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Preface
Each theory section in these notes has been taken from the following sources:

• Course slides. [2]

• SE4HPC Exercise Book. [3]

About:

§ GitHub repository

These notes are an unofficial resource and shouldn’t replace the course material
or any other book on software engineering. It is not made for commercial
purposes. I’ve made the following notes to help me improve my knowledge and
maybe it can be helpful for everyone.

As I have highlighted, a student should choose the teacher’s material or a
book on the topic. These notes can only be a helpful material.

During the Software Engineering for HPC course, we created two projects:

1. Requirement Engineering and Design Project (section 1 to 5). More in-
formation in the following repository:

§ SE4HPC_project_RD

2. DevOps Project (section 6 to 7). More information in the following repos-
itories:

§ SE4HPC_project_part1

§ SE4HPC_project_part2
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1 Introduction

1 Introduction

1.1 The importance of software engineering
Software engineering is so important because it is everywhere. Our society is
now totally dependent on software-intensive systems. Think about it. The
society could not function without software, for example:

• Transportation systems;

• Energy systems;

• Manufacturing systems.

For these reasons, software failures cannot be tolerated.

In the following list, we can see some famous software issues:

• 911 Outage on April 2014. On 10th April 2014, Washington State had
no 911 service for six hours. A software issue causes this event. The soft-
ware dispatching the calls had a counter used to assign a unique identifier
to each call. The counter went over the threshold defined by developers.
All calls from that moment on were rejected.

More info is here.

• Ariane 5, 1996. On 4th June 1996, forty seconds after take off, Ariane
5 broke up and exploded. The total cost for developing the launcher has
been 8000 million dollars. The launcher contained a cluster of satellites for
500 million dollars. Again, the explosion was caused by software failure.

More info is here: accident tech report and video.
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1 Introduction 1.2 Software engineering: definition

1.2 Software engineering: definition
There are some fields of computer science dealing with software systems:

• Large and complex;

• Built by teams;

• It exists in many versions;

• Last many years;

• Undergo changes.

In each field, a software engineer needs to have some skills. In contrast to a
programmer that has the following abilities:

• They develop a complete program;

• They work on known specifications;

• They work individually.

A software engineer has the following skills:

• Identifies requirements and develops specifications;

• Designs a component to be combined with other components, developed,
maintained, and used by others; component can become part of several
systems;

• Works in a team.

We can summarize the skills of a software engineer as follows:

• Technical

• Project management

• Cognitive

• Enterprise organization

• Interaction with different cultures

• Domain knowledge

The main goal of a software engineer is to develop software products. Not
only is the product significant, but the process is also fundamental. The
quality of the process affects the quality of the product.

6



1 Introduction 1.3 The software product and the process

1.3 The software product and the process
The product developed by a software engineer differs from traditional product
types. It isn’t easy to describe and evaluate because it is intangible. Some
aspects affecting the product quality:

• Development technology;

• Process quality;

• People quality;

• Cost, time and schedule.

1.3.1 ISO/IEC 25010

An ISO (International Organization for Standardization) called ISO/IEC 25010
comprises the nine quality characteristics:

Figure 1: ISO/IEC 25010

1.3.2 Productivity

A process quality to consider is productivity (the process of producing
a product). The definition can be: “ability to produce a good amount of
product”. To measure it, we can use delivered items by unit of effort,
where:

• Delivered items: lines of code (and variations) function points;

• Unit of effort: person month (note: persons and months cannot be
interchanged).
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1 Introduction 1.3 The software product and the process

1.3.3 Timeliness

Another process quality to consider is timeliness. The definition is: "the ability
to respond to change requests in a timely fashion".

As you can see by the graph, the “user needs” is a linear function (and sometimes
can be exponential!). A software engineer should be able to respond to the
client’s requests as soon as possible. As the graph shows, a request made on time
t0 is completed on time t2; but another request can be made at that time, and
so on. The actual system capabilities can’t grow up always because sometimes
there are “brainstorming times” to increase product quality (ISO/IEC 25010).
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1 Introduction 1.4 Software Lifecycle

1.4 Software Lifecycle
Initially, no reference model is inside a software lifecycle: code and fix (or refac-
toring). However, a traditional waterfall model is chosen to react to the many
problems that a software engineer faces.

1.4.1 Waterfall model

The waterfall model is a breakdown of development activities into lin-
ear sequential phases, meaning they are passed down onto each other, where
each phase depends on the deliverables of the previous one and corresponds to
a specialization of tasks. [1] Its organization is the following:

• High phases:

– Feasibility Study: this is a cost-benefit analysis.
The main goal is determining whether the project should be started
(e.g. buy or make), possible alternatives, and needed resources.
The outcome is a feasibility study document. This paper pro-
vides:

∗ A preliminary problem description;
∗ Some scenarios describing possible solutions;
∗ Costs and schedules for the different alternatives.

– Requirements Analysis and Specification: this is an analysis
of the domain in which the application takes place.
The main goal is to identify requirements and derive specifica-
tions for the software. Note these specifics require a (continuous)
interaction with the user and an understanding of the properties of
the domain.
The outcome is a particular document called Requirements Anal-
ysis and Specification Document (RASD).

– Design: this is the definition of the software architecture.
There, the definition of components (modules) and the relations/in-
teractions among these components.
The main goal is to support the concurrent development of
separate responsibilities.
The outcome is a summary of this info in a design document.

• Low phases:

– Coding and Unit Test: each module is implemented using the
chosen programming language. Furthermore, each module is
tested in isolation by the module developer. Also, the programs
should include their documentation.

– Integration and System Test: the modules are integrated into
(sub)systems. The integrated (sub)systems are tested. Follows
an incremental implementation scheme. A complete system test is
needed to verify the overall properties. Note that sometimes we have
alpha test and beta test.

9



1 Introduction 1.4 Software Lifecycle

– Deployment: is the process used to conceive, specify, design, pro-
gram, document, test, and bug fix to create and maintain applica-
tions, frameworks, or other software components.

– Maintenance: the maintenance is divided into two types:

∗ Corrective deals with the repair of faults or defects found.
∗ Evolution is also divided into three types:

· Adaptive maintenance: consists of adapting software to
changes in the environment (the hardware or the oper-
ating system, business rules, government policies).

· Perfective maintenance: mainly deals with accommodating
new or changed user requirements.

· Preventive maintenance: concerns activities aimed at in-
creasing the system’s maintainability.

. Problems derived from correction and evolution

Note: the distinction between correction and evolution can be unclear
because specifications often must be completed and clarified. This causes prob-
lems because specs are usually part of a developer and customer contract.

• Early frozen specs can be problematic because they are more likely to
be wrong.

• Another problem is software evolution because it is never anticipated
or planned. Since the software is easy to change, often, under emergency,
changes are applied directly to code, and consequently, the state of project
documents is inconsistent.

✓ Solutions - Best practices

Some good engineering practices exist to solve the evolution problem: first,
modify the design, then change implementation and apply changes
consistently in all documents. Also, the software must be designed to
accommodate changes cost-effectively. This is one of the main goals of
software engineering.

✓ Flexible processes

We can make the waterfall model more flexible. In this case, the main
goal is to adapt to changes (especially in requirements and specs).
The idea is that the stages are not necessarily sequential, and processes
become iterative and incremental.
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2 HPC Software, Relevant Qualities and Systems Engineering Methods

2 HPC Software, Relevant Qualities and Systems
Engineering Methods

2.1 High Performance Computing Software
There’s no single definition of HPC, but it can be explained in a number of
ways:

Definition 1

The practice of aggregating computing power in a way that delivers much
high performance than one could get out of a typical desktop computer or
workstation to solve large problems in science, engineering, or business.

Thousands of processors working in parallel to analyze billions of pieces
of data in real time, performing calculations thousands of times faster
than a normal computer.

The use of parallel processing for running advanced, large-scale appli-
cation programs efficiently, reliably and very quickly on supercomputer
systems.

The platform technology concerned with programming for performance,
where performance takes the broad meaning of:

• Speed (reducing time to solution);

• Energy efficiency (doing more with less power);

• Upscaling (handling larger problems such as simulating a wing
aand then a full plane, or a cell and then an organ);

• High throughput (the ability to handle large volumes of data in
near real-time, as required in the financial services industry, tele-
coms or satellite imagery).

As Parallel and Distributed Computing (PDC) exist, it is necessary to
explain the difference. The main characteristics of PDC are:

• Concurrency: it is a property of software. A piece of software is also
concurrent if it can have more than one active execution context.

• Parallelism: it is a property of software. The execution of different
tasks/pieces of software at the same time.

• Distribution. The execution of different tasks/pieces of software
on physically distinct computing nodes connected through a net-
work, lack of a global clock.

PDCs are multi-core machines, whereas HPCs are quantum comput-
ers. However, both share parallel machines, HPC clusters and cloud
infrastructures.

11



2 HPC Software, Relevant Qualities and Systems Engineering Methods 2.1
High Performance Computing Software

There are two categories of HPC software:

• Compute-intensive applications. These are complex calculations
that require a large number of computing resources. They also
often require parallel computing.

• Data-intensive applications. They focus on processing, storing
and retrieving large amounts of data. Typically built as distributed
systems to ensure reliability and scalability.
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2 HPC Software, Relevant Qualities and Systems Engineering Methods 2.2
Relevant Qualities

2.2 Relevant Qualities
For the two categories explained, there are some important characteristics:

• For Compute-intensive applications:

– Correctness: the software is correct if it satisfies the specifi-
cations, but be careful! Sometimes, modelling reality into a model
(using the specifications) isn’t the bigger problem. Instead, it is diffi-
cult or impossible to show actual correctness concerning reality. For
example, imagine you are building a simulator of a planet lander
before you have ever visited it.
How can you fix this issue? We can check that the software
output fulfils the important desired properties and identify
and apply a measure of accuracy.

– Performance: it is the efficient use of resources. Again, be
careful! Is it a good idea? Is performance improvement always a
good idea? Because it is not necessarily if :

∗ It makes software more difficult to read and maintain
∗ It reduces the portability of software

– Portability.
– Maintainability. A system can have this feature if it follows three

principles:
1. Operability: make it easy for the operations team to

run the system and keep it running. There are a number
of things that need to be done to achieve this:

∗ Provide visibility into the runtime behavior and internals of
the system, with good monitoring.

∗ Provide good support for automation and integration with
standard tools.

∗ Avoidance of dependencies on individual machines (allowing
machines to be taken down for maintenance while the system
as a whole continues to run uninterrupted).

∗ Provide good documentation and an easy to understand op-
erational model (“If I do X, Y will happen”).

∗ Provide good default behavior, but also give administrators
the freedom to override defaults when necessary.

∗ Self-healing when appropriate, but also giving administrators
manual control over system state when needed.

2. Simplicity: make it easy for other software engineers to
understand the system. This is necessary because complex
systems take more time to understand and increase the cost of
maintenance. There are several techniques for doing this:

∗ Reducing accidental complexity.
∗ Using abstractions, such as organising the architecture into

well-defined components that hide the internal complexity
behind a clear and easy-to-use interface; or reusing known
solutions.

13



2 HPC Software, Relevant Qualities and Systems Engineering Methods 2.2
Relevant Qualities

3. Evolvability: make it easy for engineers to change the system
as new requirements emerge. There are a number of things that
need to be done to achieve this:

∗ Organize your development process to cope with evolution.
∗ Keep track of how requirements are mapped to your software

structure.
∗ Update documentation.
∗ Continue to ensure simplicity and operability.

• For Data-intensive applications:

– Reliability: can be mathematically defined as probability of ab-
sence of failures for a certain period. The typical expectations
are:

∗ The application performs the expected function
∗ It can tolerate mistakes by users
∗ It prevents unauthorized access and abuse

– Scalability: the system ability to cope with increased load.
The load unit depends on the product: for web apps can be repre-
sented with the number of requests per second; for databases can be
the number of read and write operation (or their ratio).

– Maintainability. Same as above.

In the software, there can be some errors, but a software engineer should be
able to recognize the type of failure, faults or defects:

• A defect is an imperfection or deficiency in a work product where
that work product does not meet its requirements or specifications and
needs to be either repaired or replaced.

• A defect encountered during software execution is a fault (a fault
is a subtype of defect, and can be of two types, see below).

• A system failure can be:

– Termination of the ability of a product to perform a required function
or its inability to perform within previously specified limits.

– An event in which a system or system component does not perform
a required function within specified limits.

There are some exceptions where systems are fault-tolerant or resilient.
These are systems that can cope with faults and prevent faults from oc-
curring. An advantage of fault-tolerance is that reliability is increased.

14



2 HPC Software, Relevant Qualities and Systems Engineering Methods 2.3
Systems Engineering Methods

The fault can be of two types:

• Hardware Faults.

. Description of the problem

It is a defect encountered during hardware execution. In a large datacenter
these can happen on a daily basis. Different pieces of hardware usually
fail independently from each other.

✓ Possible solutions

The possible solutions are two: hardware redundancy and software
fault-tolerance techniques.

• Software Faults.

. Description of the problem

They result from software development errors. Can stay dormant
for a long time and appear suddenly. They can determine failures in
multiple components at the same time.

✓ Possible solutions

There is no single solution! It is a combination of strategies. So use
defensive programming, by testing before release and during operation:

– Reboot the system frequently (rejuvenation)

– Continuous monitoring and alerting in case of possible symptoms

– Deliberately introduce failures to train the fault tolerance machinery
(chaos engineering)

2.3 Systems Engineering Methods
There are several systems engineering methodologies required in High Perfor-
mance Computing:

• Modelling the software structure and checking its properties.

• Performance analysis and improvement.

• Source code management.

• Documentation, standards, support to maintainability.

• Support to scalability.

• Attention to operability and automation.

15



3 Requirement Engineering

3 Requirement Engineering

3.1 Definition
Before the definition, we give a possible scenario to understand what require-
ment engineering is.

The municipality of Milan says the following: “The time it takes to make de-
cisions on building permits for residential buildings in the city is too long. We
want to develop software that will help us reduce this time”. So where do we
start? How do we identify the most important aspects? How do we make sure
that we have understood what our customers want from us?

Definition 1

Software measure engineering (Requirement Engineering) is the pro-
cess of discovering the purpose for which the software is intended by
identifying stakeholders and their needs, and documenting these in a
form suitable for analysis, communication and subsequent implementa-
tion.

The questions derived from requirements engineering are:

• Identify stakeholders

• Identify their needs

• Produce documentation

• Analyze, communicate, implement requirements

(adapted from
A. van Lamsweerde)
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Figure 2: Analyzing the system as is and the system to be.
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3 Requirement Engineering 3.2 Studying the interplay between the world
and the machine

3.2 Studying the interplay between the world and the ma-
chine

Example 1: ambulance dispatching system

For every urgent call reporting an incident, an ambulance should arrive
at the incident location within 14 minutes. For every urgent call, details
about the incident are correctly encoded.
When an ambulance is dispatched, it will reach the incident location in
the shortest possible time. Accurate ambulance locations are known by
GPS. Ambulance crews correctly notify ambulance availability through
a mobile data terminal.

Given the previous problem, are you able to extract requirements from
this description? Some possible questions might be:

• Should the software system drive the ambulance?

• Who or what will “correctly encode” details about incidents?

• Do terminals already exist or not?

And more in general:

• What are the boundaries of the system? What is inside/outside?
What is in-between?

• How do we think about these aspects in a systematic way?

This example is necessary to understand the phenomena of world and ma-
chine. The machine is the part of the system to be developed (typically
a software-to-be and a hardware). The world (or environment) is the part of
the real world that is affected by the machine.

Requirements engineering is concerned with the phenomena that occur
in the world. In the previous example, RE is concerned with the following
phenomena:

• Occurrence of incidents

• Reports of incidents by public calls

• Encoding of call details into dispatching software

• Assignment of an ambulance

• Arrival of an ambulance at the scene of an incident

But RE is also interested in the phenomena that occur inside the machine. In
the previous example

• The creation of a new object of the class Incident

• The updating of a database entry

Requirements models are models of the world!

17



3 Requirement Engineering 3.2 Studying the interplay between the world
and the machine

Using the example on the previous page, we can show the phenomena we are
interested in the world or in the machine set.

call encoding

ambulance
location update

ambulance 
allocation

world phenomena 
the machine cannot observe

phenomena located 
entirely in the machine

shared
phenomena

shortest path 
computation

inc = new Incident(loc, t)

task scheduling

database queries

incidents

ambulance moves

radio communications

public calls

ambulance breakdown

Figure 3: The world and the machine sets, with reference to example on page 17.

More generally, we can divide the machine and the world sets as:

• The world which have goals and domain properties;

• The machine which have computers and programs;

• The requirements which is the bridge between the world and the machine.

The World The Machine

D - domain properties

G - goals C - computers

P - programs

Figure 4: Goals, domain properties, requirements, computers and programs.

We explain more detailed these value inside the two sets:

• Goals are prescriptive assertions formulated in terms of world
phenomena (not necessarily shared)

• Domain properties (or assumptions) are descriptive assertions as-
sumed to hold in the world

• Requirements are prescriptive assertions formulated in terms of
shared phenomena

18



3 Requirement Engineering 3.2 Studying the interplay between the world
and the machine

Using the example on the page 17, we can identify the goal, the domain as-
sumptions and the requirement as follows:

• Goal: For every urgent call reporting an incident, an ambulance should
arrive at the incident scene within 14 minutes.

• Domain assumptions:

– For every urgent call, details about the incident are correctly encoded.

– When an ambulance is mobilized, it will reach the incident location
in the shortest possible time.

– Accurate ambulances’ location are known by GPS.

– Ambulance crews correctly signal ambulance availability through mo-
bile data terminals on board of ambulances.

• Requirement: When a call reporting a new incident is encoded, the Au-
tomated Dispatching Software should mobilize the nearest available ambu-
lance according to information available from the ambulances’ GPS and
mobile data terminals.

3.2.1 Completeness of Requirements

Given the set of requirements R, goals G and domain assumptions D.

Definition 2

We say that R is complete if and only if:

• R ensures satisfaction of G in the context of domain assumptions
D

R and D | = G

We can make an analogy with program correctness. A program
P running on a particular computer C is correct if it satisfies the
requirement R: P and C | = R.

• G captures all the stakeholders’ needs.

• D represents valid properties/assumptions about the world.
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3.3 Formulating and classifying requirements
The requirements can be of three types:

• Functional requirements: describe the interactions between the system
and its environment (independent from implementation). In other words,
are the main (functional) goals the software has to realize.
For example: “the word processor shall allow users to search for strings
in the text”; “the system shall allow users to reserve taxis”.

• Non-functional requirements (NFRs): further characterization of
user-visible aspects of the system not directly related to functions.
For example: “the response time must be less than 1 second ”; “the server
must be available 24 hours a day”.

• Constraints requirements: imposed by the customer or the environ-
ment in which the system operates.
For example: “the implementation language must be Java”; “the credit
card payment system must be able to be dynamically invoked by other sys-
tems relying on it”.

We make some observations about non-functional requirements. NFRs predicate
on external non-functional qualities, and these qualities must be measurable
by metrics. NFRs have some characteristics:

• Constraints on how functionality must be provided to the end user.

• The application domain determines their relevance and their pri-
oritization.

• Have a strong influence on the structure of the system to be built.
For example, a system may require 24/7 availability. As a result, it is
likely to be designed as a replicated system (with redundant components).

Example 2: are these requirements?

1. “The user should insert correct information in the enrolment form”.

This is not a requirement! How can the software prevent a user from
entering incorrect information? Specifically, is a domain assumption!

2. “The system should check whether fiscal code are well formed ”.

Yes, the software can do this! So it is a requirement.

Example 3: types of requirements

Example of functional requirements:

• “The system shall allow users to reserve taxis”.

• “The system should never allowe non-registered users to see the list
of other users willing to share a taxi ”.
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• “The system should guarantee that the reserved taxi picks the user
up”.

But attention! There is unfeasible (from the perspective of the software
to be) functional requirements:

• “The system should guarantee that the reserved taxi picks the user
up”.

This is because the software cannot guarantee this feature!
Example of non-functional requirements:

• “The system has to provide a feedback in 5 seconds”.

• “The system should be available 24/7 ”.

Example of technical requirements:

• “The system should be implemented in Java”.

• “The search for the available taxi should be implemented in class
Controller ”.

Example 4: bad requirements

1. “The system shall process all mouse clicks very fast to ensure users
do not have to wait”.

The problem here is that it cannot be verified (tested), because what
does “fast” mean? Do we have a metric? Can you quantify it?

2. “The user must have Adobe Acrobat installed ”.

The problem here is that it cannot be achieved by the software
system itself. It is not something that the system has to do. But it
could be expressed as a domain assumption, so it is not a functional
requirement for our software.
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3.4 Eliciting requirements
The Requirements Elicitation is the practice of researching and dis-
covering the requirements of a system from users, customers, and
other stakeholders. The goal of requirements elicitation is to ensure that
the software development process is based on a clear and comprehensive under-
standing of the customer’s needs and requirements. To do that, exist a simple
and effective tool called scenarios.

Definition 3

A scenario is a concrete, focused, informal description of a single feature
of the system to be.

Example 5: warehouse on fire

Bob driving down main street in his patrol car notices smoke coming out
of a warehouse. His partner, Alice, reports the emergency from her car.

Alice enters the address of the building, a brief description of its location
(i.e. north west corner), and an emergency level. In addition to a fire
unit, she requests several paramedic units on the scene given that area
appears to be relatively busy. She confirms her input and waits for an
acknowledgment.

John, the Dispatcher, is alerted to the emergency by a beep of his work-
station. He reviews the information submitted by Alice and acknowledges
the report. He allocates a fire unit and two paramedic units to the inci-
dent site and sends their estimated time of arrival (ETA) to Alice.

Alice received the acknowledgment and the ETA.

There are heuristics for finding scenarios, such as asking the customer a few
questions:

• Which user groups are supported by the system to perform their work?

• What are the primary tasks that the system needs to perform?

• What data will the actor create, store, change, remove or add in the
system?

• What external changes does the system need to know about?

• What changes or events will the actor of the system need to be informed
about?

However, it’s very important not to rely on questionnaires alone! Insist
on task observation (if possible), ask to speak to the end user, not just
the software contractor, and expect resistance, but try to overcome it.
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Scenarios provide a nice summary of what the requirements analysis team can
derive from observation, interviews, analysis of documentation. By generalizing
the scenarios, we can get Use Cases.

To specify a use case, it’s very important to follow the following scheme.

Definition 4: Use Cases Schema

• Name of Use Case

• Actors

– Description of Actors involved in use case.

• Entry condition

– “When this use case starts the following condition is true...”.

• Flow of Events

– Free form, informal natural language.

• Exit condition

– “This use case terminates when the following condition
holds...”.

• Exceptions

– Describe what happens if things go wrong.

• Special Requirements

– Nonfunctional Requirements, Constraints.

The following suggestions are useful in defining an appropriate use case:

• Use cases named with verbs that indicate what the user is trying to ac-
complish

• Actors named with nouns

• Use cases steps in active voice

• The causal relationship between steps should be clear

• A use case per user transaction

• Separate description of exceptions

• Keep use cases small (no more than two/three pages)

• The steps accomplished by actors and those accomplished by the system
should be clearly distinguished (this helps us in identifying the boundaries
of the system)
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First of all, we present an example of a bad use case.

Example 6: bad use case

Example of a bad use case referring to the ambulance dispatching ex-
ample on page 17:

• Use case name: Accident

• Participating Actors:

– Field Officer

• Flow of Events:

1. The Field Officer reports the accident

2. An ambulance is dispatched

3. The Dispatcher is notified when the ambulance arrives on site

The errors are as follows:

• In the use case name field, the word is a noun. It’s better to use
a verb that indicates what the user is trying to achieve.

• The Dispatcher actor is not declared in the Participating Actors
field, but is mentioned in the Flow of Events field.

• There are two main errors in the Flow of Events section: the first
is in the sentence “An ambulance is dispatched ”. But who sends
it? The second is in the third sentence, because who notifies the
Dispatcher?

Now we present an example of a well composed use case.

Example 7: use case ReportEmergency with reference to the ex-
ample on page 22

There are two actors involved:

• Field Officer (Bob and Alice in the Scenario)

• Dispatcher (John in the Scenario)

The Entry Condition is always true because an emergency can be
reported at any time. The sequence of events is as follows:

• The FieldOfficer activates the Report Emergency function of her
terminal.

• Friend (the system to be developed) responds by presenting a form
to the officer.

• The FieldOfficer fills the form, by selecting the emergency level,
type, location, and brief description of the situation. The FieldOf-
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ficer also describes possible responses to the emergency situation.
Once the form is completed, the FieldOfficer submits the form.

• At which point, the Dispatcher is notified.

• The Dispatcher reviews the submitted information and allocates
resources by invoking the AllocateResources use case. The Dis-
patcher selects a response and acknowledges the emergency report.

The Exit Condition is the following: the FieldOfficer has received the
acknowledgment and the selected response.

There are two possible exceptions:

• The FieldOfficer is notified immediately if the connection between
her terminal and the control room is lost.

• The Dispatcher is notified immediately if the connection between
any logged in FieldOfficer and the control room is lost.

And the special requirements are:

• The FieldOfficer’s report is acknowledged within 30 seconds;

• The selected response arrives no later than 30 seconds after it is
sent by the Dispatcher.

Example 8: use case AllocateResources with reference to the
example on page 22

• Use case name: AllocateResources

• Participating Actors:

– Dispatcher (John in the Scenario. The Dispatcher allocates
a resources to an Emergency if the resource is available; of
course, he also updates and removes Emergency Incidents,
Actions, and Requests in the system)

– Resource Allocator (the Resource Allocator is responsible for
allocating resources in case they are scarce)

– Resources (the Resources that are allocated to the Emer-
gency)

• Entry Condition:

– An Incident has been opened

• Flow of Events:

– The Dispatcher selects the types and number of Resources
that are needed for the incident.
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– Friend replies with a list of Resources that fulfill the Dis-
patcher’s request.

– The Dispatcher selects the Resources from the list and allo-
cates them for the incident.

– Friend automatically notifies the Resources.

– The Resources send a confirmation.

• Exit Condition:

– The use case terminates when the resource is committed.

– The selected Resource is now unavailable to any other Emer-
gences or Resource Requests.

• Exceptions:

– If the list of Resources provided by Friend is insufficient to
fulfill the needs of the emergency, the Dispatcher informs the
Resource Allocator.

– The Resource Allocator analyzes the situation and selects new
Resources by decommitting them from their previous work.

– Friend automatically notifies the Resources and the Dis-
patcher.

– The Resources send a confirmation.
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4 Software Design

4.1 Software Architecture

Definition 1

The Software Architecture (SA) of a system is the set of structures
needed to reason about the system. These structures comprise software
elements, relations among them, and properties of both.

The software architecture is a tool for thinking about systems, and it’s made
up of a set of structures.

The Architecture is so important because it is the vehicle for communication:
internal (different teams) and external (teams and stakeholders). The Architec-
ture manifests the first set of design decisions and is a portable abstraction of a
system.
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4.2 Architecture and multiple structures
There is a set of structures relevant to the software:

• Component-and-connector (C&C) structures. Describe how the sys-
tem is structured as a set of elements that have runtime behavior
(called components) and interactions (called connectors).

– The components are the principal units of computation (for exam-
ple the clients, servers, services, etc.)

– The connectors represent communication (for example request-
response mechanisms, pipes, asynchronous messages, etc.)

The purpose of these structures is to enable us to answer questions
such as:

– What are the major executing components and how do they interact
at runtime?

– What are the major shared data stores?
– Which parts of the system are replicated?
– How does data progress through the system?
– Which parts of the system can run in parallel?
– How does the system’s structure evolve during execution?

Also, allow us to study runtime properties such as availability and
performance.

• Module structures. Show how a system is structured as a set of code
or data units that have to be procured or constructed, together with
their relations. An example of modules: packages, classes, functions,
libraries, layers, database tables, etc.
Modules constitute implementation units that can be used as the basis
for work splitting (identifying functional areas of responsibility). Typical
relations among modules are: uses, is-a (generalization), is-part-of.
The purpose of these structures is to allow us to answer questions
such as:

– What is the primary functional responsibility assigned to each mod-
ule?

– What other software elements is a module allowed to use?
– What other software does it actually use and depend on?
– What modules are related to other modules by generalization or spe-

cialization (i.e. inheritance) relationships?

Can also be used to answer questions about the impact on the system
when the responsibilities assigned to each module change.

• Allocation structures. Define how the elements from component-and-
connector or module structures map onto things that are not software.
For example hardware (possibly virtualized), file systems, teams. Some
typical allocation structures include deployment structure, implementa-
tion structure, work assignment structure.
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4.3 Software design descriptions and UML
In the following pages we present some diagrams that are fundamental to cre-
ating appropriate documentation. The following diagrams show how to create
some UML diagrams.

4.3.1 Component Diagram (C&C structure)

A Component Diagram breaks down the actual system under development
into various high levels of functionality. Each component is responsible for
one clear aim within the entire system and only interacts with other essential
elements on a need-to-know basis.

Figure 5: Component Diagram.

To view the component diagram in high resolution, scan (or click) the QR code
below.

A complete guide can be found on the following page: What is Component
Diagram?
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4.3.2 Sequence Diagram (C&C structure)

Sequence Diagram show elements as they interact over time and they
are organized according to object (horizontally) and time (vertically).

Figure 6: Sequence Diagram.

To view the sequence diagram in high resolution, scan (or click) the QR code
below.

A complete guide can be found on the following page: What is Sequence Dia-
gram?
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4.3.3 Class Diagram (module structure)

A Class Diagram is a type of static structure diagram that describes
the structure of a system by showing the system’s classes, their attributes,
operations (or methods), and the relationships among objects.

Figure 7: Class Diagram.

To view the sequence diagram in high resolution, scan (or click) the QR code
below.

A complete guide can be found on the following page: What is Class Diagram?
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4.3.4 Package Diagram (module structure)

A Package Diagram, a kind of structural diagram, shows the arrangement
and organization of model elements in middle to large scale project.
Package diagram can show both structure and dependencies between sub-systems
or modules, showing different views of a system, for example, as multi-layered
(aka multi-tiered) application - multi-layered application model.

Figure 8: Package Diagram.

To view the sequence diagram in high resolution, scan (or click) the QR code
below.

A complete guide can be found on the following page: What is Package Diagram?
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4.3.5 Deployment Diagram (allocation structure)

A Deployment Diagram is a diagram that shows the configuration of run
time processing nodes and the components that live on them. De-
ployment diagrams is a kind of structure diagram used in modeling the physical
aspects of an object-oriented system. They are often be used to model the static
deployment view of a system (topology of the hardware).

Figure 9: Deployment Diagram.

To view the sequence diagram in high resolution, scan (or click) the QR code
below.

A complete guide can be found on the following page: What is Deployment
Diagram?
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4.4 Design principles
The following is a list of important design principles in software engineering.

Definition 2

1. Divide et impera (also called divide and conquer)

2. Keep the level of abstraction as high as possible

3. Increase cohesion where possible

4. Reduce coupling where possible

5. Design for reusability

6. Reuse existing designs and code

7. Design for flexibility

8. Anticipate obsolescence

9. Design for portability

10. Design for testability

11. Design defensively

1. Divide et impera (divide and conquer)

Divide and Conquer is a problem-solving strategy that involves breaking
down a complex problem into smaller, more manageable parts, solving
each part individually, and then combining the solutions to solve the original
problem.

2. Keep the level of abstraction as high as possible

Ensure that your designs allow you to hide or defer consideration of details,
thus reducing complexity. A good abstraction is said to provide informa-
tion hiding. Abstractions allow you to understand the essence of a subsystem
without having to know unnecessary details.

3. Increase cohesion where possible

In general, a file, module, class or whatever should contain the same logical
methods. For example, in the following class we have two functions with two
different purposes (error!).

1 Class Utility {
2 ComputeAverageScore(Student s[])
3 ReduceImage(Image i)
4 }

34



4 Software Design 4.4 Design principles

4. Reduce coupling where possible

Coupling is the degree of interdependence between software modules;
a measure of how closely connected two routines or modules are; the strength
of the relationships between modules. There are different types of couplings:

• Content coupling is said to occur when one module uses the code
of another module, for instance a branch. This violates information
hiding (2nd design principle).

• Communication coupling is said to occur when one module sends
too many messages to another module. The creation of a message
can be optimized and the number of messages sent between these two
modules can be reduced.

• Control coupling is one module controlling the flow of another, by
passing it information on what to do. For example, passing a what-to-do
flag or the following code:

1 class b {
2 func(flag f) {
3 if(f == flag1) do this
4 else if(f == flag2) do that
5 else ...
6 }
7 }

Other types can be viewed here.

5. Design for reusability

Design the various aspects of your system so that they can be used again in
other contexts. To do this, you need to follow these rules:

• Generalize your design as much as possible;

• Simplify your design as much as possible;

• Follow the preceding all other design principles;

• Design your system to be extensible.

6. Reuse existing designs and code

Design with reuse is complementary to design for reusability. Take
advantage of the investment you or others have made in reusable components.
Note: cloning should not be seen as a form of reuse.
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7. Design for flexibility

Actively anticipate changes that a design may have to undergo in the
future, and prepare for them. To do this, you need to follow these rules:

• Reduce coupling and increase cohesion;

• Create abstractions;

• Use reusable code and make code reusable;

• Do not hard-code anything.

8. Anticipate obsolescence

Plan for changes in the technology or environment so the software
will continue to run or can be easily changed. So do not rush using early
releases of technology. If possible:

• Avoid using software libraries that are specific to particular environments;

• Avoid using undocumented features or little-used features of software li-
braries;

• Avoid using software or special hardware from companies that are less
likely to provide long-term support;

• Use standard languages and technologies that are supported by multiple
vendors.

9. Design for portability

Have the software run on as many platforms as possible. Avoid, if possi-
ble, the use of facilities that are specific to one particular environment (e.g. a
library only available in Microsoft Windows).

10. Design for testability

Take steps to make testing easier. Design a program to automatically test
the software:

• Ensure that all the functionality of the code can be driven by an external
program, bypassing a graphical user interface;

• Create proper code to exercise the other methods/functions;

• Use unit test automation frameworks.

11. Design defensively

Be careful when you trust how others will try to use a component you are
designing. Handle all cases where other code might attempt to use your compo-
nent inappropriately. Check that all of the inputs to your component are valid:
the preconditions. Unfortunately, over-zealous defensive design can result in
unnecessarily repetitive checking.
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5 Architectural styles

5.1 Definition

Definition 1

An architectural style determines the vocabulary of components and
connectors that can be used in instances of that style, together with a
set of constraints on how they can be combined.

These can include topological constraints on architectural descriptions
(e.g., no cycles). Other constraints - say, having to do with execution
semantics - might also be part of the style definition.
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5.2 Client-Server
A Client-Server Architecture is a network-based computing structure
where responsibilities and operations get distributed between clients and
servers. Client-Server Architecture is widely used for network applications such
as email, web, online banking, e-commerce, etc.

✓ When to use it

The three most common cases are:

• When multiple users need to access a single resource (e.g. database).

• When there is a preexisting software and we must access remotely (e.g.
email server).

• When it is convenient to organize the system around a shared piece of
functionality used by multiple components (e.g. authentication or
authorization server).

. Technical issues

With this architecture, it’s necessary to design and document proper inter-
faces for our server. It is also necessary to ensure that the server can handle
multiple simultaneous requests.

5.2.1 Interface design

An interface design is a boundary across which components interact. Proper
definition of interfaces is an architectural concern (affects maintainability, us-
ability, testability, performance, integrability). There are two important guid-
ing principles for interface design: information hiding and low coupling.
An interface should encapsulate a component implementation so that it can be
changed without affecting other components.

There are several aspects to interface design that need to be considered:

• Contract principle: any resource (operation, data) added to an interface
implies a commitment to maintaining it.

• Least surprise principle: interfaces should behave consistently with
expectations.

• Small interfaces principle: interfaces should limit the exposed re-
sources to the minimum.

There are also some important elements to define: interaction style (e.g.
sockets, RPC, REST); representation and structure of exchanged data (af-
fecting expressiveness, interoperability, performance and transparency); error
handling.
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5.2.2 Error handling, multiple interfaces and interface evolution

Sometimes there may be some problems, for example: an operation is called
with invalid parameters and consequently the call doesn’t return anything. This
simple example can provoke some scenarios: the component cannot handle the
request in its current state; or hardware/software errors prevent successful ex-
ecution; or there is a misconfiguration issue (e.g. the server is not correctly
connected to the database).

There are three possible solutions: raising an exception; return an
error code (common); log the problem. There’s no single solution, but we
can choose several (e.g. error code and log the problem).

A server can offer multiple interfaces at the same time. This enables sep-
aration of concerns, different levels of access rights and support ot interface
evolution.

Interface evolution occurs for many reasons (e.g. to support new require-
ments). Several strategies are needed to support continuity:

• Deprecation: declare well in advance that an interface version will be
retired by a certain date;

• Versioning: maintain multiple active versions of the interface;

• Extension: a new version extends the previous one.
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5.2.3 Handling multiple requests

The server must be able to receive and process requests from multiple clients.
There are two main approaches to this: forking and worker pooling.

Forking

The forking approach is the same as that used by the Apache Web Server: one
process per request or per client.

Figure 10: Forking diagrams.

✓ Forking Advantages

• Architectural simplicity.

• Isolation and protection given by the one-connection-per-process model.
Note: slow processes do not affect other incoming connections.

• Simple to program.
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. Forking Issues

• Growth of the WWW over the last 20 years (number of users and weight
of web pages).

• The number of active processes at time t is difficult to predict and
may saturate resources.

• Expensive fork-kill operations for each incoming connection.
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Worker pooling

It is an alternative approach adopted by NGINX Web Server. It is designed
for high concurrency but has to deal with scalability issues.

Figure 11: Worker pooling diagrams.

Despite the well-known problem of this architecture (scalability), NGINX ad-
dresses the previous problems by introducing a new architectural tactic. A
tactic is a design decision that affects the control of one or more quality
attributes.

✓ Worker Pooling Advantages (quality attribute trade-offs)

• Number of workers is fixed, so they do not saturate available re-
sources.

• Each worker has a queue.

• When queues are full the dispatcher drops the incoming requests
to keep high performance (optimize scalability and performance by
sacrificing availability).

• Dispatcher balances the workload among available workers according
to specific policies.
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5.3 Three-Tier Architecture
The following is a summary of the IBM guide.

Three-tier architecture is a well-established software application architecture
that organizes applications into three logical and physical computing
tiers:

• The presentation tier, or user interface;

• The application tier, where data is processed;

• The data tier, where application data is stored and managed.

✓ Benefits

The chief benefit of three-tier architecture is its logical and physical sepa-
ration of functionality. Each tier can run on a separate operating system and
server platform - for example, web server, application server, database server -
that best fits its functional requirements. And each tier runs on at least one
dedicated server hardware or virtual server, so the services of each tier can be
customized and optimized without impacting the other tiers. Other
benefits include:

• Faster development: Because each tier can be developed simultaneously
by different teams, an organization can bring the application to market
faster. And programmers can use the latest and best languages and tools
for each tier.

• Improved scalability: Any tier can be scaled independently of the others
as needed.

• Improved reliability: An outage in one tier is less likely to impact the
availability or performance of the other tiers.

• Improved security: Because the presentation tier and data tier can’t
communicate directly, a well-designed application tier can function as an
internal firewall, preventing SQL injections and other malicious exploits.

5.3.1 N-tier architecture

N-tier architecture (also called or multitier architecture) refers to any ap-
plication architecture with more than one tier. But applications with more
than three layers are rare because extra layers offer few benefits and can make
the application slower, harder to manage and more expensive to run.
As a result, n-tier architecture and multitier architecture are usually synonyms
for three-tier architecture.
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5.4 Microservice architectural style
The microservice architectural style is an approach to developing a single ap-
plication as a suite of small services, each running in its own process and
communicating lightweight mechanisms, often an HTTP resource API.

✓ Benefits

There are two main benefits:

• Technology heterogeneity. Each service uses its own technology
stack. The technology stack can be selected to fit the task best (e.g.
data analysis vs video streaming). The teams can experiment with new
technologies within a single microservice (e.g. we can deploy two versions
and do A/B testing). Also, no unnecessary dependencies or libraries for
each service.

• Scaling. Each microservice can be scaled independently. Also,
identified bottlenecks can be addressed directly. Parts of the system that
do not represent bottlenecks can remain simple and unscaled.
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5.5 Event-Driven Architecture
An Event-Driven Architecture uses events to trigger and communicate
between decoupled services and is common in modern applications built
with microservices. An event is a change in state, or an update, like an item
being placed in a shopping cart on an e-commerce website. Events can either
carry the state (the item purchased, its price, and a delivery address) or events
can be identifiers (a notification that an order was shipped).

Often it’s called publish-subscribe (publish is the event generation, and
subscribe is the declaration of the interest).

✓ Benefits

• Very common in modern development practices (e.g. continuous
integration and deployment, such as GitHub Actions).

• Easy addition/deletion of components (publishers and subscribers
are decoupled; the event dispatcher handles this dynamic set).

. Problems

• Potential scalability problems (the event dispatcher may become a
bottleneck under high workload).

• Ordering of events (not guaranteed, not straightforward).

Other characteristics of this architecture:

• THe messages and the events are asynchronous.

• Computation is reactive (driven by receipt of message).

• Destination of messages determined by receiver, not sender (loca-
tion/identity abstraction).

• Loose coupling (senders and receivers added without reconfiguration).

• Flexible communication means (one-to-many, many-to-one, many-to-many).

Some examples of relevant technologies are: Apache Kafka and RabbitMQ.
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5.5.1 Apache Kafka

Kafka is a framework for the event-driven paradigm:

• Includes primitives to create event produces and consumers and a
runtime infrastructure to handle event transfer from producers to con-
sumers.

• Stores events durably and reliably.

• Allow consumers to process events as they occur or retrospectively.

These services are offered in a distributed, highly scalable, elastic, fault-tolerant,
and secure manner.

Topic 1, partition 0

Topic 3, partition 2

Topic 1, partition 0

Topic 2, partition 1

Topic 1, partition 1

Topic 3, partition 1

Topic 4, partition 0

publish(m, Topic1, partition 0)

publish(m, Topic3, partition 1)

getLeaders

ZooKeeper

getMessages(Topic1, 

partition 0, offset)

getMessages(Topic1, partition 1, offset)

Kafka Cluster

Figure 12: Kafka architecture (the ZooKeeper is a “health manager”).

Some important features:

• Each broker handles a set of topics and topic partitions, parts includ-
ing sets of messages on the topic.

• The partitions are independent from each other and can be replicated
on multiple brokers for fault tolerance.

• There is one leading broker per partition. The other brokers contain-
ing the same partition are followers.

• The producers know the available leading brokers and send messages to
them.

• Messages in the same topic are organized in batches at the producers’
side and then sent to the broker when the batch size overcomes a certain
threshold.

• Consumers adopt a pull approach. They receive in a single batch all
messages belonging to a certain partition starting from a specified offset.

• Messages remain available at the brokers’ side for a specified period
and can be read multiple times in this period.
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• The leader keeps track of the in-synch followers.

• ZooKeeper is used to monitor the correct operation of the clus-
ter. All brokers send heartbeats to ZooKeeper. ZooKeeper will replace
a failed broker by electing a new leader for all partitions that the failed
broker was leading. It can also start/restart brokers.

Message delivery

Producer

1. Brokers commit messages by storing them in the corresponding partition;

2. Leader adds the message to followers (replicas) if available.

Figure 13: Sequence diagram Kafka producer.

A possible issue: in case of failure, the producer may not get the response
(message number 7 in figure). In this case, the producer has to resend the
message and kafka brokers can identify and eliminate duplicates.

Synchronization with replicas can be transactional and it’s possible to choose
between the following options:

• Exactly-once semantics is possible but long waiting time. So replicas
are not allowed, but the problem is that Kafka spent a long time
trying to guarantee uniqueness.

• At-least-once can be chosen by excluding duplicates’ management.

• At-most-once can be chosen by publishing messages asynchronously.

Consumer

Each consumer can rely on a persistent log to keep track of the offset so
that it is not lost in case of failure.

Issue case: if the consumer fails after having elaborated messages and before
storing the new offset in the log, the same messages will be retrieved again (at-
least-once semantics). Note that the delivery semantics can be changed if
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the new offset is store before the elaboration and we can choose at-most-once
semantics because, if failing after storing the offset, the effect of the received
messages does not materialize. Finally, transactional management of the log
also allows for exactly-once semantics.

Figure 14: Sequence diagram Kafka consumer.

Kafka architectural tactics

There are some tactics used to improve some features of Kafka. In the following
section we can see scalability and fault tolerance.

Improve Scalability

By creating multiple partitions and multiple brokers, we can create the
ability to distribute producers/consumers to different partitions handled by dif-
ferent brokers. We can also scale the operations because Kafka supports the
creation of clusters of brokers. Consider that each cluster contains up to a
hundred brokers capable of handling trillions of messages per day.

Improve Fault Tolerance

By creating partitions, we use the persistence of the partitions. Replica-
tion also reduces the risk of data loss. Finally, cluster management takes care
of restarting brokers and setting leaders as needed.
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5.6 Data-Intensive applications
Before we introduce the architectural styles for data-intensive applications, we
explain the difference between batch and stream processing.

Batch processing is a method of running software programs called jobs in
batches automatically. While users are required to submit the jobs, no other
interaction by the user is required to process the batch.

Stream processing (also known as event stream processing, data stream pro-
cessing, or distributed stream processing) is a programming paradigm which
views streams, or sequences of events in time, as the central input and output
objects of computation.

Batch Stream

Has access to all data. Computes a function of one data ele-
ment, or a smallish window of recent
data.

Might compute something big and
complex.

Computes something relatively sim-
ple.

Is generally more concerned with
throughput than latency of individ-
ual components of the computation.

Needs to complete each computation
in near-real-time - probably seconds
at most.

Has latency measured in minutes or
more.

Computations are generally indepen-
dent.

Asynchronous - source of data
doesn’t interact with the stream pro-
cessing directly, like by waiting for an
answer.

Table 1: Batch vs Stream processing.
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5.6.1 Batch approach: MapReduce

MapReduce is a programming architecture and an associated implemen-
tation for processing and generating big data sets with a parallel, distributed
algorithm on a cluster.

A MapReduce is composed of a map procedure, which performs filtering and
sorting (such as sorting students by first name into queues, one queue for each
name), and a reduce method, which performs a summary operation (such as
counting the number of students in each queue, yielding name frequencies). The
“MapReduce System” (also called “infrastructure” or “framework”) orchestrates
the processing by marshalling the distributed servers, running the various tasks
in parallel, managing all communications and data transfers between the various
parts of the system, and providing for redundancy and fault tolerance.

Example 1: an example of a batch approach using MapReduce

doc1, a s d a g d

doc2, s g a

doc3, d g r a

doc4, s s g a

Map1

Map2

(a, 1)
(s, 1)
(d, 1)
(a, 1) 
(g, 1)
(d, 1)
(s, 1)
(g, 1)
(a, 1)
(d, 1)
(g, 1) 
(r, 1)
(a, 1)
(s, 1)
(s, 1)
(g, 1)
(a, 1)

(a, 1)
(a, 1)
(a, 1)
(a, 1)
(a, 1)
(s, 1)
(s, 1)
(s, 1)
(s, 1)
(d, 1) 
(d, 1)
(d, 1)

(g, 1)
(g, 1)
(g, 1)
(g, 1)

Reduce1

Reduce2

Reduce3

(a, 5)

(s, 4)
(d, 3)

(g, 4)
(r, 1)

(r, 1)

The workflow is the following:

1. Read a set of input files and break it into records;

2. Call the map function. It extracts a key and a value from each
record (the assigned value is application-dependent);

3. Sort all the key-value pairs by key;

4. Call the reduce function. It iterates over the ordered sets of
key-value pairs and combines the values (the combination logic
is application-dependent)
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Figure 15: MapReduce architecture.

✓ Advantages

• Works well on commodity hardware.1

. Disadvantages

• Implementing a complex processing job is not simple (high level program-
ming model have been built on top of it);

• Reducers have to wait until the preceding Mappers have concluded their
job;

• Materialization of intermediate states can be overkilling;

• Sometimes it is not necessary to sort the results of mappers;

• New batch computation approaches supported by frameworks as Spark,
Tez, Flink, etc.

1Commodity hardware in computing is computers or components that are readily available,
inexpensive and easily interchangeable with other commodity hardware. Almost all PCs use
commodity hardware.
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5.6.2 Stream approach: Apache Storm

Apache Storm is a distributed stream processing computation frame-
work written predominantly in the Clojure programming language. Originally
created by Nathan Marz and team at BackType, the project was open sourced
after being acquired by Twitter. It uses custom created “spouts” and “bolts” to
define information sources and manipulations to allow batch, distributed pro-
cessing of streaming data.

Some features:

• Support stream processing.

• More than 1 million messages per second per node.

• Can scale up to thousands of nodes per cluster.

• Expects and manages failures (fully fault tolerant).

• Provides guaranteed message delivery with exactly once semantics (reli-
able).

A Storm application is designed as a “topology” in the shape of a directed
acyclic graph (DAG) with spouts (source of streams) and bolts (receives
messages) acting as the graph vertices. Edges on the graph are named
streams and direct data from one node to another. Together, the topology acts
as a data transformation pipeline. At a superficial level the general topology
structure is similar to a MapReduce job, with the main difference being that
data is processed in real time as opposed to in individual batches. Additionally,
Storm topologies run indefinitely until killed, while a MapReduce job DAG must
eventually end.

Stream Grouping Description

Shuffle Sends messages to bolts in random, round robin se-
quence. Use for atomic operations, such as math.

Fields Sends messages to a bolt based on one or more fields in
the tuple. Used to segment an incoming stream and to
count tuples of a specified type with a specified value.

All Sends a single copy of each message to all instances of a
receiving bolt. Use to send a signal, such as clear cache
or refresh state, to all bolts.

Custom Customized processing sequence. Use to get maximum
flexibility of topology processing based on factors such
as data types, load, and seasonality.

Direct Source decides which bolt receives a message.

Global Sends messages generated by all instances of a source
to a single target instance. Use for global counting op-
erations.
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Example 2: example of topology with different groupings

Spouts

• Source of Streams 
• Wraps a streaming data source 

and emits Tuples

{…}
{…}

{…}
{…}

{…}
{…}

{…}

{…} {…} {…} {…} {…} {…} {…}

Spouts

• Source of Streams 
• Wraps a streaming data source 

and emits Tuples

{…}
{…}

{…}
{…}

{…}
{…}

{…}

{…} {…} {…} {…} {…} {…} {…}

Bolts

• Core functions of a 
streaming computation 

• Receive tuples and do stuff 
• Optionally emit additional 

tuples

Bolts

• Core functions of a 
streaming computation 

• Receive tuples and do stuff 
• Optionally emit additional 

tuples

Bolts

• Core functions of a 
streaming computation 

• Receive tuples and do stuff 
• Optionally emit additional 

tuples

Bolts

• Core functions of a 
streaming computation 

• Receive tuples and do stuff 
• Optionally emit additional 

tuples

Random sentence
Generator spouts

Splitting sentence 
in words bolts

Bolts

• Core functions of a 
streaming computation 

• Receive tuples and do stuff 
• Optionally emit additional 

tuplesBolts

• Core functions of a 
streaming computation 

• Receive tuples and do stuff 
• Optionally emit additional 

tuples

Shuffling: tuples are 
randomly distributed 
to bolts

Word counter 
bolts

Field: instances of the same
word go to the same bolt

Bolts

• Core functions of a 
streaming computation 

• Receive tuples and do stuff 
• Optionally emit additional 

tuples
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5.6.3 Combining batch and stream: Lambda Architecture

Lambda architecture is a data-processing architecture designed to han-
dle massive quantities of data by taking advantage of both batch and stream-
processing methods.

This approach to architecture attempts to balance latency, throughput, and
fault-tolerance by using batch processing to provide comprehensive and accurate
views of batch data, while simultaneously using real-time stream processing
to provide views of online data. The two view outputs may be joined before
presentation.

The rise of lambda architecture is correlated with the growth of big data, real-
time analytics, and the drive to mitigate the latencies of map-reduce.

Data ingestion 
layer

Speed layer

Batch layer
Serving layer

Data 
sources write(data, timestamp)

Figure 16: Lambda architecture.

Exist also Kappa architecture. Kappa architecture is a software architec-
ture used for processing streaming data with a single technology stack. It is a
simplification of Lambda architecture, where the data is processed in batches.
Kappa architecture ingests data into a messaging system like Apache Kafka, and
performs both real-time and batch processing, especially for analytics, on the
same stream. It allows for recomputation on the data by streaming it through
the pipeline again.
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6 Verification and Validation

6.1 Terminology
There are some differences between the terms verification and validation.

First of all, the verification is internal. Despite the validation is external. As-
suming an abstract process with the following levels:

The verification is intended as: “Is level i consistent with level i + 1?”. It’s
an internal consistency check. The validation is: “Does level i conform to
needs?”. It’s an external consistency check.

The PMBOK guide, also adopted by the IEEE as a standard, defines them as
follows in its 4th edition:

• Validation. The assurance that a product, service, or system meets
the needs of the customer and other identified stakeholders. It of-
ten involves acceptance and suitability with external customers. Contrast
with verification.

• Verification. The evaluation of whether or not a product, service,
or system complies with a regulation, requirement, specification,
or imposed condition. It is often an internal process. Contrast with
validation.

Another fundamental topic when we speak about verification and validation
is Quality Assurance (QA). It defines the policies and processes to
achieve quality. So it can judge the quality and find defects.

A direct consequence of the QA is the improvement of the quality.
With the term “quality”, we refer to an ideal absence of defects (impossible)
and an absence of other issues that prevent the fulfilment of non-functional
requirements or the degradation of some software qualities.

Since it is impossible to have zero defects, a periodic quality assurance
evaluation is critical. Ideally, every artefact shall be the subject of QA; even
the verification artefacts must be verified!
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The V-model is a graphical representation of a systems development
lifecycle. It is used to produce rigorous development lifecycle models and
project management models. It describes the activities and the results that
must be made during product development.

 

RASD

High level 
Design 

document

Unit/
Component

Specs

Units/
Components

Subsystems

Integrated
System 

Delivered
Package

Unit test/Analysis

Integration test

System test (end to end - e2e test)

User acceptance (alpha, beta test)

Analysis/
Review

Analysis/
Review

Review

Verification

Validation

Legend

Actual needs
and constraints

Figure 17: The V-model; verification is emphasized on the left.

The left side of the “V” represents the decomposition of requirements and the
creation of system specifications. The right side of the “V” represents an inte-
gration of parts and their validation.

We have presented the V-model to help you understand where the verification
can be placed.

Now, the verification is concerned with the code and the architecture. Con-
sidering the software side, it has two possible approaches:

• Static Analysis. It is done using source code or other software
artefacts but without execution . Note that the analysis is static, but
the properties are dynamic.

• Dynamic Analysis (Testing). It is done by executing the sources.
The analysis is made by comparing the actual behaviour and the ex-
pected one.

On the other hand, to verify the architectural level, it is necessary to consider
some aspects:

• The structure must be consistent. Some examples:

– For every required interface, a corresponding provided interface ex-
ists.

– Sequence diagrams are consistent with component diagrams and with
the defined interfaces.

– Each component has one or more modules that implement it.

• All functional requirements must have the possibility to be sat-
isfied. Some examples:

56



6 Verification and Validation 6.1 Terminology

– Each requirement is mapped on one or more components.

– Each use case event flow is detailed in terms of one or more sequence
diagrams.

• Concurrent use of resources must be correctly defined. Problems
like order violation or a deadlock are expected. Some techniques must be
applied to analyze these problems.

• Non-functional requirements must have the possibility to be ful-
filled.

Definition 1

DevOps is a set of practices, tools, and a cultural philosophy
that automate and integrate the processes between software
development and IT teams. It emphasizes team empowerment, cross-
team communication and collaboration, and technology automation.

57



6 Verification and Validation 6.1 Terminology

6.1.1 Study concurrent use of resources at architectural level (PT
Net)

It is necessary to model distributed systems to study the concurrent use of
resources at the architectural level.

A Petri Net (PT Net or P/T Net), a place/transition net (PT net), is one of
several mathematical modelling languages used to describe distributed
systems. Like industry standards such as UML activity diagrams, Petri nets
offer a graphical notation for stepwise processes that include choice,
iteration, and concurrent execution.

The Petri net uses a graphic tool. It is a bipartite-directed graph containing
places (circles), transitions (bars), and directed arcs.

A Petri net is a four-tuple:

PN =< P, T, I,O > (1)

• P : a finite set of places {p1, p2, . . . , pn}

• T : a finite set of transitions {t1, t2, . . . , ts}

• I: an input function (T × P ) −→ {0, 1}

• O: an output function (T × P ) −→ {0, 1}

It’s also possible to add another term called M0, which is an initial marking
P −→ N :

PN =< P, T, I,O,M0 > (2)

Formula called also marked Petri net.

You can find a detailed explanation here. Some observations of the Petri net:

• In a given marking M , a transition t can fire only if it is enabled.

• An enabled transition not necessarily fires.

• More than one transition can be enabled in a marking.

• If two transitions are enabled at the same time:

– Which one fires first is not determined;

– Petri nets are an intrinsically nondeterministic model;

– The firing of a transition might disabled another enabled transition.

In fact, if two transitions are enabled at the same time, they can fire simul-
taneously unless the firing of one transition disables the other. Petri nets are
suitable for modelling concurrent systems. On this page you can see a
live simulation by clicking on the nodes.
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P1

P4

P6

P3

t1

t3

t5

P2

P5

P7

t2

t4

t6

places

transitions

flows

marking 3 weight

 Figure 18: Example of Petri nets.

Ready to
produce

buffer

Ready to
read

Ready to
write

Ready to
consume

produce write read consume

 

Figure 19: Example of Petri nets of producer-consumer model with unbounded
buffer.
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Ready to
produce

Busy
Ready to
read

Ready to
write

Ready to
consume

produce write read consume

Free

 

Figure 20: Example of Petri nets of producer-consumer model with finite buffer
with a parametric number of positions.

2 2
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Figure 21: Example of Petri nets of deadlock.
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6.1.2 Quantitative impact of architectural decisions

Architectural choices directly influence several software qualities (e.g., scalabil-
ity, reliability, availability, usability).

To cope with this, we need metrics to quantify qualities and specific methodolo-
gies to analyze the quantitative impact of architectural choices on these qualities.
The tactics are also foundational to address the issues.

First, before discussing how to evaluate the quantitative impact of architectural
decisions, we must introduce the availability concept and explain a system life-
cycle to introduce some exciting metrics.

® Why is availability so important?

In general, a service shall be continuously available to the user, and if it
fails after a bit of downtime, it should be a rapid service recovery. So the
availability of a service depends on:

• The complexity of the infrastructure architecture.

• Reliability of the individual components.

• Ability to respond quickly and effectively to faults.

• Quality of the maintenance by support organizations and suppliers.

• Quality and scope of the operational management processes.

[ Study the System Life-Cycle to use availability metrics

The System Life-Cycle relates to failures in the following way:

 

failure
detection

time

recovery
time

Recovery

response
time

repair
time

Downtime = Time to repair

Resolution
time

failure

Uptime = Time to failures

Time Between Failure

Figure 22: The System Life-Cycle when faults occur.

• Time of occurrence. Time at which the user becomes aware of the
failure.

• Detection time. Time at which operators become aware of the failure.

• Response time. Time required by operators to diagnose the issue and
respond to users.

• Repair time. Time required to fix the service/components that caused
the failure.
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• Recovery time. Time required to restore the system (re-configuration,
re-initialization, ...).

• Mean Time to Repair (MTTR). Average time between the occurrence
of a failure and service recovery, also known as the downtime.

• Mean Time to Failures (MTTF). Mean time between the recovery
from one failure and the occurrence of the next failure, also known as
uptime.

• Mean Time Between Failures (MTBF). Mean time between the oc-
currences of two consecutive failures.

Definition 2: Availability Metric

The availability metric is the probability that a component works
correctly at time t. As a mathematician term, we can express this def-
inition as the relationship between the Mean Time to Failures (MTTF)
and the MTTF plus the Mean Time to Repair (MTTR):

A =
MTTF

MTTF+ MTTR
(3)

Note that if the Mean Time to Repair (MTTR) is small, then the Mean Time
Between Failures (MTBF) is approximately equal to the Mean Time to Failures
(MTTF): MTBF ≊ MTTF.

® Does an easier notation than the availability metric work?

The availability metric is crucial for understanding how a component works
at a particular time, but sometimes, we need an easier notation to represent
availability. In these cases, we use the nines notation.

Nines are an informal logarithmic notation for proportions very near to one or,
equivalently, percentages very near 100%. Nines are the number of consecutive
nines in a percentage such as 99% (two nines). The number of nines of a
proportion x is:

nines = − log10 (1− x) (4)

In the computer system availability (our context), a one nine (90%) uptime in-
dicates a system that is available 90% of the time or, more commonly described,
unavailable 10% of the time.

Availability Downtime
90% (1-nine) 36.5 days/year
99% (2-nines) 3.65 days/year
99.9% (3-nines) 8.76 hours/year
99.99% (4-nines) 52 minutes/year
99.999% (5-nines) 5 minutes/year

Table 2: Some nines notation and downtime values.
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® Now that we have the theory and the tools, what methodology
should we use to analyze the impact of the architectural choices?

The Analysis Methodology depends on the system. The Availability is cal-
culated by modelling the system as an interconnection of elements in series
and parallel:

• Elements operating in series mean that if one element fails, the whole
combination fails.

• Elements operating in parallel mean that if a component fails, the
other elements take over the operations of the failed element.

] Availability in series

The combined system is operational only if every part is available. Then,
the combined Availability is the product of the parts’ Availability.

A =

n∏
i=1

Ai (5)

Example 1

We assume there is a system composed of two components with the
following availability and downtime:

• Component 1 has 99% (2-nines) of availability and 3.65 days/year
of downtime.

• Component 2 has 99.999% (5-nines) of availability and 5 min-
utes/year of downtime.

So the combined availability is 98.999% with 3.65 days/year of downtime.

The downtime is calculated using the following formula:

Downtime = (1−A)× 365 days/year

Note that the A value is the Availability in terms of simple values and not as
percentages (99% become 0.99).

In the previous example, we can see how the low Availability of Component 1
negatively affects the Availability of the entire system. This result means that
a chain is as strong as the weakest link.
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] Availability in parallel

The combined system is operational if at least one part is available. Then,
the combined Availability is 1 − P , where P indicates all parts that are not
available.

A = 1−
n∏

i=1

(1−Ai) (6)

Example 2

We assume there is a system composed by two components with the
following Availability and downtime:

• Component 1 has 99% (2-nines) of Availability and 3.65 days/year
of downtime.

• Component 2 has 99% (2-nines) of Availability and 3.65 days/year
of downtime.

Despite the previous example, the combined availability is 99.99% (4-
nines) with 52 minutes/year of downtime.

Even though components with very low Availability are used, the system’s over-
all Availability is much higher than the Availability in series!

Example 3

Some examples of complex systems:

• A7 = 1− (1−A1) (1−A2)

A1

A2

A5

A3

A6

 

• A8 = A7A3

A5 A6

A7 A3
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• A9 = A5A6

A5 A6

A8

 

• A = 1− (1−A8) (1−A9)

A8

A9

A=1-(1-A8)(1-A9)
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] Tactics for Availability

As we explained in the past pages, Availability is crucial, but it’s also funda-
mental to use intelligent tactics to improve the quality of the attributes.

Definition 3

The Tactics are design decisions that influence the control of one or
more quality attributes.

Some well-known tactics are:

• Replication

• Forward error recovery

• Circuit breaker

[ Replication approaches

The Replication is very simple to manage in the case of stateless components.
The approaches are different:

1. Hot spare: One component leads, and another is always ready to take
over.

In the following example, C1 leads, C2 is always ready to take over.

 

C1

C2

Client

  
2. Warm spare: One component leads and periodically updates another

component. If the primary component fails, the second component takes
time to update itself fully.

In the following example, C1 leads and periodically updates C2. If C1 fails,
some time might be needed to fully update C2.

 

  

C1

C2

Client
Periodic
update
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3. Cold spare: A second component is dormant, started, and updated only
if required.

In the following example, C2 is dormant, started, and updated only if
required.

 

 

C1

C2

Client

 
4. Triple modular redundancy: Three components are always active,

and the result is the one produced by the majority. This is good when
reliability is also important.

In the following example, C1, C2, and C3 are all active. The result is the
one produced by the majority.

 

  

C1

C3

C2 Voting
systemClient

[ Forward error recovery

Forward Error Recovery is a tactic in which a recovery mechanism moves
the failed component to a degraded state. In a degraded state, a component
continues to be available even if it is not fully functional. Here is an example:
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[ Circuit breaker

The Circuit Breaker (CB) tactic is a client-side resiliency pattern. The CB
acts as a proxy for a remote component:

1. A component is called;

2. The CB monitors the call.

But note that there should be possible failures:

• CB receives an error;

• The call takes “too long” (CB kills the call).

If there are too many failures, the circuit breaker inhibits future calls by moving
to the open state.
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6.2 Analysis: Symbolic Execution
As we have discussed in the previous subsection, there are two types of ap-
proaches when we speak about verification:

• Static Analysis. It analyzes the source code, and each analyzer targets a
fixed set of hard-coded (pre-defined, not custom) properties. It is entirely
automatic, and the output reports two types of results: safe (no issues)
and unsafe (potential problems). Also, the analysis is made on generic
(or symbolic) inputs.
The properties that we have mentioned are safety properties, such as:

– No overflow for integer variables
– No type errors
– No null-pointer dereferencing
– No out-of-bound array accesses
– No race conditions
– No useless assignments
– No usage of undefined variables
– No execution of specific paths

• Testing (dynamic analysis) is made at runtime and is related to the soft-
ware’s behavior during execution. The analysis is also made on specific
inputs.

Using the static analysis, we can use the symbolic execution.

Definition 4

Symbolic Execution (also symbolic evaluation) analyses a program
to determine what inputs cause each part of a program to ex-
ecute.

The symbolic execution analyzes actual source code and reachability and
path feasibility properties. It is automatic and may fail to explore all possible
paths. Sometimes, it is used to support testing.

The checked properties by the static analysis can be of different types:

• Reachability. Does some program execution reach location L (generic
line of code) in S (source code)? With the reachability property, the
symbolic execution tries:

– To verify that L cannot be reached;
– Or spots the condition under which L can be reached.

For example, in the following code:
1 ...
2 k: try {
3 k+1: ...
4 L-1: } catch (e) {
5 L: /* error */
6 ... }
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Static analysis checks the reachability properties and verifies that L cannot
be reached, or discovers the condition under which L can be reached.

• Path Feasibility. Is the given path p feasible? With the path feasibility
property, the symbolic execution tries:

– To verify that p cannot be executed;
– Or spots the condition under which p can be executed.

Then p will be:
p =< 0, 1, . . . , k, . . . , n >

Symbolic execution executes programs on symbolic values. Each symbolic
value has its symbolic states, which keep track of the variables’ (symbolic)
values. The inputs are initialized with symbolic (generic) values.

In the following example we can see a complete example of symbolic execution.
But before we do, let us introduce some limitations of this methodology.

• The path conditions may be too complex for constraint solvers.
Because solvers are very good at checking linear constraints, but it is
harder for them to reason about non-linear arithmetic, bit-wise operations,
string manipulation, etc.

• It is impossible or difficult to use when the number of paths to
be explored is infinite or huge. For example, unbounded loops give
rise to infinite sets of paths. Although the set of paths is finite, checking
all loops is expensive and impractical.

• Finally, there may be external code. Then the sources are not available,
such as a precompiled library, or the behavior is unknown to the solver.

Example 4

1. First we introduce the annotation:
1 void foo(int x, int y) {
2 ...

2. We introduce a local variable:
1 void foo(int x, int y) {
2 int z := x
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3. We introduce a condition. A path condition π represents a con-
straint on a path:

1 void foo(int x, int y) {
2 int z := x
3 if (z < y)

• if condition true

• if condition false

4. Execution continues along feasible paths. In this case, the
path condition π is satisfiable:

1 void foo(int x, int y) {
2 int z := x
3 if (z < y)
4 z := z*2

5. Another if condition:
1 void foo(int x, int y) {
2 int z := x
3 if (z < y)
4 z := z*2
5 if (x < y && z >= y)
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• if condition true

• if condition false

6. Possible outcomes of symbolic execution:
1 void foo(int x, int y) {
2 int z := x
3 if (z < y)
4 z := z*2
5 if (x < y && z >= y)
6 print(z)
7 }

(a) Satisfiable exit (π is satisfiable): every satisfying assignment
to variables in π is an input that satisfies the given prop-
erty in a concrete execution.

(b) Unsatisfiable exit (π is not satisfiable): the given property
cannot be satisfied by any concrete execution.
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Finally, we can draw the Execution Tree. The execution paths can be
collected in an execution tree, where end states are marked as SAT or
UNSAT.

To view the tree in high resolution, scan (or click) the QR code below.
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6.3 Testing: terminology, types of testing activities
Testing (dynamic analysis) is an approach to verification. The main goal of
testing is to make programs fail.

Other common goals are:

• Exercise different parts of a program to increase coverage;

• Make sure the interaction between components works (integration
testing);

• Support fault localization and error removal (debugging);

• Ensure that bugs introduced in the past do not happen again
(regression testing).

The dynamic analysis analyzes program behavior. The properties are en-
coded as executable oracles representing expected outputs and desired
conditions (assertions).

It can run only finite test cases, so it’s not exhaustive verification. The
failures have concrete inputs that trigger them, and the execution is
automatic.

® We have often heard about debugging, but what is it?

Debugging is a systematic approach to fault localization and error re-
moval. The output is often used to support debugging.

® ... and test case?

Definition 5

A Test Case is a set of inputs, execution conditions, and a pass/fail
criterion.

Running a test case typically involves setup, execution and teardown.

• Setup. Bring the program to an initial state that fulfils the execution
conditions.

• Execution. Run the program on the actual inputs.

• Teardown. Record the output, the final state, and any failure deter-
mined based on the pass/fail criterion.

74



6 Verification and Validation 6.3 Testing: terminology, types of testing
activities

A test set, or test suite, can include multiple test cases. Finally, a Test
Case Specification is a requirement to be satisfied by one or more test
cases. An example of test case specification can be the input must be a sentence
composed of at least two words, and an example of test case input is this is a
good test case input.

When discussing test cases, it’s necessary to introduce Unit Testing. This is
conducted by developers and aims to test small pieces (units) of code
in isolation.

However, when we test in isolation, there should be a problem: the units
may depend on other units. Then, we need to simulate missing units.

The Integration Testing (integration of the unit tests) aims to exercise the
interaction between interfaces and components. The faults discovered
by integration testing are multiple; some examples:

• Inconsistent interpretation of parameters (e.g. mixed units meters
or yards)

• Violations of assumptions about domains (e.g. buffer overflow)

• Side effects on parameters or resources (e.g. conflict on temporary
file)

• Nonfunctional properties (e.g. unanticipated performance issues)

• Concurrency-specific problems

Typically, the integration test is defined by the Design Document. In the Design
Document, we can find two types of plans:

• Build Plan that establishes the order of the implementation;

• A Test Plan that defines how to carry out integration testing is needed.

The strategies for the integration test are many:

• Big Bang: test only after integrating all modules (not even a real
strategy).

✓ Pros

It doesn’t require stubs; it only requires fewer drivers/oracles.

. Cons

1. Minimum: observability, fault localization/diagnosability, efficacy,
feedback;

2. High cost of repair (cost of repairing a fault increases as a function
of time between the introduction of an error in the code and repair).
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• Iterative and incremental strategies. The main action is run after
components are released (not just at the end). The strategy can
be done in three different ways:

– Hierarchical. Based on the hierarchical structure of the system. It
can be done top-down or bottom-up.

∗ Top-down strategy. Work from the top level (in terms of
“use” or “include” relationship) down to the bottom level. As
modules are completed (according to the building plan), more
functionality is testable. We also need to replace some stubs,
and we need other stubs for lower levels. When all modules
are incorporated, the whole functionality can be tested.

✓ Pros
The drivers use the top level interfaces (e.g. REST APIs).

. Cons
This strategy requires stubs of used modules at each step of the
process.

 

Top

A stub B stub C

stub Ystub X

Figure 23: Example of top-down strategy.

® What are the stubs?
A Stub is dummy code that acts on behalf of the original
module without actually calling it during testing. Since
all we need is the response, we simply call the dummy code each
time, changing the response as needed for testing, and test how
our current module behaves with those responses.
Conventionally, we might think of using stubs only when the
module is still under development. However, stubs are very im-
portant in top-down integration testing, even after the developers
have built the module. If we start using the developed module,
we may not be able to tell whether the bug is in the submodule
or the one we are testing.
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∗ Bottom-up strategy. Starting from the leaves of the “uses”
hierarchy.

✓ Pros
An advantage is that it doesn’t require stubs.

. Cons
Typically requires more drivers (one for each module, as in
unit testing). Can this be a disadvantage? Maybe, because the
newly developed module may replace an existing driver, and new
modules require new drivers.
Another thing to consider is that it may create several work-
ing subsystems, and each working subsystem will eventually be
integrated into the final one.

 

 

A

YX

Driver

A B

YX

Driver Driver

Figure 24: Example of bottom-up strategy.

® What are the drivers?
We work from the bottom up, and we are the smallest module
in the first iteration that has no dependencies below it. But we
may need the support of the modules above us to confirm that
the response this module is sending up is correct.
A Driver is a dummy code that sends the responses and
acknowledgments (primarily not necessarily) to the sub-
modules. It helps us to identify the behavior of the submodule
independently and quickly.
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– Threads. A thread is a part of several modules that to-
gether provide a user-visible programme function. By using
the thread strategy we can have some advantages.

✓ Pros

∗ We can maximize the progress visible to the user (or other
stakeholders);

∗ Reduce drivers and stubs;
∗ An integration plan is usually more complex.

 

Top

A B C

YX

Figure 25: Example of threads strategy.

– Critical. The critical modules strategy starts with the highest
risk modules. Risk assessment is a necessary first step. It can
include technical risks (e.g. is X feasible?) and process risks (e.g. is
the schedule for X realistic?). It may also be similar to a priority
process.
The key point of this strategy is the risk-oriented process. In-
tegration and testing as a risk mitigation activity, designed to deliver
any bad news as early as possible.
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Figure 26: Summary of integration test strategies.

® Which one should we choose?

Given the three strategies above, which one should we choose? Well, the struc-
tural strategies (bottom-up or top-down) are simpler, but thread and critical
modules provide better external visibility of progress (especially in complex sys-
tems).

So the best choice should be a combination of different strategies: - Use
top-down/bottom-up for relatively small components and subsystems; -
Combinations of thread and critical module integration testing for larger
subsystems.
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6.3.1 E2E Testing

Definition 6

End-to-end (E2E) testing is a software testing methodology to
test a functional and data application flow consisting of several
sub-systems working together from start to end.a

aEngineering Fundamentals Playbook

At times, these systems are developed in different technologies by different teams
or organizations. Finally, they come together to form a functional business
application. Hence, testing a single system would not suffice. Therefore, end-to-
end testing verifies the application from start to end putting all its components
together.

The following is a list of common types of tests that use the E2E system:

• Functional Testing

[ Purpose

Check whether the software meets the functional requirements.

® How?

Use the software as described by use cases in the RASD (pag. 9), check
whether requirements are fulfilled.

• Performance Testing

[ Purpose

1. Detect bottlenecks affecting response time, utilization, throughput

2. Detect inefficient algorithms

3. Detect hardware/network issues

4. Identify optimization possibilities

® How?

Load the system with the expected workload and measure and compare
acceptable performance.
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• Load Testing

[ Purpose

1. Expose bugs such as memory leaks, mismanagement of memory,
buffer overflows

2. Identify upper limits of components

3. Compare alternative architectural options

® How?

Test the system at increasing workload until it can support it, and load
the system for a long period.

• Stress Testing

[ Purpose

Make sure that the system recovers gracefully after failure.

® How?

Trying to break the system under the test by overwhelming its resources
or by reducing resources.

For example double the baseline number for concurrent users/HTTP
connections, or randomly shut down and restart ports on the network
switches/routers that connect servers.
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6.4 Test case generation
6.4.1 Introduction

Testing Workflow is a type of software testing that verifies that each
software workflow accurately reflects the given business process. A
workflow is a series of tasks to produce a desired result, usually involving several
stages or steps. For any business process, testing these sequential steps is defined
as “workflow testing”.

Figure 27: Testing Workflow.

To view the component diagram in high resolution, scan (or click) the QR code
below.

As we can see in Figure 27, test cases can be generated in a black-box or white-
box manner. The White Box is a generation based on code features.
Meanwhile, the Black Box is a generation based on specification features.

Test case generation can be done manually (no need to explain) or automat-
ically. Automatic generation can be done in several ways:

• Combinatorial testing. It enumerates all possible inputs according to
some policy (e.g. smaller to larger).

• Concolic Execution (analyzed in the section 6.4.2 on page 83). It’s a
pseudo-random generation of inputs guided by symbolic path properties.

• Fuzz testing (fuzzing). It’s a pseudo-random generation of inputs, includ-
ing invalid, unexpected inputs.

• Search-based testing. It explores the space of valid inputs, looking for
those that improve some metric (e.g. coverage, diversity, fault inducing
capability).

• Metamorphic testing. Generates new test cases based on some meta-
morphic relationships and other previously defined test cases.
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6.4.2 Concolic Execution

Concolic Execution (concrete-symbolic execution) is an automatic gener-
ation of test cases. It’s a pseudo-random generation of inputs guided by
symbolic path properties.

In other words, the concolic execution performs symbolic execution (defini-
tion on page 69) alongside concrete execution (concrete inputs). Under the
hood, in concolic execution a state combines a symbolic part and a concrete
part, used as needed to make progress in the exploration.

The steps are then as follows:

• Concrete to−→ Symbolic, derive conditions to explore new paths.

• Symbolic to−→ Concrete, simplifying conditions to generate concrete inputs.

Let’s take an example to clarify the explanation.

Example 5

See the code below:
1 def m2(x: int , y: int):
2 z: int = bb(y) # black -box function
3 if z == x:
4 z = y + 10
5 if x <= z:
6 print("Log message.")
7 # end

Let’s explore all the paths of the m2 method, starting with a (random)
concrete input and at the same time building the symbolic condition
of the explored path. Unfortunately, in some cases we will not be able
to solve the symbolic execution. For example, the behavior of the first if-
condition (z == x) is unknown in the code. For this reason, we execute
it with the identified input cases: given y = 7, run bb(7) and return 14.
With this arrangement, the condition can be solved.
The annotation used will be the same as in the Symbolic Execution
example on page 70.

1. Let’s start with defined parameters and no condition state:
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2. Call the function with the parameter y, i.e. value 7. The return
value of the called function will be 14.

3. The if condition 14 == 22 is obviously false, so the path will be
6 and 7. By the way, the condition can also be seen as a logical
condition ¬ (bb (Y) ̸= X). But it can’t be solved, so the concolic
execution goes from symbolic to concrete ¬ (14 ̸= X) ≡ 14 = X.

4. After a random concrete input, we can solve the constraint and
start a new exploration. The parameter value of X is now 14. This
is because we do not want the condition from the previous step to
be not equal.

5. The result of the function bb(7) is 14.

6. Unlike before, the if condition is now true!

84



6 Verification and Validation 6.4 Test case generation

7. The evaluation of the third line of code needs no explanation.

8. The path just explored explores the whole code. To try another
path, we can negate the condition, but be careful! We only need to
negate the second condition, because we already negated the first
condition in the first exploration.

bb (Y) = X ∧ X ≤ Y+10 =⇒ bb (Y) = X ∧ X > Y+10

9. Explore the new path using two (random) values that satisfy the
previous logical condition.

10. The result of the bb function is 34.

11. The if condition is obviously true.
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12. We add 10 to the variable Y.

13. In this case the if condition is false and we complete the exercise
because we have explored every possible path!

✓ Advantages

The concolic execution has two main advantages:

1. Can handle black-box functions in path conditions (not possible
with symbolic execution!).

2. Can automatically generate concrete test cases according to a
code coverage criterion.

. Limitations

And the disadvantages are:

1. It will only find one input example per path. And this could be
a problem, because typically the errors only occur with certain inputs.
What’s more, if the errors are infrequent events, it’s difficult to detect
them with concolic execution.

2. The number of paths explodes due to complex nested conditions, then it
requires a large search space.

3. It doesn’t guide the exploration, it just explores possible paths one
by one, as long as we have the budget (e.g. time, number of runs).
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6.4.3 Concurrent systems testing

There are many difficulties in testing concurrent software. For example, the
concurrency bugs are non-deterministic and can only manifest themselves
within certain interleavings. Furthermore, the interleavings depend on execution
conditions that are not under the direct control of the program.

Example 6

The following code:
1 int x = 2;
2 begin t_1 begin t_2:
3 if (x >= 0) if (x >= 0)
4 x = 0; x = 2;
5 x = -1; x = 1;
6 end t_1 result = array[x];
7 end t_2
8 assert(result != null)

Can have the following possible execution behaviors:
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Example 7: an example of data race

1 begin f_1 begin f_2
2 x = ’AAAAAAAA ’ x = ’BBBBBBBB ’
3 end f_1 end f_2

Example 8: an example of atomicity violation

1 begin f_1 begin f_2
2 if (x > 0) x = 0
3 x = x - 1 end f_2
4 end f_1

Example 9: an example of deadlock

1 begin f_1 begin f_2
2 acquire(L1) acquire(L2)
3 acquire(L2) acquire(L1)
4 ... ...
5 release(L2) release(L1)
6 release(L1) release(L2)
7 end f_1 end f_2

® So how do you test concurrent programmes?

Metamorphic Testing (MT) is a property-based software testing technique
that can be an effective approach to solving the test oracle problem2 and the test
case generation problem (this chapter). The test oracle problem is the difficulty
in determining the expected results of selected test cases, or whether the actual
results match the expected results.

The MT technique is applicable to any type of software and has recently been
adapted to detect data race problems in concurrent software.

The basic idea of general MT is to derive Metamorphic Relations (MRs)
between multiple program inputs and corresponding outputs:

1. New test cases from existing ones

2. An oracle for the program

Example 10

Consider a program P computing the shortest path in an undirected
graph G. We may express the following properties (MRs):

MR1 The length of the shortest path between two points in the graph

2In software testing, a Test Oracle (or simply oracle) is a provider of information that
describes the correct output based on the input of a test case.

88



6 Verification and Validation 6.4 Test case generation

doesn’t vary if we swap the two points:

|P (G, a, b)| = |P (G, b, a)|

MR2 If c belongs to the shortest path between a and b:

|P (G, a, c)|+ |P (G, c, b)| = |P (G, a, b)|

Now we can:

1. Pick a source test case < a1, b1 > selected with any technique;

2. Run the software and obtain the result, that is, the shortest path
and its length

3. Based on MR1, generate a follow up test case < b1, a1 >

4. Run the software with the new test case

5. Check if MR holds:

|P (G, a1, b1)| = |P (G, b1, a1)|

If not, then P is failing.

The test case for concurrent programmes can be represented as follows:

C = (X,S)

• Where X is a set of values for the input parameters.

• S is a series of read and write events on the variable shared be-
tween different threads/processes.

The Metamorphic Relations (MRs) are relations between several programme
inputs + series of read/write events and corresponding outputs.

Example 11: example of a test case that raises some doubts

An example of a test case parray:

C = ( {2} ,
< Rt1

x (2) ,W t1
x (0) , Rt2

x (0) ,

W t2
x (2) ,W t1

x (−1) ,W t2
x (1) , Rt2

x (1) >
)

For the following concurrent program:
1 int x = 2;
2 begin t_1 begin t_2:
3 if (x >= 0) if (x >= 0)
4 x = 0; x = 2;
5 x = -1; x = 1;
6 end t_1 result = array[x];
7 end t_2
8 assert(result != null)
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Let’s assume that this is the source test case. Intuitively, our MR is that
the output remains the same for the same inputs and different read/write
sequences.
So we define follow-on test cases based on the MR and run the concurrent
program, making sure that the selected read/write sequences occur. If
the output changes, the test fails.

From the previous example, there are a number of questions:

• How to select the read/write sequences for the subsequent test cases?

For example, we can select those that may raise specific issues.

Data Access Pattern Description

1. Ru (l)Wu′ (l)Wu (l) Value read is stale by the time an
update is made in u.

2. Ru (l)Wu′ (l)Ru (l) Two reads of the same location
yield different values in u.

3. Wu (l)Ru′ (l)Wu (l) An intermediate state is observed
by u′.

4. Wu (l)Wu′ (l)Ru (l) Value read is not the same as the
one written last in u.

5. Wu (l)Wu′ (l)Wu (l) Value written by u′ is lost.

6. Wu (l1)Wu′ (l1)Wu′ (l2)Wu (l2) Memory is left in an inconsistent
state.

7. Wu (l1)Wu′ (l2)Wu′ (l1)Wu (l2) Same as above.

8. Wu (l1)Wu′ (l2)Wu (l2)Wu′ (l1) Same as above.

9. Wu (l1)Ru′ (l1)Ru′ (l2)Wu (l2) State observed is inconsistent.

10. Wu (l1)Ru′ (l2)Ru′ (l1)Wu (l2) Same as above.

11. Ru (l1)Wu′ (l1)Wu′ (l2)Ru (l2) Same as above.

12. Ru (l1)Wu′ (l2)Wu′ (l1)Ru (l2) Same as above.

13. Ru (l1)Wu′ (l2)Ru (l2)Wu′ (l1) Same as above.

14. Wu (l1)Ru′ (l2)Wu (l2)Ru′ (l1) Same as above.
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• How to control that the program runs according to the selected nesting?

Instrumenting the bytecode:
1 int x = 2;
2 begin t_1: begin t_2:
3 Scheduler.beforeRead (); Scheduler.beforeRead ();
4 if (x >= 0) if (x >= 0)
5 Scheduler.beforeWrite (); Scheduler.beforeWrite ();
6 x = 0; x = 2;
7 Scheduler.beforeWrite (); Scheduler.beforeWrite ();
8 x = -1; x = 1;
9 end t_1 Scheduler.beforeRead ();

10 y = array[x];
11 assert(y != null)
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6.5 Testing frameworks
In software development, we typically use unit testing frameworks such as
the xUnit frameworks (for example, JUnit and NUnit), which allow us to run
unit tests to determine whether different parts of the code behave as expected
under different circumstances.

The elements of unit test frameworks:

• Test Runner: it’s a component that orchestrates the execution of tests
and delivers the result to the user. The runner can use a graphical inter-
face, a textual interface or return a special value to indicate the results of
the execution of the tests.

• Test Case: in most cases this is a class from which our application-
specific code inherits.

• Test Fixture: it represents the preparation needed to set up the initial
state required for a test case before the test, and to return to the original
state after the test.

• Test Suite: this is a collection of test cases that share the same fixture.

• Assertions: the functions/macros that check the state or output of the
system under test (oracles).

Some examples of frameworks: for Java are JUnit (here is an example) and
Apache JMeter, for C++ are Google Test (here is an example of a factorial
function), CppUnit, CxxTest, Microsoft Unit Testing Framework for C++.
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7 Software Configuration Management

7.1 Introduction
Configuration Management (CM) is a systems engineering process for establish-
ing consistency of a product’s attributes throughout its life. In the technology
world, configuration management is an IT management process that tracks in-
dividual configuration items of an IT system. IT systems are composed of IT
assets that vary in granularity. An IT asset may represent a piece of software,
or a server, or a cluster of servers. The following focuses on configuration man-
agement as it directly applies to IT software assets and software asset CI/CD.

Software Configuration Management is a systems engineering process
that tracks and monitors changes to a software systems configuration
metadata. In software development, configuration management is commonly
used alongside version control and CI/CD infrastructure (explained later).

The basic approach to using a decentralized CM is to have a repository
(project) on the server side.

• When we want to work on the project, we clone the repository on the local
PC. This workflow is used because we can work offline and on the local
project without making critical changes to the repository server side.

• The local changes can be saved using the commit command and when we
are ready to publish our changes, we use the push command to update
the repository on the server side.

• After a push, anyone who has a local copy should make a pull command
to update the local project.

This workflow can be done using git commands, and a good cheat sheet can be
found here.
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7.2 Workflows
In Configuration Management (CM), it’s important to define a workflow. A
workflow then defines how an organization uses CM for a specific project.

The main principles are:

• Keep the master repository as clean as possible.

• The distinction between local and central repositories is not sufficient in
the case of multiple contributors.

• On the central repository we can create a master repository and as many
branches as we want.

• A new commit only becomes part of the master if the whole team
agrees.

In detail, the GitFlow is:

1. If we want to develop a new feature or idea, create a new branch. A
branch can be thought of as a new, independent sub-repository, where we
can experiment without affecting what is in the master.

2. New versions of software can be produced in the branch.

3. When the work is done, we can make a pull request. Then the sub-
teams ask the whole team to review the changes and decide whether or
not to accept them. The sub-team has already merged any local changes
into the server side of the branch.
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4. A discussion starts, and new versions can be created in the branch
during the discussion.

5. Finally, the code is deployed and tested.

6. And the branch is merged into the master.
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7.3 Continuous Integration and Continuous Delivery
Continuous Integration (CI) is the practice of integrating changes into
the main codebase as often as possible. It relies on automation to ensure
that proper checks are performed during integration. Typically, commits or pull
requests trigger compilation or build, unit and integration testing, code quality
checking, and merging into the main repository.

However, Continuous Delivery (CD) is different from continuous deploy-
ment. The former is the automatic preparation and tracking of a release
into production. Instead, continuous deployment automatically deploys into
the operational environment.

This theory can be put into practice using GitHub Actions. A workflow is a
configurable automated process that runs one or more jobs. An event triggers
the execution of workflows, and a job is a set of steps in a workflow. A step
can be an action (reusable in different contexts) or a shell script. The runner
is a Virtual Machine in which a job is executed.

To create the workflow, we’ll need to create a directory called .github and a
folder called workflows within it. Some pre-written examples are:

• Example of CI workflow using cmake: cmake-single-platform.yml

• Example of CI workflow using Maven: maven.yml

A note about YAML. YAML (YAML Ain’t Markup Language) is a data serial-
ization language designed to be human friendly.
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7.4 Containers and Schedulers
In general, software should run correctly on multiple environments, such as a
developer’s laptop. Unfortunately, there are some problems, such as different
versions of libraries and middleware.

An optimal solution is containers. A Container consists of an entire runtime
environment: an application plus all its dependencies, libraries and other
binaries and configuration files needed to run it, bundled into one package.

A similar concept is the Virtual Machine. A Virtual Machine, commonly
shortened to just VM, is no different than any other physical computer like a
laptop, smart phone, or server. It has a CPU, memory, disks to store your files,
and can connect to the internet if needed. While the parts that make up your
computer (called hardware) are physical and tangible, VMs are often thought
of as virtual computers or software-defined computers within physical servers,
existing only as code.3

The differences between containers and virtual machines are as follows:

• Containers

– Rely on the underlying operating system.

– A container image is in the order of MBs.

– Are available almost instantly.

• VMs

– Each has its own operating system.

– A VM image is in the order of GBs.

– Require several minutes to boostrap.

The most common container frameworks are Docker, which is widely used in
classical software development, Singularity, which is used in HPC software, and
OCI (Open Container Initiative).

[ Terminology

The terminology used when talking about containers is as follows:

• Image. This is a read-only template that contains instructions for
creating a container (such as Docker). An image can be based on
another image, with some customization.

• Container. An executable instance of an image. Containers can be
created, started, stopped, moved or deleted. They can be connected to
one or more networks and have storage attached to them.

• Dockerfile is an example of one of the frameworks and contains the in-
structions for creating and running a new image.

3What is a virtual machine (VM)?
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7.4.1 Singularity

Singularity is designed to run complex applications on HPC clusters in
a simple, portable and reproducible way.

This framework has the following features:

• Verifiable reproducibility and security, using cryptographic signatures, an
immutable container image format, and in-memory decryption.

• Integration over isolation by default. Easily make use of GPUs, high speed
networks, parallel filesystems on a cluster or server by default.

• Mobility of compute. The single file SIF container format is easy to trans-
port and share.

• A simple, effective security model. You are the same user inside a container
as outside, and cannot gain additional privilege on the host system by
default.

However, the previous features are detailed explained here.

7.4.2 Slurm

Along with Singularity, Slurm is also commonly used. Simple Linux Utility
for Resource Management (SLURM) is a free and open source job sched-
uler (see definition below) for Linux and Unix-like kernels, used by many of the
world’s supercomputers and computer clusters.

Slurm is the workload manager on approximately 60% of the TOP500 super-
computers.

A Resource Manager co-ordinates the actions of all other components
in the batch system by maintaining a database of all resources, submitted
requests and running jobs.

In addition, a Job Scheduler takes the node and job information from the
resource manager and creates a list, sorted by job priority, that tells the
resource manager when and where to run each job.

Slurm was originally designed as a simple resource manager, capable only
of allocating whole nodes to jobs. It has evolved into a comprehensive work-
load scheduler capable of managing the most demanding workflows on
many of the world’s largest computers. Its design goals are to be open source,
portable, scalable, fault tolerant, secure and sys admin friendly.
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[ Terminology

Some of the main concepts of Slurm:

• Job: resource allocation request, two types:

1. Batch script to be queued for later execution.

2. Interactive job for which the user awaits resource allocation and then
makes real-time use of it.

• Job Step: a set of parallel tasks, typically an MPI application.

• Node: computational element.

• Cluster: a collection of nodes sharing the same network.

• Federation: a collection of clusters sharing a standard configuration DB.

• Job Partition: It is a job queue. Note that a job can be partitioned into
multiple parts.

• Account: an access group that gives users access to resources in a cluster.

• Slurm Association: a combination of the cluster, account, username,
and (optional) partition name.

, Commands

And here is a list of the most common Slurm commands (summary of com-
mands):

• slurmd: controls the execution of jobs and job steps on a node

• slurmctld: monitors the status of resources, decides when and where to
initiate jobs and job steps, and processes almost all user commands.

• slurmdbd: interfaces with a DBMS such as MariaDB or MySQL, keeps
accounting information and manages some configuration information cen-
trally (many limits, fair share information, QOS, licences, etc.).

• slurmrestd: interfaces to Slurm via REST.

• sbatch: submits a job script for later execution.

• srun: submits a job for execution or initiate job steps in real time.

• salloc: allocates resources for a job in real time.

• squeue: reports the state of jobs or job steps.

• sinfo: reports the state of partitions and nodes managed by Slurm.

The default scheduling approach is FIFO. But with the Multifactor Priority
plugin it is ordered by priority. There is a detailed explanation in the following
link (these are slides).
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8 Exercises
These exercises are taken from the course workbook [3]. In the following sections
you can see how we approached the exercises.

8.1 Availability
8.1.1 Collection and analysis

[ Problem description

Consider the system in Figure 28. Assume that the participating components
offer the following availability:

• DataCollector: 99%

• MessageQueue: 99.99%

• DataAnalyzer: 99.5%

Figure 28: Collection and analysis system.

® Questions

1. Provide an estimate of your system’s total availability (a rough estimation
is acceptable without complete calculations). Assume you want to improve
this total availability through replication, which component(s) would you
choose to replicate? Explain your reasoning.

2. How would such replication impact the way the system works and is de-
signed?

✓ Solution

Solution 1. We can use Equation 5 on page 63 to estimate our system’s total
availability. Then, we can multiply the availability of each item in the system:

Availability = DataCollector× MessageQueue× DataAnalyzer

= (99÷ 100)× (99.99÷ 100)× (99.5÷ 100)

= 0.99× 0.9999× 0.995

= 0.984951495 ≈ 0.985
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Now, we want to improve the system’s accessibility. As the exercise suggests,
we use the replication technique. Since the component to replicate is the worst,
we replicate the DataAnalyzer (99.5% availability).

So, how can we calculate accessibility? Well, when we replicate a component,
we take advantage of the parallel concept. Then, we use Equation 6 (page 64)
on these components. Finally, the availability becomes:

Improved Avail. = 0.99× 0.9999× [1− (1− 0.995)× (1− 0.995)]

= 0.989901× [1− 0.000025]

= 0.989901× 0.999975

= 0.989876252475 ≈ 0.989 ≈ 0.99

Solution 2. We have improved the availability system with replication, but how
are two parallel components managed? We can choose between three available
tactics (page 66): Hot Spare, Warm Spare, and Cold Spare (Triple Modular
Redundancy cannot be applied because there are only two parallel modules).

• Hot Spare approach: DataCollector1 and DataCollector2 are updated
at the same time from the MessageQueue. One component leads, and
another is always ready to take over.

However, the main problem with this choice is the data duplication. Be-
cause when the two components receive the same data, both process and
return the information at the source MessageQueue. To manage this issue,
we can code a system to avoid duplicates on the queue.

Another issue when two sources answer simultaneously is concurrency (a
race condition problem). This problem can be solved by implementing
mutual exclusion mechanisms.

• Warm or Cold Spare: In the first, DataCollector1 leads and periodically
updates the DataCollector2. If the primary DataCollector fails, the
second DataCollector takes time to update itself fully. In the second,
DataCollector2 is dormant, and it’s started and updated only if required.
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8.1.2 Train Ticket

[ Problem description

Consider a microservices application called TrainTicket composed of 3 domain
microservices (search, reserve, buy) and 1 additional microservice that acts
as the API gateway. TrainTicket supports two basic operations invoked using
the exposed RESTFul APIs.

• Search request: /APIv1/search/{args}

• Reserve request: /APIv1/reserve/{args}

Requests (search and reserve) are received and dispatched by the API gateway.
In particular, Figure 29 shows how requests propagate from the gateway to
internal microservices. Note that in this example, reserve also includes the
purchase of reserved items.

Figure 29: Train ticket system.

Microservices run in units deployed onto 2 different Virtual Machines (VMs),
VM1 and VM2 as shown in the following UML deployment diagram.

The available VMs have Computational Resources (CRs) that can be al-
located to run microservices. Each VM has a maximum number of CRs and
each microservice requires a certain number of CRs, according to the executed
artifact. As shown in the schema, available CRs are as follows.

• VM1: 20 CRs

• VM2: 22 CRs

The mapping between microservices and required CRs is as follows.

• API gateway: 2 CRs

• search: 5 CRs

• reserve: 4 CRs

• buy: 5 CRs
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The deployment diagram in Figure 30 shows that each microservice can be
replicated to have redundant business-critical components. In the latter case,
requests are directed to all the replicas rather than to an individual instance,
and the first answer received from a replica is returned to the caller, while
the others are simply ignored. The number of replicas for each microservice
shall be defined so that the following nonfunctional requirement is satisfied and
the deployment constraints defined in the deployment diagram and above are
fulfilled.

R1: “Both search and reserve services exposed through API gateway shall have
availability greater than or equal to 0.99.”

Figure 30: Train ticket deployment diagram.

® Questions

1. Considering the constraints of the execution environment represented, de-
termine whether requirement R1 can be satisfied or not assuming the
following availability estimates for each microservice.

• API gateway: 0.99

• search: 0.98

• reserve: 0.95

• buy: 0.9

2. Consider the problem of resource allocation taking into account the op-
erational profile, that is, the behavior of the users. Assume the following
workload in terms of average number of concurrent users for each requests.
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(a) search: 50 users

(b) reserve: 90 users

Assume that for reserve, only 20% of users complete the purchase at reser-
vation time. This means that 20% of reserve requests get through and
reach the buy microservice, while 80% of them terminate the execution
without calling buy. After a preliminary analysis, we realize that avail-
ability depends on the workload according to the estimates presented in
Table 3. Does the execution environment have enough computational re-
sources to support the workload defined above still fulfilling requirement
R1 and the defined constraints? Justify your answer.

LOW workload HIGH workload
0-60 concurrent users 60-150 concurrent users

Microservice Availability Microservice Availability

API gateway 0.99 API gateway 0.98
search 0.98 search 0.95
reserve 0.95 reserve 0.93
buy 0.91 buy 0.90

Table 3: Microservices availability under different workloads.

✓ Solution

Solution 1. The requirement R1 can be satisfied if both virtual machines
respect the constraints about the computational resources (CR) and the con-
straints about the availability percentage.

To analyze the constraint about the CRs, we need to write two simple in-
equations: {

2x+ 5y ≤ 20

4u+ 5z ≤ 22

Where the first one refers to VM1 and the second refers to VM2. To the right
side, we have the computational resource limit; to the left, we have a sum of
the microservices inside each Virtual Machine. The unknown variables indicate
“how many resources are requested ”. For example, if x will be 5, the API gateway
has a request equal to 10 (5× 2).

With the same logic, we can write about the inequations in availability. We
use the same unknown variables because the computational resources directly
affect the availability calculation.{

(1− (1− 0.99)
x
) · (1− (1− 0.98)

y
) ≥ 0.99

(1− (1− 0.99)
x
) · (1− (1− 0.95)

u
) · (1− (1− 0.91)

z
) ≥ 0.99

To the right side, we have the value accepted by the request R1; as a symbol, we
use ≥ because the request says “[...] availability greater than or equal to 0.99.”;
finally, to the left, we have any component written using the parallelization
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formula. The reason is that if we have multiple computational resources at a
time, we need a duplication. An example of a valid assignment can be:

x = 2, y = 2, u = 3, z = 2

Solution 2. On time t, we have 50 users who request the search microservice
and 90 who request the reserve service. Then, the API gateway module will
receive 140 (50+90) concurrent users, and its workload will be HIGH (determined
by looking at the Table 3).

The search module will receive 50 concurrent requests, and looking at the
table; its workload will be LOW.

The reserve module must manage 90 concurrent requests, and its workload
will be HIGH.

Finally, the buy module will receive only 18 concurrent requests (20% of 90
requests), and its workload will be LOW. Then summarizing:

• API gateway: 140 users (HIGH) → 0.98 availability

• search: 50 users (LOW) → 0.98 availability

• reserve: 90 users (HIGH) → 0.93 availability

• buy: 18 users (LOW) → 0.91 availability

The availability inequations written in the previous solution it is modified as
follows:{

(1− (1− 0.0.98)
x
) · (1− (1− 0.98)

y
) ≥ 0.99

(1− (1− 0.0.98)
x
) · (1− (1− 0.93)

u
) · (1− (1− 0.91)

z
) ≥ 0.99

An optimal resource allocation is represented by the assignment:

x = 2, y = 2, u = 3, z = 2

That is again feasible according to environment constraints.

105



8 Exercises 8.2 Petri Nets

8.2 Petri Nets
8.2.1 Logical And

[ Problem description

Define a Petri Net (P/T net) model for calculating the logical conjunction of
two variables, x, and y, each of which takes the values true or false, with each
variable’s value being independent of the other.

® Questions

1. Draw the diagram describing the aforementioned P/T ned model.

2. Define a P/T net that computes the negation of x, which again takes only
the values true and false.

3. Define a P/T net that computes ! (x ∧ y) by composing the previous mod-
els.

✓ Solution

Solution 1. We use a Petri Net (section 6.1.1 at page 58) to describe distributed
systems. In other words, it is a soft UML graph with an exact mathematical
definition of its execution semantics.

The exercise requests that we design a P/T net that describes the logic and
operator (conjunction of two variables): x ∧ y. The values of the variables are
their domain, true and false, and then they are boolean values. The values to
try depend on the logic table:

x y ∧
True True True
True False False
False True False
False False False

The Petri Net model is exposed in the Figure 31.

Solution 2. The model of the negation x depends on the negation logic table:

x ¬x
True False
False True

The Petri Net model is exposed in the Figure 32.

Solution 3. To combine the previous two models, we can extend the first model
(Figure 31) with the second (Figure 32) in a very simple way. See the final Petri
Net model in the Figure 33.
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Figure 31: Petri Net model of logical and.

Figure 32: Petri Net model of logical not.

107



8 Exercises 8.2 Petri Nets

Figure 33: Petri Net model of logical ∧ and ¬.
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8.2.2 Reachability graph

[ Problem description

Consider the P/T Net (N,M0) presented in Figure 34.

Figure 34: An example of P/T Net model.

® Questions

1. Define the reachability graph of (N,M0).

✓ Solution

Solution 1. The reachability graph of the Petri Net:

1. The initial state of the model has the state p0 and p1 active. This is the
start of the reachability graph: {p0, p1}.

2. The arcs leave states p0 and p1 and go to transition 0 (t0). The destinations
are p2, p3 and p4. This is the reachability graph:
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3. We are evaluating three possible options:

• t3

(a) The transition t3 requires the states p3 and p4. The target will
be p0:

(b) The transition t0 can’t be made by the p0 state because it needs
the p1 state. Then the p3 state makes the transition t1 towards
the p1 state. At this point we can see that it’s the same system
as the original one.
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• t1

(a) The transition t1 is made by the state p3. So the destination is
p1.

(b) At this point we can see that the transition t0 cannot be per-
formed by the state p1 because t0 needs the state p0. This state
can be performed by the transition t3. Again, this situation
brings us back to the initial state.
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• t2

(a) The transition t2 is made by the state p3 and the state p2. As we
can see, the state p4 gets another point and the state p2 doesn’t
lose its point because it has an internal loop.

(b) Finally, we make the transition t3 with p2 and p4.
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8.3 Symbolic Execution
8.3.1 Simple Computation

[ Problem description

Consider the following fragment of code:
0 int computation(int a[], int n) {
1 int i, count , prod;
2 if (n < 2)
3 printf("%d", n);
4 i = 0;
5 count = 0;
6 prod = 1;
7 while (i < n) {
8 if (a[i] == 0)
9 count ++;

10 prod = prod * a[i];
11 i++;
12 }
13 if (count < 2 || prod == 0)
14 return -1;
15 else
16 return prod;
17 }

® Questions

1. Derive the path condition corresponding to the execution of path:

< 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 7, 8, 9, 10, 11, 12, 7, 13, 14 >

2. Derive the path condition corresponding to the execution of path:

< 1, 2, 4, 5, 6, 7, 13, 15 >

✓ Solution

The symbolic execution analyses a program to determine what inputs cause each
part of a program to execute. The full explanation can be found in section 6.2
on page 69.

The answer to both questions:

• Path: 0
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• Path: 0, 1

• Path: 0, 1, 2

• Path: 0, 1, 2, 4

• Path: 0, 1, 2, 4, 5, 6
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Here is the answer to the first question (solution 1):

• Path: 0, 1, 2, 4, 5, 6, 7

• Path: 0, 1, 2, 4, 5, 6, 7, 8

• Path: 0, 1, 2, 4, 5, 6, 7, 8, 10
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• Path: 0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12

• Path: 0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 7

• Path: 0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 7, 8, 9
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• Path: 0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 7, 8, 9, 10

• Path: 0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 7, 8, 9, 10, 11, 12

• Path: 0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 7, 8, 9, 10, 11, 12, 7
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• Path: 0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 7, 8, 9, 10, 11, 12, 7, 13, 14

This path is satisfiable. An unsatisfiable case is solution number 2:

• Path: 0, 1, 2, 4, 5, 6, 7

It’s unsatisfiable because the logical condition is a contradiction: N ≥ 2∧N ≤ 0.
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8.4 Strategies for test case identification
8.4.1 Triangles

[ Problem description

Consider a function with the following signature:

bool isTriangle(float a, float b, float c)

The function receives three integers representing the lengths of three segments.
The function returns true if the three segments can constitute the sides of a
triangle and false otherwise.

® Questions

Assume we have the following test cases and corresponding output:

• a = 10, b = 12, c = 9, result true

• a = 10, b = 12, c = 22, result false

Identify one or more metamorphic relations between inputs and outputs and
some corresponding test cases.

✓ Solution

We can identify at least the following two Metamorphic Relations predicat-
ing on the sides of a triangle:

1. Relation between the sides of a triangle: the length of each side of a triangle
is less than the sum of the lengths of the other two sides.

2. Similarity : two triangles, A and B, are said to be similar if their side pairs
are proportional.

The corresponding test cases are:

1. By exploiting the first relation:

• a = 12, b = 9, c = 10, result true

• a = 12, b = 22, c = 10, result false

2. By exploiting the similarity:

• a = 5, b = 6, c = 4.5, result true

• a = 100, b = 120, c = 90, result true
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8.5 Integration Testing Plan Definition
8.5.1 Microservices

[ Problem description

Consider the microservice-based architecture shown in Figure 35. The architec-
ture is organized into eight stateless microservices collaborating to fulfill requests
R1 and R2. S1 is the front-end service that receives both requests. The fulfill-
ment of request R1 requires the interaction with services S2 and S3 (through
sub-requests R1.1 and R1.2, respectively), which, in turn, need to interact with
other services. In particular, S2 interacts with S4 and S5 and S3 with S5 and
S6. The fulfillment of R2 requires that S1 interacts with S8, which, in turn,
interacts with S6 and S7.

Figure 35: Microservice-based architecture.

® Questions

1. Define an integration and test plan for the architecture, motivating your
choice.

2. Assume that we are asked to test whether the availability improvement
theoretically obtained with the duplication of services is actually achieved.
How would we proceed to perform such a test?

✓ Solution

Solution 1. The strategy used for integration testing (a summary of the strate-
gies can be found in Figure 26 on page 79) is the iterative/incremental strategy.
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In particular, we use the Threads strategy to test some of the modules. This
is possible because the set of modules together provide a user-visible programme
function.

We also use a hierarchical strategy with a top-down approach because the
modules are integrated and all functionality can be tested.

The test plan can be divided into R1 and R2 for the given architecture.
Given the request R1, we can test a part of the architecture. Meanwhile, given
the request R2, we can test the remaining part of the architecture. Then, the
test plan is the following:

1. Integration of the S1 (front-end) and testing by emulating two requests
called R1 and R2. We need the following stubs to test this service: R1.1,
R1.2 and R2.1.

2. Once completed, we temporarily leave aside R2 and implement the R1
tree. We start from the S2 and S3 by creating the requests R1.1.1, R1.1.2,
R1.2.1 and R1.2.2 as stubs. Now we can also test the triangles S1, S2 and
S3.

3. Finally, we implement S4, S5 and S6. We do not use stubs to test these
services because the other modules have already been implemented (S2,
S3). At this point, the request R1 has been thoroughly tested and inte-
grated.

4. We can now integrate the R2 tree. We implement/test the service S8 by
using R2.1.2 as stubs. The S6 was already implemented (previous step),
so we can use that module directly.

5. Finally, we implement S7 and test the whole architecture because all the
services are implemented.

Solution 2. To measure the quantitative impact of architectural decisions, we
use the availability metric (Formula 3 on page 62).

The main values required are MTTR (Mean Time To Repair) and MTTF (Mean
Time To Failures). If we want to do some tests to compare the two architectures
before and after duplication, we can run the application for a long time and
simulate a failure of one of the services. We can then calculate the time taken
by the architecture to restore the service. The requests can be made sequentially
or in parallel to study how the architecture responds.

Using the availability metric, we can understand if the chosen replication makes
sense and if the availability is better than the architecture without duplication
of services.
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