

(26)

That are:

• Maximally entangled: measuring one qubit fully determines the other.

• Orthonormal: they form a basis of the two-qubit Hilbert space.

• Used in fundamental protocols like teleportation, superdense coding,
and entanglement-based quantum cryptography.

Bell states represent all possible maximally entangles superpositions of
two-qubit basis states.

. Why are they important?

Bell states are not just theoretical constructs, they are:

• Fundamental to quantum computing: often used as building blocks
for more complex states.

• Hard to simulate classically: their entanglement implies that classical
representations cannot compress them efficiently.

• Maximally entangled: each individual qubit, when observed in isola-
tion, appears completely random, even though the total state is pure
and deterministic.

When a Bell state is measured on one qubit, the outcome of the second qubit is
fully correlated, but until that measurement happens, each qubit looks like it
is in a completely mixed state (i.e. maximum uncertainty). This contrast
with unentangled (separable) states, where each qubit can be described
independently and has less uncertainty when observed locally.
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® How to create Bell states

Bell states can be created using a simple 2-gate quantum circuit:

1. Apply a Hadamard gate to the first qubit:

H |0⟩ = 1√
2
(|0⟩+ |1⟩)

2. Apply a CNOT gate, with:

• Control: qubit 1

• Target: qubit 2

|0⟩ H

|0⟩

The final output is:

CNOT (H ⊗ I) (|00⟩) = 1√
2
(|00⟩+ |11⟩) =

∣∣Φ+
〉

So this circuit creates the Φ+ Bell state starting from |00⟩. Mathematical:

1. Compute H ⊗ I, i.e., apply Hadamard to the first qubit:

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


2. Then apply the CNOT operator to that result:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


3. Multiply:

CNOT · (H ⊗ I) |00⟩ = 1√
2
(|00⟩+ |11⟩)

Example 5: Bell States in the Hadamard Basis

In this exercise, we express the Bell state |Φ+⟩ in the Hadamard basis
instead of the computational basis.

Bell state |Φ+⟩ in the Hadamard basis. Given:∣∣Φ+
〉
=

1√
2
(|00⟩+ |11⟩)
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We aim to re-express this state using the Hadamard basis {|+⟩ , |−⟩},
where:

• |+⟩ = 1√
2
(|0⟩+ |1⟩)

• |−⟩ = 1√
2
(|0⟩ − |1⟩)

1. Invert the definitions. To convert from the computational basis
to the Hadamrd basis, we invert the above equations to express |0⟩
and |1⟩ in terms of |+⟩ and |−⟩:

• |0⟩ = 1√
2
(|+⟩+ |−⟩)

• |1⟩ = 1√
2
(|+⟩ − |−⟩)

2. Substitute into |00⟩ and |11⟩. We compute the tensor products
using the expression above.

• Compute |00⟩:

|00⟩ = |0⟩ ⊗ |0⟩

=

(
1√
2
(|+⟩+ |−⟩)

)
⊗
(

1√
2
(|+⟩+ |−⟩)

)
=

1

2
(|++⟩+ |+−⟩+ |−+⟩+ |−−⟩)

• Compute |11⟩:

|11⟩ = |1⟩ ⊗ |1⟩

=

(
1√
2
(|+⟩ − |−⟩)

)
⊗
(

1√
2
(|+⟩ − |−⟩)

)
=

1

2
(|++⟩ − |+−⟩ − |−+⟩+ |−−⟩)

3. Add the two to get |Φ+⟩. Now add the two results:∣∣Φ+
〉
=

1√
2
(|00⟩+ |11⟩)
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Substituting:

|Φ+⟩ =
1√
2

[
1

2
(|++⟩+ |+−⟩+ |−+⟩+ |−−⟩)

+
1

2
(|++⟩ − |+−⟩ − |−+⟩+ |−−⟩)

]
=

1√
2
· 1
2
(2 |++⟩+ 0 |+−⟩+ 0 |−+⟩+ 2 |−−⟩)

=
1√
2
· 1
2
(2 |++⟩+ 2 |−−⟩)

=
1√
2
(|++⟩+ |−−⟩)

Thus, in the Hadamard basis, we have:∣∣Φ+
〉
=

1√
2
(|++⟩+ |−−⟩)

Which is a Bell-like state expressed in the Hadamard basis instead of the
computational basis. QED
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3.10 Measurement in Multi-Qubit Systems
We begin with a general two-qubit state:

|vC⟩ = |vAvB⟩ = c0 |00⟩+ c1 |01⟩+ c2 |10⟩+ c3 |11⟩

This is an entangled or general superposed state over the two-qubit basis. But
the question is: What happens to the state of the system if we measure
only qubit A?

[ Decomposition Strategy

The idea is to separate the global state into parts conditioned on the state
of qubit A:

|v⟩ = c01 |0⟩ ⊗
c0 |0⟩+ c1 |1⟩

c01
+ c23 |1⟩ ⊗

c2 |0⟩+ c3 |1⟩
c23

Where:

• c01 =

√
|c0|2 + |c1|2

• c23 =

√
|c2|2 + |c3|2

This expression means: the total state is a superposition of two conditional
branches:

• One where qubit A is |0⟩, and qubit B is in a normalized superposition of
|0⟩, |1⟩.

• One where qubit A is |1⟩, and qubit B is in another normalized state.

® What happens after a Measurement?

1. Case 1. Qubit A is measured as |0⟩:

• The outcome collapses the state: c2 = 0, c3 = 0

• The system is no longer a superposition, it’s now in:

|vB⟩ =
c0 |0⟩+ c1 |1⟩

c01

Which is a valid normalized single-qubit state (i.e., |vB⟩⟨vB | = 1)

2. Case 2. Qubit A is measured as |1⟩:

• Similarly, c0 = 0, c1 = 0

• New state of B becomes:

|vB⟩ =
c2 |0⟩+ c3 |1⟩

c23
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Measuring one qubit in an entangled system instantaneously collapses the
entire state, even though only one qubit is directly observed.

This feels strange because measurement is local, yet the effect is nonlo-
cal, it determines the state of the other qubit, even if it’s far away! This is
a manifestation of quantum entanglement and is deeply linked to the
phenomenon of quantum nonlocality.

Example 6: Bell state

Let’s apply this idea to the Bell state:

|v⟩ = 1√
2
(|00⟩+ |11⟩)

This can be rewritten as:

|v⟩ = 1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)

So we’re in the entangled state |Φ+⟩.

Now, we measure qubit A. If we get outcome:

• |0⟩, the global state collapses to |00⟩ ⇒ qubit B is now in state |0⟩.

• |1⟩, the state collapses to |11⟩ ⇒ qubit B is in state |1⟩.

73



3 Multiple Qubit Gates 3.11 Limits of Quantum Information

3.11 Limits of Quantum Information
3.11.1 No-Cloning Principle

The No-Cloning Theorem states that it is impossible to create an exact
copy of an arbitrary unknown quantum state. This is not a limitation of
current technology, it is a fundamental result derived directly from the linearity
of quantum mechanics.

® Why does it matter?

The no-cloning principle is critical because it prevents:

1. Violations of quantum mechanics: cloning would break the rules of
unitarity and linearity of quantum evolution.

2. No-signaling violation (section 3.11.3 in depth, page 79): if cloning were
possible, we could instantly send information across large distances,
violating causality.

3. Infinite data compression: in theory, we could encode an arbitrarily
long classical string into a quantum state and clone it infinitely to retrieve
the data using quantum tomography.

4. Quantum error correction becomes harder: many classical redun-
dancy techniques rely on copying data, which is not possible in quantum
mechanics.

¥ Formal Proof

Let’s try to define a hypothetical cloning unitary operator U . We assume:

U (|x⟩ ⊗ |0⟩) = |x⟩ ⊗ |x⟩

This says: take any qubit |x⟩ and a blank |0⟩, and get two |x⟩. Now take two
arbitrary qubits |x⟩ and |y⟩, and apply the same gate to both:

U |x⟩ |0⟩ = |x⟩ |x⟩ U |y⟩ |0⟩ = |y⟩ |y⟩

Since U is a unitary operator, it preserves inner products and the follow-
ing statement should be true:

⟨x⊗ 0|y ⊗ 0⟩ = ⟨x⊗ x|y ⊗ y⟩

Let’s compute both sides:

• Left side, before cloning:

⟨x⊗ 0|y ⊗ 0⟩ = ⟨x|y⟩ · ⟨0|0⟩
= ⟨x|y⟩ · 1
= ⟨x|y⟩
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• Right side, after cloning:

⟨x⊗ x|y ⊗ y⟩ = ⟨x|y⟩ · ⟨x|y⟩

= ⟨x|y⟩2

So now’re claiming:
⟨x|y⟩ = ⟨x|y⟩2

Let’s analyze this equation:

• Let α = ⟨x|y⟩ ∈ C

• Then α = α2 ⇒ α− α2 = 0 ⇒ α (α− 1) = 0

So this is only true if α = 0 or α = 1:

• The states are identical; same direction, same vector:

⟨x|y⟩ = 1

• The states are orthogonal; completely distinguishable:

⟨x|y⟩ = 0

Unfortunately, for arbitrary quantum states, the inner product is almost
always somewhere between 0 and 1. Only in special cases (perfect alignment
or perfect orthogonality) is it exactly 0 or 1. That’s why we say:

⟨x|y⟩ ≠ 0, 1 in general

This is exactly why the no-cloning proof works, because it fails for gen-
eral (non-orthogonal) input states, which are the rule rather than the excep-
tion.

. Apparent Violation via CNOT

Let’s explore a common misconception. We apply a CNOT gate with:

• Control qubit vA = a0 |0⟩+ a1 |1⟩

• Target qubit vB = |0⟩

Naively, one might write:

CNOT (vA, vB) = vA ⊗ (vA ⊕ 0) = vA ⊗ vA

It looks like we cloned vA! But this is incorrect because:

• That informal rule vA ⊕ vB only works for classical basis states (|0⟩
or |1⟩).

• When vA is in a superposition, this model breaks.

75



3 Multiple Qubit Gates 3.11 Limits of Quantum Information

What really happens is:

1. Initial state:
vA ⊗ |0⟩ = a0 |00⟩+ a1 |10⟩

2. Apply CNOT (flip second bit if control is 1):

⇒ a0 |00⟩+ a1 |11⟩

This is not a clone! It’s an entangled state, we cannot factor it as |ψ⟩ ⊗ |ψ⟩.
Compare with actual cloned state:

(a0 |0⟩+ a1 |1⟩)⊗ (a0 |0⟩+ a1 |1⟩) = a20 |00⟩+ a0a1 |01⟩+ a0a1 |10⟩+ a21 |11⟩

They’re clearly different: cloning would produce 4 terms, but CNOT produces
only 2. Thus CNOT does not clone a general qubit. It creates entanglement,
not copies.
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3.11.2 No-Deleting Principle

The No-Deleting Theorem states that it is impossible to delete an ar-
bitrary unknown quantum state. In other words, there does not exist
a unitary operator U that can take a pair of identical qubits |x⟩ ⊗ |x⟩ and
produce:

U (|x⟩ ⊗ |x⟩) = |0⟩ ⊗ |x⟩
This operation would “delete” the first copy of |x⟩, replacing it with a standard
|0⟩, while leaving the second untouched.

® Why is deletion a problem?

If we could delete an arbitrary state, we could:

• Circumvent information preservation in quantum systems (which must be
unitary and reversible).

• Violate quantum linearity, much like cloning would.

• Enable undesirable operations that break the symmetry and reversibil-
ity of quantum evolution.

¥ Formal Proof

Let’s assume that such a deleting unitary U exists. We define:

U (|x⟩ ⊗ |x⟩) = |0⟩ ⊗ |x⟩ U (|y⟩ ⊗ |y⟩) = |0⟩ ⊗ |y⟩

Take the inner product between both results:

• Left side, before deleting: 〈
x|

〈
x| · U†U · |y

〉
|y
〉

Because U†U = I, and inner products distribute:

= ⟨x|y⟩ · ⟨x|y⟩ = ⟨x|y⟩2

• Right side, after deleting:

⟨x|0⟩ · ⟨y|0⟩ = ⟨x|y⟩

So now we’re saying:

⟨x|y⟩2 = ⟨x|y⟩ ⇒ ⟨x|y⟩ · (⟨x|y⟩ − 1) = 0

So the only possible solutions are:

⟨x|y⟩ = 0 (orthogonal) or ⟨x|y⟩ = 1 (identical)

But for general quantum states, ⟨x|y⟩ /∈ {0, 1}, so we’ve reached a contra-
diction. Therefore, no such deletion operator U can exist for arbitrary
stats.
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[ Physical Meaning

The no-deleting principle complements the no-cloning principle:

• We can’t make copies of unknown quantum states (no-cloning)

• We can’t erase arbitrary copies either (no-deleting)

These theorems emphasize that quantum information is conserved:

• It cannot be copied freely

• It cannot be erased freely

• It can only be transferred (e.g., through teleportation or interaction)
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3.11.3 No-Signaling Principle

The No-Signaling Theorem asserts that: no information can be trans-
mitted faster than the speed of light, even using entangled quantum
systems.

Although entanglement leads to instantaneous correlations between dis-
tant qubits, it does not allow communication or information transfer with-
out a classical channel.

This principle preservers causality and ensures that quantum mechanics re-
mains compatible with special relativity.

¥ Explained Proof

To understand the no-signal principle in quantum mechanics, consider the
classical scenario involving two observers, Alice and Bob, who share an entan-
gled pair of qubits. Specifically, they share the Bell state:∣∣Φ+

〉
=

1√
2
(|00⟩+ |11⟩)

Alice has qubit a, Bob has qubit b, and they are located far apart, even at
opposite ends of the universe.

What happens when Alice measures? Suppose Alice chooses to measure
her qubit in the computational basis.

• If she gets outcome |0⟩, the join state collapses to |00⟩

• If she gets |1⟩, the state collapses to |11⟩

In both cases, Bob’s qubit becomes perfectly correlated with Alice’s result.
So yes, Alice’s measurement causes the collapse of Bob’s qubit; instantly, no
matter the distance.

Can Bob detect this? Here’s the crucial point: Bob cannot tell whether
Alice has measured her qubit.

Why? Because from Bob’s perspective, before doing anything, his own qubit
is described by the reduced density matrix:

ρB =
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1|

This is a completely mixed state. If Bob measures it, he gets:

• 50% chance of |0⟩

• 50% chance of |1⟩

Now suppose Alice has already measured, and the state is now |00⟩.

• Bob’s qubit is now definitely |0⟩
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• But Bob doesn’t know that, and he has no way to know

• The only way for him to learn this is:

1. To measure (and discover the value)

2. Or to be told by Alice via classical communication

Why this preserves No-Signaling. Even though Alice’s measurement
affects the state of Bob’s qubit, it does not change what Bob sees sta-
tistically, unless he receives a message from her. Therefore:

• Alice cannot use entanglement to send messages faster than light.

• Bob’s observable outcomes are indistinguishable whether Alice mea-
sured or not.

• Entanglement creates correlations, not communication.

Summary of the story

• Entanglement causes instant collapse of joint state when one qubit is
measured.

• But the other party cannot detect this collapse unless they measure
or are told.

• No observable effect on Bob’s side = no information transfer = no
violation of causality.

® Why it matters?

The no-signaling principle guarantees:

✓ No faster-than-light communication, preserving consistency with rel-
ativity

✓ No “quantum telepathy” , even in systems that exhibit entanglement

✓ Measurement outcomes are random locally, even when entanglement
exists globally.
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